首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
RNA降解体(细菌RNA降解的主要执行者)是一种多亚基的蛋白质复合物,主要由RNA解螺旋酶、聚核苷酸磷酸化酶(polynucleotide phosphorylase,PNPase)、内切核酸酶(ribonuclease E,RNase E)以及糖酵解途径中的烯醇化酶、磷酸果糖激酶等组成,参与核糖体RNA(ribosome RNA,rRNA)的加工以及信使RNA(messenger RNA,mRNA)的降解。此外,RNA分子伴侣Hfq和调控小RNA(small RNA,sRNA)在RNA稳定性调控中也发挥着重要作用。综述了细菌RNA稳定性调控相关功能元件,特别是降解体蛋白及RNA分子伴侣Hfq的最新进展,以期为研究细菌RNA稳定性及其参与的代谢调控提供理论参考。  相似文献   

2.
Positive-strand RNA virus genome replication occurs in membrane-associated RNA replication complexes, whose assembly remains poorly understood. Here we show that prior to RNA replication, the multifunctional, transmembrane RNA replication protein A of the nodavirus flock house virus (FHV) recruits FHV genomic RNA1 to a membrane-associated state in both Drosophila melanogaster and Saccharomyces cerevisiae cells. Protein A has mitochondrial membrane-targeting, self-interaction, RNA-dependent RNA polymerase (RdRp), and RNA capping domains. In the absence of RdRp activity due to an active site mutation (A(D692E)), protein A stimulated RNA1 accumulation by increasing RNA1 stability. Protein A(D692E) stimulated RNA1 accumulation in wild-type cells and in xrn1(-) yeast defective in decapped RNA decay, showing that increased RNA1 stability was not due to protein A-mediated RNA1 recapping. Increased RNA1 stability was closely linked with protein A-induced membrane association of the stabilized RNA and was highly selective for RNA1. Substantial N- and C-proximal regions of protein A were dispensable for these activities. However, increased RNA1 accumulation was eliminated by deleting protein A amino acids (aa) 1 to 370 but was restored completely by adding back the transmembrane domain (aa 1 to 35) and partially by adding back peripheral membrane association sequences in aa 36 to 370. Moreover, although RNA polymerase activity was not required, even small deletions in or around the RdRp domain abolished increased RNA1 accumulation. These and other results show that prior to negative-strand RNA synthesis, multiple domains of mitochondrially targeted protein A cooperate to selectively recruit FHV genomic RNA to membranes where RNA replication complexes form.  相似文献   

3.
Replication of flock house virus (FHV) RNA1 and production of subgenomic RNA3 in the yeast Saccharomyces cerevisiae provide a useful tool for the dissection of FHV molecular biology and host-encoded functions involved in RNA replication. The replication template activity of RNA1 can be separated from its coding potential by supplying the RNA1-encoded replication factor protein A in trans. We constructed a trans-replication system in yeast to examine cis-acting elements in RNA1 that control RNA3 production, as well as RNA1 and RNA2 replication. Two cis elements controlling RNA3 production were found. A proximal subgenomic control element was located just upstream of the RNA3 start site (nucleotides [nt] 2282 to 2777). A short distal element also controlling RNA3 production (distal subgenomic control element) was identified 1.5 kb upstream, at nt 1229 to 1239. Base pairing between these distal and proximal elements was shown to be essential for RNA3 production by covariation analysis and in vivo selection of RNA3-expressing replicons from plasmid libraries containing random sequences in the distal element. Two distinct RNA1 replication elements (RE) were mapped within the 3' quarter of RNA1: the intRE (nt 2322 to 2501) and the 3'RE (nt 2735 to 3011). The 3'RE significantly overlaps the RNA3 region in RNA1, and this information was applied to produce improved RNA3-based vectors for foreign-gene expression. In addition, replication of an RNA2 derivative was dependent on RNA1 templates capable of forming the long-distance interaction that controls RNA3 production.  相似文献   

4.
5.
RNA editing is a fundamental biochemical process relating to the modification of nucleotides in messenger RNAs of functional genes in cells. RNA editing leads to re-establishment of conserved amino acid residues for functional proteins in nuclei, chloroplasts, and mitochondria. Identification of RNA editing factors that contributes to target site recognition increases our understanding of RNA editing mechanisms. Significant progress has been made in recent years in RNA editing studies for both animal and plant cells. RNA editing in nuclei and mitochondria of animal cells and in chloroplast of plant cells has been extensively documented and reviewed. RNA editing has been also extensively documented on plant mitochondria. However, functional diversity of RNA editing factors in plant mitochondria is not overviewed. Here, we review the biological significance of RNA editing, recent progress on the molecular mechanisms of RNA editing process, and function diversity of editing factors in plant mitochondrial research. We will focus on: (1) pentatricopeptide repeat proteins in Arabidopsis and in crop plants; (2) the progress of RNA editing process in plant mitochondria; (3) RNA editing-related RNA splicing; (4) RNA editing associated flower development; (5) RNA editing modulated male sterile; (6) RNA editing-regulated cell signaling; and (7) RNA editing involving abiotic stress. Advances described in this review will be valuable in expanding our understanding in RNA editing. The diverse functions of RNA editing in plant mitochondria will shed light on the investigation of molecular mechanisms that underlies plant development and abiotic stress tolerance.  相似文献   

6.
Noroviruses (Caliciviridae) are RNA viruses with a single-stranded, positive-oriented polyadenylated genome. To date, little is known about the replication strategy of norovirus, a so-far noncultivable virus. We have examined the initiation of replication of the norovirus genome in vitro, using the active norovirus RNA-dependent RNA polymerase (3D(pol)), homopolymeric templates, and synthetic subgenomic or antisubgenomic RNA. Initiation of RNA synthesis on homopolymeric templates as well as replication of subgenomic polyadenylated RNA was strictly primer dependent. In this context and as observed for other enteric RNA viruses, i.e., poliovirus, a protein-primed initiation of RNA synthesis after elongation of the VPg by norovirus 3D(pol) was postulated. To address this question, norovirus VPg was expressed in Escherichia coli and purified. Incubation of VPg with norovirus 3D(pol) generated VPg-poly(U), which primed the replication of subgenomic polyadenylated RNA. In contrast, replication of antisubgenomic RNA was not primer dependent, nor did it depend on a leader sequence, as evidenced by deletion analysis of the 3' termini of subgenomic and antisubgenomic RNA. On nonpolyadenylated RNA, i.e., antisubgenomic RNA, norovirus 3D(pol) initiated RNA synthesis de novo and terminated RNA synthesis by a poly(C) stretch. Interestingly, on poly(C) RNA templates, norovirus 3D(pol) initiated RNA synthesis de novo in the presence of high concentrations of GTP. We propose a novel model for initiation of replication of the norovirus genome by 3D(pol), with a VPg-protein-primed initiation of replication of polyadenylated genomic RNA and a de novo initiation of replication of antigenomic RNA.  相似文献   

7.
The genome of Red clover necrotic mosaic virus (RCNMV) in the genus Dianthovirus is divided into two RNA molecules of RNA1 and RNA2, which have no cap structure at the 5' end and no poly(A) tail at the 3' end. The 3' untranslated region (3' UTR) of RCNMV RNA1 contains an essential RNA element (3'TE-DR1), which is required for cap-independent translation. In this study, we investigated a cap-independent translational mechanism of RNA2 using a firefly luciferase (Luc) gene expression assay system in cowpea protoplasts and a cell-free lysate (BYL) prepared from evacuolated tobacco BY2 protoplasts. We were unable to detect cis-acting RNA sequences in RNA2 that can replace the function of a cap structure, such as the 3'TE-DR1 of RNA1. However, the uncapped reporter RNA2, RNA2-Luc, in which the Luc open reading frame (ORF) was inserted between the 5' UTR and the movement protein ORF, was effectively translated in the presence of p27 and p88 in protoplasts in which RNA2-Luc was replicated. Time course experiments in protoplasts showed that the translational activity of RNA2-Luc did not reflect the amount of RNA2. Mutations in cis-acting RNA replication elements of RNA2 abolished the cap-independent translational activity of RNA2-Luc, suggesting that the translational activity of RNA2-Luc is coupled to RNA replication. Our results show that the translational mechanism differs between two segmented genomic RNAs of RCNMV. We present a model in which only RNA2 that is generated de novo through the viral RNA replication machinery functions as mRNA for translation.  相似文献   

8.
The poliovirus RNA-dependent RNA polymerase was active on synthetic homopolymeric RNA templates as well as on every natural RNA tested. The polymerase copied polyadenylate. oligouridylate [oligo(U)], polycytidylate . oligoinosinate, and polyinosinate. oligocytidylate templates to about the same extent. The observed activity on polyuridylate. oligoadenylate was about fourfold less. Full-length copies of both poliovirion RNA and a wide variety of other polyadenylated RNAs were synthesized by the polymerase in the presence of oligo(U). Polymerase elongation rates on poliovirion RNA and a heterologous RNA (squash mosaic virus RNA) were about the same. Changes in the Mg(2+) concentration affected the elongation rates on both RNAs to the same extent. With two non-polyadenylated RNAs (tobacco mosaic virus RNA and brome mosaic virus RNA3), the results were different. The purified polymerase synthesized a subgenomic-sized product RNA on brome mosaic virus RNA3 in the presence of oligo(U). This product RNA appeared to initiate on oligo(U) hybridized to an internal oligoadenylate sequence in brome mosaic virus RNA3. No oligo(U)-primed product was synthesized on tobacco mosaic virus RNA. When partially purified polymerase was used in place of the completely purified enzyme, some oligo(U)-independent activity was observed on the brome mosaic virus and tobacco mosaic virus RNAs. The size of the product RNA from these reactions suggested that at least some of the product RNA was full-sized and covalently linked to the template RNA. Thus, the polymerase was found to copy many different types of RNA and to make full-length copies of the RNAs tested.  相似文献   

9.
Brome mosaic virus (BMV) is a positive-sense RNA plant virus, the tripartite genomic RNAs of which are separately packaged into virions. RNA3 is copackaged with subgenomic RNA4. In barley protoplasts coinoculated with RNA1 and RNA2, an RNA3 mutant with a 69-nucleotide (nt) deletion in the 3'-proximal region of the 3a open reading frame (ORF) was very poorly packaged compared with other RNA3 mutants and wild-type RNA3, despite their comparable accumulation in the absence of coat protein. Computer analysis of RNA secondary structure predicted two stem-loop (SL) structures (i.e., SL-I and SL-II) in the 69-nt region. Disruption of SL-II, but not of SL-I, significantly reduced RNA3 packaging. A chimeric BMV RNA3 (B3Cmp), with the BMV 3a ORF replacing that of cucumber mosaic virus (CMV), was packaged negligibly, whereas RNA4 was packaged efficiently. Replacement of the 3'-proximal region of the CMV 3a ORF in B3Cmp with the 3'-proximal region of the BMV 3a ORF significantly improved packaging efficiency, and the disruption of SL-II in the substituted BMV 3a ORF region greatly reduced packaging efficiency. These results suggest that the 3'-proximal region of the BMV 3a ORF, especially SL-II predicted between nt 904 and 933, plays an important role in the packaging of BMV RNA3 in vivo. Furthermore, the efficient packaging of RNA4 without RNA3 in B3Cmp-infected cells implies the presence of an element in the 3a ORF of BMV RNA3 that regulates the copackaging of RNA3 and RNA4.  相似文献   

10.
Foot-and-mouth disease virus (FMDV)-specific ribonucleic acid (RNA) was analyzed by electrophoresis on 0.5% agarose gels. Four classes of RNA were resolved as a function of mobility in agarose: two classes of slowly migrating multistranded RNA, the infectious viral RNA with intermediate mobility, and a minor fast-moving class of lower-molecular-weight single-stranded RNA. The major RNA species were infectious viral RNA and the slowest migrating class of multistranded RNA. The latter RNA was polydisperse when analyzed by sucrose gradient centrifugation, it was partially ribonuclease resistant, and it was the predominant RNA species labeled during the initial period of (3)H-uridine triphosphate incorporation in the cell-free system. Heat treatment studies indicated that part of the slowest-moving RNA was degraded at 60 C and almost complete degradation was detected at 100 C. It was concluded that this RNA is the replicative intermediate in viral RNA synthesis. The second class of multistranded RNA contained both a ribonuclease-resistant RNA and a second RNA peak which was detected only after heat treatment at temperatures above 75 C. Fractions of FMDV-specific RNA isolated by sucrose gradient centrifugation were analyzed by agarose-gel electrophoresis. Infectious viral RNA was detected only in the 37S zone and was the major species of RNA in this part of the gradient. The ribonuclease-resistant RNA (the 20S zone) contained about equal amounts of multistranded RNA (both classes) and the low-molecular-weight single-stranded RNA. All sucrose gradient fractions between 20 and 40S were found to contain the replicative intermediate, although the major portion was detected in the 20 to 25S region.  相似文献   

11.
It seems well established that translocation of at least some mRNAs through the nuclear pore is (1) an energy-dependent process, and (2) dependent on the presence of the poly(A) segment attached to most mRNA species. We describe that RNA helicase (RNA duplex unwindase) activity is present in a nuclear envelope (NE) preparation, which also appears to be involved in nucleocytoplasmic RNA transport. This activity unwinds RNA: RNA hybrids. The helicase has a pH optimum of 7.5 and a temperature optimum of 30 degrees C. Applying the sealed NE vesicle system, it was shown that duplex RNA species are readily released from the vesicles in an unidirectional manner, in contrast to single-stranded RNA, which is much slower transported into the extravesicular space. Attachment of a poly(A) segment to the RNA duplex additionally increases the efflux rate of this RNA. Efflux of duplex RNA but not efflux of single-stranded RNA was strongly inhibited by formycin B 5'-triphosphate. Our results suggest that, besides poly(A), duplex structures, if present in a given RNA, modulate and control the export of RNA.  相似文献   

12.
13.
Structure of the black beetle virus genome and its functional implications   总被引:20,自引:0,他引:20  
The black beetle virus (BBV) is an isometric insect virus whose genome consists of two messenger-active RNA molecules encapsidated in a single virion. The nucleotide sequence of BBV RNA1 (3105 bases) has been determined, and this, together with the sequence of BBV RNA2 (1399 bases) provides the complete primary structure of the BBV genome. The RNA1 sequence encompasses a 5' non-coding region of 38 nucleotides, a coding region for a protein of predicted molecular weight 101,873 (protein A, implicated in viral RNA synthesis) and a 3' proximal region encoding RNA3 (389 bases), a subgenomic messenger RNA made in infected cells but not encapsidated into virions. The RNA3 sequence starts 16 bases inside the coding region of protein A and contains two overlapping open reading frames for proteins of molecular weight 10,760 and 11,633, one of which is believed to be protein B, made in BBV-infected cells. A limited homology exists between the sequences of RNA1 and RNA2. Sequence regions have been identified that provide energetically favorable bonding between RNA2 and RNA1 possibly to facilitate their common encapsidation, and between RNA2 and negative strand RNA1 possibly to regulate the production of RNA3.  相似文献   

14.
15.
16.
Poly(A)-containing RNAs were isolated from morphologically different cells of the fungus Schizophyllum commune. Using mRNA markers the number-average length of poly(A)-containing RNA in total RNA and in purified poly(A)-containing RNA was estimated as 1100 nucleotides. Number-average length of poly(A)-tracts was 33 nucleotides. 2.5% of total RNA is poly(A)-containing RNA and probably up to 7.5% are non-polyadenylated polydisperse RNA sequences. Saturation hybridization of poly(A)-containing RNA to gap-translated [3H]DNA resulted in 16% of the reactive single-copy DNA to become S1 nuclease resistant. It was found that purified poly(A)-containing RNA represented the entire RNA complexity, i.e. 10 000 different RNA sequences in S. commune. RNA sequences isolated from morphologically different mycelia and from fruiting and non-fruiting mycelia were identical for at least 90%.  相似文献   

17.
1. Rapidly labelled RNA from Escherichia coli K 12 was characterized by hybridization to denatured E. coli DNA on cellulose nitrate membrane filters. The experiments were designed to show that, if sufficient denatured DNA is offered in a single challenge, practically all the rapidly labelled RNA will hybridize. With the technique employed, 75-80% hybridization efficiency could be obtained as a maximum. Even if an excess of DNA sites were offered, this value could not be improved upon in any single challenge of rapidly labelled RNA with denatured E. coli DNA. 2. It was confirmed that the hybridization technique can separate the rapidly labelled RNA into two fractions. One of these (30% of the total) was efficiently hybridized with the low DNA/RNA ratio (10:1, w/w) used in tests. The other fraction (70% of the total) was hybridized to DNA at low efficiencies with the DNA/RNA ratio 10:1, and was hybridized progressively more effectively as the amount of denatured DNA was increased. A practical maximum of 80% hybridization of all the rapidly labelled RNA was first achieved at a DNA/RNA ratio 210:1 (+/-10:1). This fraction was fully representative of the rapidly labelled RNA with regard to kind and relative amount of materials hybridized. 3. In competition experiments, where additions were made of unlabelled RNA prepared from E. coli DNA, DNA-dependent RNA polymerase (EC 2.7.7.6) and nucleoside 5'-triphosphates, the rapidly labelled RNA fraction hybridized at a low (10:1) DNA/RNA ratio was shown to be competitive with a product from genes other than those responsible for ribosomal RNA synthesis and thus was presumably messenger RNA. At higher DNA/rapidly labelled RNA ratios (200:1), competition with added unlabelled E. coli ribosomal RNA (without messenger RNA contaminants) lowered the hybridization of the rapidly labelled RNA from its 80% maximum to 23%. This proportion of rapidly labelled RNA was not competitive with E. coli ribosomal RNA even when the latter was in large excess. The ribosomal RNA would also not compete with the 23% rapidly labelled RNA bound to DNA at low DNA/RNA ratios. It was thus demonstrated that the major part of E. coli rapidly labelled RNA (70%) is ribosomal RNA, presumably a precursor to the RNA in mature ribosomes. 4. These studies have shown that, when earlier workers used low DNA/RNA ratios (about 10:1) in the assay of messenger RNA in bacterial rapidly labelled RNA, a reasonable estimate of this fraction was achieved. Criticisms that individual messenger RNA species may be synthesized from single DNA sites in E. coli at rates that lead to low efficiencies of messenger RNA binding at low DNA/RNA ratios are refuted. In accordance with earlier results, estimations of the messenger RNA content of E. coli in both rapidly labelled and randomly labelled RNA show that this fraction is 1.8-1.9% of the total RNA. This shows that, if any messenger RNA of relatively long life exists in E. coli, it does not contribute a measurable weight to that of rapidly labelled messenger RNA.  相似文献   

18.
Ribonucleic Acid Synthesis in Cells Infected with Influenza Virus   总被引:5,自引:5,他引:0       下载免费PDF全文
Virus-specific ribonucleic acid (RNA), synthesized in influenza virus-infected cells from 3.5 to 7.5 hr after infection, was studied. After velocity centrifugation in sucrose, three peaks of virus-specific RNA could be identified: 34S, 18S, and 11S. These RNA species are predominantly single-stranded and consist of 90% viral (plus) and 10% complementary (minus) RNA strands. Most (75%) of the complementary RNA is single-stranded, i.e., not part of RNA duplexes or replicative intermediates. The 34S RNA species is an aggregate of 18S and 14S RNA species. Both 18S and 11S RNA species are relatively heterogenous compared to 18S ribosomal RNA, and these species probably contain different RNA molecules having closely related sedimentation coefficients.  相似文献   

19.
Isolation of poly(A)+ RNA by paper affinity chromatography   总被引:16,自引:0,他引:16  
Poly(A)+ RNA was isolated from in vitro short-term-labeled total cytoplasmic RNA of Ehrlich ascites tumor cells by oligo(dT) cellulose chromatography. This poly(A)+ RNA fraction was compared with a poly(A)+ RNA fraction isolated by a new procedure which involves specific binding of poly(A)+ RNA to messenger affinity paper (mAP) and its release in hot (70 degrees C) water. In typical experiments 10-11 micrograms (2.3%) of poly(A)+ RNA can be retained from 500 micrograms of total cytoplasmic RNA per cm2 of mAP in a quick one-step procedure. The poly(A)+ RNA preparations isolated by the two methods proved to be almost identical with respect to their fraction in total cytoplasmic RNA, specific radioactivities, sucrose gradient profiles, and translation assays. Since the isolation of poly(A)+ RNA by mAP is much less time consuming than that by oligo(dT) column chromatography and since the poly(A)+ RNA can be recovered from mAP in small volumes, which avoids further loss during precipitations, it can be advantageously used for preparative isolation of poly(A)+ RNA.  相似文献   

20.
The messenger ribonucleic acid content of Bacillus subtilis 168   总被引:5,自引:3,他引:2  
Bacillus subtilis 168 messenger RNA was determined by DNA-RNA hybridization techniques, with denatured DNA immobilized upon cellulose nitrate membrane filters. The following results were obtained. (1) Cultures of B. subtilis, growing exponentially in enriched glucose-salts medium at 37 degrees , incorporated [5-(3)H]uracil into both ribosomal and messenger RNA fractions without the kinetic delay expected from the presence of the intracellular nucleotide pools. (2) However short the time of labelling with exogenous labelled uracil (down to 7sec.), 32-36% of the rapidly labelled RNA was messenger RNA and 68-64% was an RNA with the hybridization characteristics of ribosomal RNA. Analysis of the apparent nucleotide base composition of total (32)P-labelled rapidly labelled RNA and the two RNA fractions separated by hybridization at a DNA/RNA ratio 5:1 confirmed this finding. Of the rapidly labelled RNA, 31% readily hybridized with DNA at low DNA/RNA ratios and had an apparent base composition like that of the DNA, whereas 69% was hybridized only at low efficiency at low DNA/RNA ratios and had a composition identical with that of ribosomal RNA. (3) In cultures dividing every 48min. at 37 degrees , kinetic analysis of RNA labelled over a 20min. period showed that the average life-time of messenger RNA was 2.7-3.0min. and that its amount was 3.0% of the total RNA. (4) The hybridization of (3)H-labelled randomly labelled RNA with DNA at a DNA/RNA ratio 5:1 showed that 2.9% of the randomly labelled RNA had the characteristics of messenger RNA. (5) Experiments carried out as described by Pigott & Midgley (1968) indicated that hybridization at low DNA/RNA ratios (5:1) effectively accounted for all the messenger RNA in a given specimen. The efficiency coefficient of RNA hybridization lay within the range of 90-95% input, if an excess of DNA sites was offered for RNA binding. (6) These measurements are compared with other results obtained by different methods, and reasons for any major disagreement are suggested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号