首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Two structurally similar compounds were found to inhibit sporulation in Bacillus subtilis 168. A dye, acridine orange, and an antischizophrenic drug, promethazine, blocked spore formation at concentrations subinhibitory to vegetative growth, while allowing synthesis of serine protease, antibiotic, and certain catabolite-repressed enzymes. The sporulation process was sensitive to promethazine through T2, whereas acridine orange was inhibitory until T4. The drug-treated cells were able to support the replication of phages phie and phi29, although the lytic cycles were altered slightly. The selective inhibition of sporulation by these compounds may be related to the affinity of some sporulation-specific genes to intercalating compounds.  相似文献   

2.
3.
Degradation of small, acid-soluble spore proteins during germination of Bacillus subtilis spores is initiated by a sequence-specific protease called GPR. Western blot (immunoblot) analysis of either Bacillus megaterium or B. subtilis GPR expressed in B. subtilis showed that GPR is synthesized at about the third hour of sporulation in a precursor form and is processed to an approximately 2- to 5-kDa-smaller species 2 to 3 h later, at or slightly before the time of accumulation of dipicolinic acid by the forespore. This was found with both normal levels of expression of B. subtilis and B. megaterium GPR in B. subtilis, as well as when either protein was overexpressed up to 100-fold. The sporulation-specific processing of GPR was blocked in all spoIII, -IV, and -V mutants tested (none of which accumulated dipicolinic acid), but not in a spoVI mutant which accumulated dipicolinic acid. The amino-terminal sequences of the B. megaterium and B. subtilis GPR initially synthesized in sporulation were identical to those predicted from the coding genes' sequences. However, the processed form generated in sporulation lacked 15 (B. megaterium) or 16 (B. subtilis) amino-terminal residues. The amino acid sequence surrounding this proteolytic cleavage site was very homologous to the consensus sequence recognized and cleaved by GPR in its small, acid-soluble spore protein substrates. This observation, plus the efficient processing of overproduced GPR during sporulation, suggests that the GPR precursor may autoproteolyze itself during sporulation. During spore germination, the GPR from either species expressed in B. subtilis was further processed by removal of one additional amino-terminal amino acid (leucine), generating the mature protease which acts during spore germination.  相似文献   

4.
An attempt was made to determine whether sporulation and inducible enzyme synthesis in Bacillus subtilis are controlled by the same mechanism of catabolite repression. By the use of a thymine-requiring strain, it has been shown that, whereas sporulation remained repressed unless chromosome replication proceeded to completion, the induction of the enzymes histidase, sucrase, and alpha-glucosidase proceeded quite normally in the absence of continued deoxyribonucleic acid synthesis. It is concluded that the mechanism for overcoming the repression of sporulation differs qualitatively from that involved in overcoming the repression of inducible enzyme synthesis. Attempts to isolate pleiotropic mutants that would provide additional support for this contention were unsuccessful. A pleiotropic mutant deficient in phosphoenolpyruvate-dependent phosphotransferase activity sporulated quite well, whereas a mutant presumed deficient in glutamate synthetase sporulated poorly under all conditions.  相似文献   

5.
A sporulation-induced sigma-like regulatory protein from B. subtilis   总被引:45,自引:0,他引:45  
W G Haldenwang  N Lang  R Losick 《Cell》1981,23(2):615-624
  相似文献   

6.
We screened various Bacillus species producing transglutaminase (TGase), measured as labeled putrescine incorporated into N,N-dimethylcasein. As a result, we detected TGase activity in sporulating cells of B. subtilis, B. cereus, B. alvei and B. aneurinolyticus, and found TGase activity related to sporulation. TGase activity of Bacillus subtilis was detected in lysozyme-treated sporulating cells during late sporulation, but not in cells without lysozyme treatment or the supernatant of the culture broth. TGase was found to be localized on spores. TGase was preliminarily purified by gel filtration chromatography for characterization. Its activity was eluted in the fractions indicating a molecular weight of approximately 23 kDa. TGase could cross-link and polymerize a certain protein. The enzyme was strongly suggested to form epsilon-(gamma-glutamyl)lysine bonds, which were detected in the spore coat proteins of B. subtilis. The activity was Ca(2+)-independent like the TGases derived from Streptoverticillium or some plants. It is suggested that TGase is expressed during sporulation and plays a role in the assembly of the spore coat proteins of the genus Bacillus.  相似文献   

7.
8.
9.
We constructed in-frame translational fusions of the Escherichia coli lacZ gene with four genes (sspA, sspB, sspD, and sspE) which code for small, acid-soluble spore proteins of Bacillus subtilis, and integrated these fusions into the chromosomes of various B. subtilis strains. With single copies of the fusions in wild-type B. subtilis, beta-galactosidase was synthesized only during sporulation, with the amounts accumulated being sspB much greater than sspE greater than or equal to sspA greater than or equal to sspD. Greater than 97% of the beta-galactosidase was found in the developing forespore, and the great majority was incorporated into mature spores. Less than 2% of the maximum amount of beta-galactosidase was made when these fusions were introduced into B. subtilis strains blocked in stages 0 and II of sporulation, as well as in some stage III mutants. Other stage III mutants, as well as stage IV and V mutants, had no effect on beta-galactosidase synthesis. Increasing the copy number of the sspA-, sspD-, or sspE-lacZ fusions (up to 17-fold for sspE-lacZ) in wild-type B. subtilis resulted in a parallel increase in the amount of beta-galactosidase accumulated (again only in sporulation and with greater than 95% in the developing forespore), with no significant effect on wild-type small, acid-soluble spore protein production. Similarly, the absence of one or more wild-type ssp genes or the presence of multiple copies of wild-type ssp genes had no effect on the expression of the lacZ fusions tested. These data indicate that these ssp-lacZ fusions escape the autoregulation seen for the intact sspA and sspB genes. Strikingly, the kinetics of beta-galactosidase synthesis were identical for all four ssp-lacZ fusions and paralleled those of glucose dehydrogenase synthesis. Similarly, all asporogenous mutants tested had identical effects on both glucose dehydrogenase and ssp-lacZ fusion expression.  相似文献   

10.
Among spontaneously occurring antibiotic-resistant mutants of Bacillus subtilis 168 we have identified a sub-class that is conditionally sporulative. Mutants in this sub-class are resistant to antibiotic during vegetative growth but are sensitive during sporulation. Mutants conditionally-resistant to erythromycin, kanamycin, spectinomycin, and streptomycin have been isolated and characterized by phase contrast microscopy and with respect to their ability to synthesize heat-resistant endospores or the sporulation-associated enzyme alkaline phosphatase. The results suggest that several entirely different genetic lesions may result in this single phenotype. This group includes mutants whose properties suggest that both th 30S and 50S ribosomal subunits may be altered concomitant with early spore specific metabolism. The blockage imposed by antibiotic may be at or near Stage 2 of sporulation.  相似文献   

11.
During sporulation of Bacillus subtilis 168 there is an increase in activity of alkaline phosphatase in the presence of Pi. This enzyme was shown by cytochemical techniques to be associated with the cytoplasmic membrane of the mother cell and also with the membranes of the developing prespore. There is a strong correlation between an increasing number of electron-dense deposits due to phosphatase activity and the formation of the spore septum, i.e. stage II of sporulation. Cytochemical and biochemical evidence shows that cells well advanced in spore formation can be derepressed to produce the very much higher amounts of alkaline phosphatase characteristic of phosphate-starved vegetative cells.  相似文献   

12.
Catabolite repression-resistant mutants of Bacillus subtilis.   总被引:3,自引:0,他引:3  
Mutants of Bacillus subtilis that are able to sporulate under the condition of catabolite repression were isolated by a simple selection technique. The mutants used in the present study were able to grow normally on minimal medium with ammonium sulphate as the nitrogen source and glucose as the carbon source. Studies carried out with these mutants show that there is no close relation between catabolite repression of an inducible enzyme, acetoin dehydrogenase, and that of sporulation. Certain mutants are able to sporulate in the presence of all the carbon sources tested but some mutants are resistant only to the carbon source used in isolation. It is suggested that several metabolic steps may be affected in catabolite repression of sporulation.  相似文献   

13.
Expression of the gene of glutamyl endopeptidase from Bacillus intermedius (gseBi) cloned on the plasmid pV has been studied in Bacillus subtilis recombinant strains with mutations of the regulatory proteins involved in sporogenesis and spore germination. It has been established that inactivation of the regulatory protein Spo0A involved in sporulation initiation resulted in a decrease in the expression of the gseBi gene by 65% on average. A mutation in the gene of the sensor histidine kinase kinA had no effect on the biosynthesis of the enzyme. Inactivation of Ger proteins regulating bacterial spore germination resulted in a 1.5-5-fold decrease in glutamyl endopeptidase activity. It has been concluded that expression of the B. intermedius glutamyl endopeptidase gene from plasmid pV in recombinant cells of B. subtilis is under impaired control by the regulatory system of Spo0F/Spo0A phosphorelay, which participates in sporulation initiation. The regulatory Ger proteins responsible for spore germination also affect expression of the gene of this enzyme.  相似文献   

14.
1. The synthesis of sulpholactic acid in sporulating cultures of Bacillus subtilis was studied. 2. Sulpholactic acid was first detected about 4h after the initiation of sporulation and 1h before refractility. The rate of synthesis paralleled that of the other events of sporulation examined. 3. Sulpholactic acid accounted for 1.7% of the material of the spore. 4. Because the addition of chloramphenicol in the earlier stages of sporulation inhibited formation of the compound, it is likely that the enzymes concerned are synthesized de novo during sporulation. 5. In asporogenous mutants only those blocked at a late stage and showing partial refractility were able to produce sulpholactic acid. This correlation makes sulpholactic acid a useful marker event in sporulation.  相似文献   

15.
16.
Thymine-requiring mutants of Bacillus subtilis and mutants that are temperature-sensitive for initiation of chromosome replication have been used to study the relationship between sporulation and chromosome formation. The DNA synthesis that normally occurs when cells are transferred to sporulation medium is essential for spore induction. This is shown by the fact that thymine-starved cells are unable to form spores and are unable to perform even the earlier steps of sporulation, such as septum formation or synthesis of alkaline phosphatase. The nature of the medium in which the cells are growing while the DNA is being completed is also important because it determines both the shape and the position of the daughter chromosomes. If the cells are in a rich medium, the newly synthesized chromosomes are discrete and compact bodies: the cells are primed for growth, and sporulation cannot be induced by transferring them at this stage to a spore-inducing medium. If DNA synthesis was completed with the cells in a poor medium the daughter chromosomes, by the time DNA synthesis has ceased, are spread in a single filamentous band and the cells are morphologically already in stage I of sporulation.  相似文献   

17.
By use of the antigen-antibody techniques we have studied whether asporogenic mutants of Bacillus subtilis can synthesize the spore coat protein. Antibody specific to spore coat protein was prepared and used to demonstrate that the spore coat protein was synthesized at the early stage of sporulation. We report here that asporogenic mutants synthesize the spore coat protein.  相似文献   

18.
19.
20.
In a biosynthetic study of the spore coat of Bacillus megaterium ATCC 12872 spore with galactosamine phosphate as a major component of the outer coat, high-performance liquid chromatography (HPLC) and enzyme immunoassay were applied for the measurement of UDP-N-acetylglucosamine-4-epimerase [EC 5.1.3.7] activity and the enzyme protein concentration, respectively. The new HPLC system using an ion-pair (or anion-exchange) column allowed us to determine successfully the enzyme activity and its application, proving that the specific activity of the enzyme in the cells increased at the later stage of sporulation. This increase in activity was parallel to the induction of enzyme protein synthesis, which was detected by sandwich enzyme immunoassay using antiserum to the purified enzyme. These results suggested that the regulation of this enzyme is at the genetic level and it plays an important role in the outer coat synthesis in the later sporulation stage of B. megaterium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号