首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Protective effect of intracellular ice during freezing?   总被引:9,自引:0,他引:9  
Acker JP  McGann LE 《Cryobiology》2003,46(2):197-202
Injury results during freezing when cells are exposed to increasing concentrations of solutes or by the formation of intracellular ice. Methods to protect cells from the damaging effects of freezing have focused on the addition of cryoprotective chemicals and the determination of optimal cooling rates. Based on other studies of innocuous intracellular ice formation, this study investigates the potential for this ice to protect cells from injury during subsequent slow cooling. V-79W Chinese hamster fibroblasts and Madin-Darby Canine Kidney (MDCK) cells were cultured as single attached cells or confluent monolayers. The incidence of intracellular ice formation (IIF) in the cultures at the start of cooling was pre-determined using one of two different extracellular ice nucleation temperatures (-5 or -10 degrees C). Samples were then cooled at 1 degrees C/min to the experimental temperature (-5 to -40 degrees C) where samples were warmed rapidly and cell survival assessed using membrane integrity and metabolic activity. For single attached cells, the lower ice nucleation temperature, corresponding to increased incidence of IIF, resulted in decreased post-thaw cell recovery. In contrast, confluent monolayers in which IIF has been shown to be innocuous, show higher survival after cooling to temperatures as low as -40 degrees C, supporting the concept that intracellular ice confers cryoprotection by preventing cell dehydration during subsequent slow cooling.  相似文献   

2.
Dental pulp stem cells (DPSCs) are of interest to researchers and clinicians due to their ability to differentiate into various tissue types and potential uses in cell-mediated therapies and tissue engineering. Currently DPSCs are cryopreserved in suspension using Me2SO. However, preservation as two and three dimensional constructs, along with the elimination of toxic Me2SO, may be required. It was shown that intracellular ice formation (IIF), lethal to cells in suspensions, may be innocuous in cell monolayers due to ice propagation between cells through gap junctions that results in improved post-thaw recovery. We hypothesized that innocuous IIF protects confluent DPSC monolayers against injury during cryopreservation. The objective was to examine the effects of IIF on post-thaw viability of both confluent monolayers and suspensions of DPSCs. Confluent DPSC monolayers were assessed for the expression of gap junction protein Connexin-43. IIF was induced on the cryostage and in the methanol bath at different subzero temperatures. Membrane integrity and colony-forming ability were assessed post-thaw. Confluent DPSC monolayers expressed Connexin-43. In cell suspensions, 85.9 ± 1.7% of cells were damaged after 100% IIF. In cell monolayers, after 100% IIF, only 25.5 ± 5.5% and 14.8 ± 3.3% of cells were damaged on the cryostage and in the methanol bath respectively. However, DPSC monolayers exposed to 100% IIF showed no colony-forming ability. We conclude that confluent monolayers of DPSCs express the gap junction-forming protein Connexin-43 and upon IIF retain membrane integrity, however lose the ability to proliferate.  相似文献   

3.
Armitage WJ  Juss BK 《Cryobiology》2003,46(2):194-196
Cells in monolayers have been reported to be more susceptible to freezing injury than the same cell type frozen in dispersed suspensions. There appears to be an enhanced susceptibility to intracellular freezing in the monolayers, which is thought to be facilitated by the presence of gap junctions allowing the spread of ice between neighbouring cells. MDCK Type II cells do not form gap junctions in monolayer culture. When frozen at rates of 0.2 to 10 degrees C/min, monolayers in 10% (v/v) propane-1,2-diol or dimethyl sulphoxide showed little influence of cooling rate on survival. This suggested that, in the absence of gap junctions, cells in monolayers did not display enhanced susceptibility to intracellular freezing. In contrast, however, monolayers frozen in glycerol showed a marked increase in cell damage when cooled at rates higher than 0.5 degrees C/min. This does not necessarily counter the suggestion that lack of gap junctions mitigates intracellular freezing as there is evidence that glycerol may itself promote intracellular freezing.  相似文献   

4.
Understanding the effects of cell-cell interaction on intracellular ice formation (IIF) is required to design optimized protocols for cryopreservation of tissue. To determine the effects of cell-cell interactions during tissue freezing, without confounding effects from uncontrolled factors (such as time in culture, cell geometry, and cell-substrate interactions), HepG2 cells were cultured in pairs on glass coverslips micropatterned with polyethylene glycol disilane, such that each cell interacted with exactly one adjacent cell. Assuming the cell pair to be a finite state system, being either in an unfrozen state (no ice in either cell), a singlet state (IIF in one cell only), or a doublet state (IIF in both cells), the kinetics of state transitions were theoretically modeled and cryomicroscopically measured. The rate of intercellular ice propagation, estimated from the measured singlet state probability, increased in the first 24 h of culture and remained steady thereafter. In cell pairs cultured for 24 h and treated with the gap junction blocker 18beta-glycyrrhetinic acid before freezing, the intercellular ice propagation rate was lower than in untreated controls (p < 0.001), but significantly greater than zero (p < 0.0001). These results suggest that gap junctions mediate some, but not all, mechanisms of ice propagation in tissue.  相似文献   

5.
We are currently investigating factors that influence intracellular ice formation (IIF) in mouse oocytes and oocytes of the frog Xenopus. A major reason for choosing these two species is that while their eggs normally do not possess aquaporin channels in their plasma membranes, these channels can be made to express. We wish to see whether IIF is affected by the presence of these channels. The present Xenopus study deals with control eggs not expressing aquaporins. The main factor studied has been the effect of a cryoprotective agent [ethylene glycol (EG) or glycerol] and its concentration. The general procedure was to (a) cool the oocytes on a cryostage to slightly below the temperatures at which extracellular ice formation occurs, (b) warm them to just below the melting point, and (c) then re-cool them to -50 degrees C at 10 degrees C/min. In the majority of cases, IIF occurs well into step (c), but a sizeable minority undergo IIF in steps (a) or (b). The former group we refer to as low-temperature flashers; the latter as high-temperature flashers. IIF is manifested as abrupt blackening of the egg, which we refer to as "flashing." Observations on the Linkam cryostage are restricted to Stage I and II oocytes, which have diameters of 200 300 microm. In the absence of a cryoprotective agent, that is in frog Ringers, the mean flash temperature for the low-temperature freezers is -11.4 degrees C, although a sizeable percentage flash at temperatures much closer to that of the EIF (-3.9 degrees C). When EG is present, the flash temperature for the low-temperatures freezers drops significantly to approximately -20 degrees C for EG concentrations ranging from 0.5 to 1.5 M. The presence of 1.5 M glycerol also substantially reduces the IIF temperature of the low-temperature freezers; namely, to -29 degrees C, but 0.5 and 1 M glycerol exert little or no effect. The IIF temperatures observed using the Linkam cryostage agree well with those estimated by calorimetry [F.W. Kleinhans, J.F. Guenther, D.M. Roberts, P. Mazur, Analysis of intracellular ice nucleation in Xenopus oocytes by differential scanning calorimetry, Cryobiology 52 (2006) 128-138]. The IIF temperatures in Xenopus are substantially higher than those observed in mouse oocytes [P. Mazur, S. Seki, I.L. Pinn, F.W. Kleinhans, K. Edashige, Extra- and intracellular ice formation in mouse oocytes, Cryobiology 51 (2005) 29-53]. Perhaps that is a reflection of their much larger size.  相似文献   

6.
The occurrence of intracellular ice formation (IIF) during freezing, or the lack there of, is the single most important factor determining whether or not cells survive cryopreservation. One important determinant of IIF is the temperature at which a supercooled cell nucleates. To avoid intracellular ice formation, the cell must be cooled slowly enough so that osmotic dehydration eliminates nearly all cell supercooling before reaching that temperature. This report is concerned with factors that determine the nucleation temperature in mouse oocytes. Chief among these is the concentration of cryoprotective additive (here, glycerol or ethylene glycol). The temperature for IIF decreases from -14 degrees C in buffered isotonic saline (PBS) to -41 degrees C in 1M glycerol/PBS and 1.5M ethylene glycol/PBS. The latter rapidly permeates the oocyte; the former does not. The initial extracellular freezing at -3.9 to -7.8 degrees C, depending on the CPA concentration, deforms the cell. In PBS that deformation often leads to IIF; in CPA it does not. The oocytes are surrounded by a zona pellucida. That structure appears to impede the growth of external ice through it, but not to block it. In most cases, IIF is characterized by an abrupt blackening or flashing during cooling. But in some cases, especially with dezonated oocytes, a pale brown veil abruptly forms during cooling followed by slower blackening during warming. Above -30 degrees C, flashing occurs in a fraction of a second. Below -30 degrees C, it commonly occurs much more slowly. We have observed instances where flashing is accompanied by the abrupt ejection of cytoplasm. During freezing, cells lie in unfrozen channels between the growing external ice. From phase diagram data, we have computed the fraction of water and solution that remains unfrozen at the observed flash temperatures and the concentrations of salt and CPA in those channels. The results are somewhat ambiguous as to which of these characteristics best correlates with IIF.  相似文献   

7.
Kinetics of intracellular ice formation (IIF) under various freezing conditions was investigated for mouse oocytes at metaphase II obtained from B6D2F1 mice. A new cryostage with improved optical performance and "isothermal" temperature field was used for nucleation experiments. The maximum thermal gradient across the window was less than 0.1 degrees C/10 mm at sample temperatures near 0 degrees C. The dependence of IIF on the initial concentration of the suspending medium was found to be pronounced. The mean IIF temperatures were found to be -9.56, -12.49, -17.63, -22.20 degrees C for freezing at 120 degrees C/min in 200, 285, 510, and 735 mosm phosphate-buffered saline, respectively. For concentrations higher than 735 mosm, the kinetics of IIF showed a break point at approximately -31 degrees C. Below -31 degrees C, all the remaining unfrozen oocytes underwent IIF almost immediately over a temperature range of less than 3 degrees C. This dramatic shift in the kinetics of IIF suggests that there were two distinct mechanisms responsible for IIF during freezing. The effect of the cooling rate on the kinetics of IIF was also investigated in isotonic PBS. At 1 degrees C/min none of the oocytes contained ice, whereas, at 5 degrees C/min all the oocytes contained ice. The mean IIF temperatures for cooling rates between 1 and 120 degrees C/min were almost constant with an average of -12.82 +/- 0.6 degrees C (SEM). In addition, constant temperature experiments were conducted in isotonic PBS. The percentages of oocytes with IIF were 0, 50, 60, and 95% for -3.8, -6.4, -7.72, and -8.85 degrees C. In undercooling experiments, IIF was not observed until approximately -20 degrees C (at which temperature the whole suspension was frozen spontaneously), suggesting the involvement of the external ice in the initiation of IIF between approximately -5 and -31 degrees C during freezing of oocytes.  相似文献   

8.
MII mouse oocytes in 1 and 1.5M ethylene glycol(EG)/phosphate buffered saline have been subjected to rapid freezing at 50 degrees C/min to -70 degrees C. When this rapid freezing is preceded by a variable hold time of 0-3 min after the initial extracellular ice formation (EIF), the duration of the hold time has a substantial effect on the temperature at which the oocytes subsequently undergo intracellular ice formation (IIF). For example, in 1M EG, the IIF temperatures are -23.7 and -39.2 degrees C with 0 and 2 min hold times; in 1.5M EG, the corresponding IIF temperatures are -29.1 and -40.8 degrees C.  相似文献   

9.
Kinetics of intracellular ice formation (IIF) for isolated rat hepatocytes was studied using a cryomicroscopy system. The effect of the cooling rate on IIF was investigated between 20 and 400 degrees C/min in isotonic solution. At 50 degrees C/min and below, none of the hepatocytes underwent IIF; whereas at 150 degrees C/min and above, IIF was observed throughout the entire hepatocyte population. The temperature at which 50% of hepatocytes showed IIF (50TIIF) was almost constant with an average value of -7.7 degrees C. Different behavior was seen in isothermal subzero holding temperatures in the presence of extracellular ice. 50TIIF from isothermal temperature experiments was approximately -5 degrees C as opposed to -7.7 degrees C for constant cooling rate experiments. These experiments clearly demonstrated both the time and temperature dependence of IIF. On the other hand, in cooling experiments in the absence of extracellular ice, IIF was not observed until approximately -20 degrees C (at which temperature the whole suspension was frozen spontaneously) suggesting the involvement of the external ice in the initiation of IIF. The effect of dimethyl sulfoxide (Me2SO) on IIF was also quantified. 50TIIF decreased from -7.7 degrees C in the absence of Me2SO to -16.8 degrees C in 2.0 M Me2SO for a cooling rate of 400 degrees C/min. However, the cooling rate (between 75 and 400 degrees C/min) did not significantly affect 50TIIF (-8.7 degrees C) in 0.5 M Me2SO. These results suggest that multistep protocols will be required for the cryopreservation of hepatocytes.  相似文献   

10.
A three-part, coupled model of cell dehydration, nucleation, and crystal growth was used to study intracellular ice formation (IIF) in cultured hepatocytes frozen in the presence of dimethyl sulfoxide (DMSO). Heterogeneous nucleation temperatures were predicted as a function of DMSO concentration and were in good agreement with experimental data. Simulated freezing protocols correctly predicted and explained experimentally observed effects of cooling rate, warming rate, and storage temperature on hepatocyte function. For cells cooled to -40 degrees C, no IIF occurred for cooling rates less than 10 degrees C/min. IIF did occur at faster cooling rates, and the predicted volume of intracellular ice increased with increasing cooling rate. Cells cooled at 5 degrees C/min to -80 degrees C were shown to undergo nucleation at -46.8 degrees C, with the consequence that storage temperatures above this value resulted in high viability independent of warming rate, whereas colder storage temperatures resulted in cell injury for slow warming rates. Cell damage correlated positively with predicted intracellular ice volume, and an upper limit for the critical ice content was estimated to be 3.7% of the isotonic water content. The power of the model was limited by difficulties in estimating the cytosol viscosity and membrane permeability as functions of DMSO concentration at low temperatures.  相似文献   

11.
Cryomicroscopy and differential scanning calorimetry (DSC) were used to characterize the incidence of intracellular ice formation (IIF) in 12- to 13-hr-old embryos of Drosophila melanogaster (Oregon-R strain P2) as influenced by the state of the eggcase (untreated, dechorionated, or permeabilized), the composition of the suspending medium (with and without cryoprotectants), and the cooling rate. Untreated eggs underwent IIF over a very narrow temperature range when cooled at 4 or 16 degrees C/min with a median temperature of intracellular ice formation (TIIF50) of -28 degrees C. The freezable water volume of untreated eggs was approximately 5.4 nl as determined by DSC. IIF in dechorionated eggs occurred over a much broader temperature range (-13 to -31 degrees C), but the incidence of IIF increased sharply below -24 degrees C, and the cumulative incidence of IIF at -24 degrees C decreased with cooling rate. In permeabilized eggs without cryoprotectants (CPAs), IIF occurred at much warmer temperatures and over a much wider temperature range than in untreated eggs, and the TIIF50 was cooling rate dependent. At low cooling rates (1 to 2 degrees C/min), TIIF50 increased with cooling rate; at intermediate cooling rates (2 to 16 degrees C/min), TIIF50 decreased with cooling rate. The total incidence of IIF in permeabilized eggs was 54% at 1 degree C/min, and volumetric contraction almost always occurred during cooling. Decreasing the cooling rate to 0.5 degree C/min reduced the incidence of IIF to 43%. At a cooling rate of 4 degrees C/min, ethylene glycol reduced the TIIF50 by about 12 degrees C for each unit increase in molarity of CPA (up to 2.0 M) in the suspending medium. The TIIF50 was cooling rate dependent when embryos were preequilibrated with 1.0 M propylene glycol or ethylene glycol, but was not so in 1.0 M DMSO. For embryos equilibrated in 1.5 M ethylene glycol and then held at -5 degrees C for 1 min before further cooling at 1 degree C/min, the incidence of IIF was decreased to 31%. Increasing the duration of the isothermal hold to 10 min reduced the incidence of IIF to 22% and reduced the volume of freezable water in embryos when intracellular ice formation occurred. If the isothermal hold temperature was -7.5 or -10 degrees C, a 10- to 30-min holding time was required to achieve a comparable reduction in the incidence of IIF.  相似文献   

12.
Starfish oocytes, eggs, and embryos are popular models for studying meiotic maturation, fertilization, and embryonic development. Their large (170- to 200-microm) oocytes are obtainable in copious amounts and are amenable to manipulations that mammalian oocytes are not. The most formidable obstacle to working with marine oocytes is their seasonal availability, yet a successful means of preserving them for use during the nonreproductive season has not been reported. The aim of this study was to investigate the response of starfish oocytes to freezing with rapid and slow cooling rates under a variety of conditions to develop a cryopreservation protocol for these cells. Cryomicroscopic observation revealed that starfish oocytes in isotonic medium undergo intracellular ice formation (IIF) at very high subzero temperatures, such that the mean difference between the temperature of extracellular ice formation (T(EIF)) and IIF (TI(IF)) was less than 3 degrees C and the average T(IIF) was approximately between -4 and -6 degrees C. Neither partial cellular dehydration nor addition of the cryopreservative dimethyl sulfoxide significantly depressed the T(IIF). Under some conditions, we observed ice nucleation at multiple locations within the cytoplasm, suggesting that several factors contribute to the unusually high T(IIF) during controlled-rate freezing and thus vitrification may be a more suitable method for cryopreserving these cells.  相似文献   

13.
Although cell-cell interactions are known to significantly affect the kinetics of intracellular ice formation (IIF) during tissue freezing, this effect is not well understood. Progress in elucidating the mechanism and role of intercellular ice propagation in tissue freezing has been hampered in part by limitations in experimental design and data analysis. Thus, using rapid-cooling cryomicroscopy, IIF was measured in adherent cells cultured in micropatterned linear constructs (to control cell-cell interactions and minimize confounding factors). By fitting a Markov chain model to IIF data from micropatterned HepG2 cell pairs, the nondimensional rate of intercellular ice propagation was found to be alpha = 10.4 +/- 0.1. Using this measurement, a new generator matrix was derived to predict the kinetics of IIF in linear four-cell constructs; cryomicroscopic measurements of IIF state probabilities in micropatterned four-cell arrays conformed with theoretical predictions (p < 0.05), validating the modeling assumptions. Thus, the theoretical model was extended to allow prediction of IIF in larger tissues, using Monte Carlo techniques. Simulations were performed to investigate the effects of tissue size and ice propagation rate, for one-dimensional tissue constructs containing up to 100 cells and nondimensional propagation rates in the range 0.1 < or = alpha < or = 1000.  相似文献   

14.
Mazur P  Pinn IL  Kleinhans FW 《Cryobiology》2007,55(2):158-166
The formation of ice crystals within cells (IIF) is lethal. The classical approach to avoiding it is to cool cells slowly enough so that nearly all their supercooled freezable water leaves the cell osmotically before they have cooled to a temperature that permits IIF. An alternative approach is to cool the cell rapidly to just above its ice nucleation temperature, and hold it there long enough to permit dehydration. Then, the cell is cooled rapidly to -70 degrees C or below. This approach, often called interrupted rapid cooling, is the subject of this paper. Mouse oocytes were suspended in 1.5M ethylene glycol (EG)/PBS, rapidly cooled (50 degrees C/min) to -25 degrees C and held for 5, 10, 20, 30, or 40 min before being rapidly cooled (50 degrees C/min) to -70 degrees C. In cells held for 5 min, IIF (flashing) occurred abruptly during the second rapid cool. As the holding period was increased to 10 and 20 min, fewer cells flashed during the cooling and more turned black during warming. Finally, when the oocytes were held 30 or 40 min, relatively few flashed during either cooling or warming. Immediately upon thawing, these oocytes were highly shrunken and crenated. However, upon warming to 20 degrees C, they regained most of their normal volume, shape, and appearance. These oocytes have intact cell membranes, and we refer to them as survivors. We conclude that 30 min at -25 degrees C removes nearly all intracellular freezable water, the consequence of which is that IIF occurs neither during the subsequent rapid cooling to -70 degrees C nor during warming.  相似文献   

15.
The possibility of current flow between epithelial cells (MDCK) has been evaluated using intracellular electrophysiological techniques. We report here that a significant electrotonic coupling was found in this material at all ages of culture. This observation contrasts with previous reports that confluent MDCK are not ionically coupled and lack gap junctions. Alternative mechanisms for such coupling are considered, with emphasis on the role of tight junctions, should the absence of gap junctions be confirmed.  相似文献   

16.
Yang G  Zhang A  Xu LX 《Cryobiology》2011,(1):38-45
Direct cell injury in cryosurgery is highly related to intracellular ice formation (IIF) during tissue freezing and thawing. Mechanistic understanding of IIF in tumor cells is critical to the development of tumor cryo-ablation protocol. In aid of a high speed CMOS camera system, the events of IIF in MCF-7 cells have been studied using cryomicroscopy. Images of ‘darkening’ type IIF and recrystallization are compared between cells frozen with and without ice seeding. It is found that ice seeding has significant impact on the occurrence and growth of intracellular ice. Without ice seeding, IIF is observed to occur over a very small range of temperature (∼1 °C). The crystal dendrites are indistinguishable, which is independent of the cooling rate. Ice crystal grows much faster and covers the whole intracellular space in comparison to that with ice seeding, which ice stops growing near the cellular nucleus. Recrystallization is observed at the temperature from −13 °C to −9 °C during thawing. On the contrary, IIF occurs from −7 °C to −20 °C with ice seeding at a high subzero temperature (i.e., −2.5 °C). The morphology of intracellular ice frozen is greatly affected by the cooling rate, and no ‘darkening’ type ice formed inside cells during thawing. In addition, the intracellular ice formation is directional, which starts from the plasma membrane and grows toward the cellular nucleus with or without ice seeding. These results can be used to explain some findings of tumor cryosurgery in vivo, especially the causes of insufficient killing of tumor cells in the peripheral area near vessels.  相似文献   

17.
The development of cryopreservation procedures for tissues has proven to be difficult in part because cells within tissue are more susceptible to intracellular ice formation (IIF) than are isolated cells. In particular, previous studies suggest that cell-cell interactions increase the likelihood of IIF by enabling propagation of ice between neighboring cells, a process thought to be mediated by gap junction channels. In this study, we investigated the effects of cell-cell interactions on IIF using three genetically modified strains of the mouse insulinoma cell line MIN6, each of which expressed key intercellular junction proteins (connexin-36, E-cadherin, and occludin) at different levels. High-speed video cryomicroscopy was used to visualize the freezing process in pairs of adherent cells, revealing that the initial IIF event in a given cell pair was correlated with a hitherto unrecognized precursor phenomenon: penetration of extracellular ice into paracellular spaces at the cell-cell interface. Such paracellular ice penetration occurred in the majority of cell pairs observed, and typically preceded and colocalized with the IIF initiation events. Paracellular ice penetration was generally not observed at temperatures >−5.65°C, which is consistent with a penetration mechanism via defects in tight-junction barriers at the cell-cell interface. Although the maximum temperature of paracellular penetration was similar for all four cell strains, genetically modified cells exhibited a significantly higher frequency of ice penetration and a higher mean IIF temperature than did wild-type cells. A four-state Markov chain model was used to quantify the rate constants of the paracellular ice penetration process, the penetration-associated IIF initiation process, and the intercellular ice propagation process. In the initial stages of freezing (>−15°C), junction protein expression appeared to only have a modest effect on the kinetics of propagative IIF, and even cell strains lacking the gap junction protein connexin-36 exhibited nonnegligible ice propagation rates.  相似文献   

18.
To promote the recovery of cells that undergo intracellular ice formation (IIF), it is imperative that the recrystallization of intracellular ice is minimized. Hepatocytes are more prone to IIF than most mammalian cells, and thus we assessed the ability of novel small molecule carbohydrate-based ice recrystallization inhibitors (IRIs) to permeate and function within hepatocytes. HepG2 monolayers were treated with N-(4-chlorophenyl)-d-gluconamide (IRI 1), N-(2-fluorophenyl)-d-gluconamide (IRI 2), or para-methoxyphenyl-β-D-glycoside (IRI 3) and fluorescent cryomicroscopy was used for real time visualization of intracellular ice recrystallization. Both IRI 2 and IRI 3 reduced rates of intracellular recrystallization, whereas IRI 1 did not. IRI 2 and IRI 3, however, demonstrated a marked reduction in efficiency in the presence of the most frequently used permeating cryoprotectants (CPAs): glycerol, propylene glycol (PG), dimethyl sulfoxide (DMSO), and ethylene glycol (EG). Nevertheless, IRI 3 reduced rates of intracellular recrystallization relative to CPA-only controls in the presence of glycerol, PG, and DMSO. Interestingly, IRI preparation in trehalose, a commonly used non-permeating CPA, did not impact the activity of IRI 3. However, trehalose did increase the activity of IRI 1 while decreasing that of IRI 2. While this study suggests that each of these compounds could prove relevant in hepatocyte cryopreservation protocols where IIF would be prominent, CPA-mediated modulation of intracellular IRI activity is apparent and warrants further investigation.  相似文献   

19.
The development of cryopreservation procedures for tissues has proven to be difficult in part because cells within tissue are more susceptible to intracellular ice formation (IIF) than are isolated cells. In particular, previous studies suggest that cell-cell interactions increase the likelihood of IIF by enabling propagation of ice between neighboring cells, a process thought to be mediated by gap junction channels. In this study, we investigated the effects of cell-cell interactions on IIF using three genetically modified strains of the mouse insulinoma cell line MIN6, each of which expressed key intercellular junction proteins (connexin-36, E-cadherin, and occludin) at different levels. High-speed video cryomicroscopy was used to visualize the freezing process in pairs of adherent cells, revealing that the initial IIF event in a given cell pair was correlated with a hitherto unrecognized precursor phenomenon: penetration of extracellular ice into paracellular spaces at the cell-cell interface. Such paracellular ice penetration occurred in the majority of cell pairs observed, and typically preceded and colocalized with the IIF initiation events. Paracellular ice penetration was generally not observed at temperatures >−5.65°C, which is consistent with a penetration mechanism via defects in tight-junction barriers at the cell-cell interface. Although the maximum temperature of paracellular penetration was similar for all four cell strains, genetically modified cells exhibited a significantly higher frequency of ice penetration and a higher mean IIF temperature than did wild-type cells. A four-state Markov chain model was used to quantify the rate constants of the paracellular ice penetration process, the penetration-associated IIF initiation process, and the intercellular ice propagation process. In the initial stages of freezing (>−15°C), junction protein expression appeared to only have a modest effect on the kinetics of propagative IIF, and even cell strains lacking the gap junction protein connexin-36 exhibited nonnegligible ice propagation rates.  相似文献   

20.
Successful cryopreservation demands there be little or no intracellular ice. One procedure is classical slow equilibrium freezing, and it has been successful in many cases. However, for some important cell types, including some mammalian oocytes, it has not. For the latter, there are increasing attempts to cryopreserve them by vitrification. However, even if intracellular ice formation (IIF) is prevented during cooling, it can still occur during the warming of a vitrified sample. Here, we examine two aspects of this occurrence in mouse oocytes. One took place in oocytes that were partly dehydrated by an initial hold for 12 min at -25 degrees C. They were then cooled rapidly to -70 degrees C and warmed slowly, or they were warmed rapidly to intermediate temperatures and held. These oocytes underwent no IIF during cooling but blackened from IIF during warming. The blackening rate increased about 5-fold for each five-degree rise in temperature. Upon thawing, they were dead. The second aspect involved oocytes that had been vitrified by cooling to -196 degrees C while suspended in a concentrated solution of cryoprotectants and warmed at rates ranging from 140 degrees C/min to 3300 degrees C/min. Survivals after warming at 140 degrees C/min and 250 degrees C/min were low (<30%). Survivals after warming at > or =2200 degrees C/min were high (80%). When warmed slowly, they were killed, apparently by the recrystallization of previously formed small internal ice crystals. The similarities and differences in the consequences of the two types of freezing are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号