首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The principal alpha-tubulin within Chlamydomonas reinhardtii flagellar axonemes differs from the major alpha-tubulin in the cell body. We show that these two isoelectric variants of alpha-tubulin are related to one another since posttranslational modification of the cell body precursor form converts it to the axonemal form. During flagellar assembly, precursor alpha-tubulin enters the flagella and is posttranslationally modified within the flagellar matrix fraction prior to or at the time of its addition to the growing axonemal microtubules. Experiments designed to identify the nature of this posttranslational modification have also been conducted. When flagella are induced to assemble in the absence of de novo protein synthesis, tritiated acetate can be used to posttranslationally label alpha-tubulin in vivo and, under these conditions, no other flagellar polypeptides exhibit detectable labeling.  相似文献   

2.
We previously have shown that a posttranslational modification of alpha-tubulin takes place in the flagellum during Chlamydomonas flagellar assembly (L'Hernault, S. W., and J. L. Rosenbaum, 1983, J. Cell Biol., 97:258-263). In this report, we show that the posttranslationally modified alpha-3 tubulin is changed back to its unmodified alpha-1 precursor form during the microtubular disassembly that takes place during flagellar resorption. These data indicate that the addition and removal of a posttranslational modification on alpha-tubulin might be a control step in the assembly and disassembly of flagella.  相似文献   

3.
Seven monoclonal antibodies raised against tubulin from the axonemes of sea urchin sperm flagella recognize an acetylated form of alpha-tubulin present in the axoneme of a variety of organisms. The antigen was not detected among soluble, cytoplasmic alpha-tubulin isoforms from a variety of cells. The specificity of the antibodies was determined by in vitro acetylation of sea urchin and Chlamydomonas cytoplasmic tubulins in crude extracts. Of all the acetylated polypeptides in the extracts, only alpha-tubulin became antigenic. Among Chlamydomonas tubulin isoforms, the antibodies recognize only the axonemal alpha-tubulin isoform acetylated in vivo on the epsilon-amino group of lysine(s) (L'Hernault, S.W., and J.L. Rosenbaum, 1985, Biochemistry, 24:473-478). The antibodies do not recognize unmodified axonemal alpha-tubulin, unassembled alpha-tubulin present in a flagellar matrix-plus-membrane fraction, or soluble, cytoplasmic alpha-tubulin from Chlamydomonas cell bodies. The antigen was found in protein fractions that contained axonemal microtubules from a variety of sources, including cilia from sea urchin blastulae and Tetrahymena, sperm and testis from Drosophila, and human sperm. In contrast, the antigen was not detected in preparations of soluble, cytoplasmic tubulin, which would not have contained tubulin from stable microtubule arrays such as centrioles, from unfertilized sea urchin eggs, Drosophila embryos, and HeLa cells. Although the acetylated alpha-tubulin recognized by the antibodies is present in axonemes from a variety of sources and may be necessary for axoneme formation, it is not found exclusively in any one subset of morphologically distinct axonemal microtubules. The antigen was found in similar proportions in fractions from sea urchin sperm axonemes enriched for central pair or outer doublet B or outer doublet A microtubules. Therefore the acetylation of alpha-tubulin does not provide the mechanism that specifies the structure of any one class of axonemal microtubules. Preliminary evidence indicates that acetylated alpha-tubulin is not restricted to the axoneme. The antibodies described in this report may allow us to deduce the role of tubulin acetylation in the structure and function of microtubules in vivo.  相似文献   

4.
Previous work has shown that the principal alpha-tubulin within Chlamydomonas reinhardtii flagellar axonemes differs from the major alpha-tubulin in the cell body. These two variants of alpha-tubulin are related to one another since posttranslational modification of the cell body form converts it to the axonemal form. When flagella are induced to assemble in the absence of de novo protein synthesis, tritiated acetate can be used to posttranslationally label alpha-tubulin in vivo, and under these conditions, no other flagellar polypeptides exhibit detectable labeling [L'Hernault, S. W., & Rosenbaum, J. L. (1983) J. Cell Biol. 97, 258-263]. In the present report, this labeling method has been used to provide material for chemical analysis of the tritiated moiety that is posttranslationally added to flagellar alpha-tubulin. This radioactivity was volatile after acid hydrolysis, suggesting that the posttranslational modification is the addition of neither an amino acid nor carbohydrate. Treatment of posttranslationally 3H-labeled alpha-tubulin with hydrazine yields radioactive acetylhydrazine, indicating that the moiety involved in posttranslational modification is an acetyl group. Analysis of complete proteolytic digests by thin-layer chromatography has revealed that this acetyl group is located on the epsilon-amino group of a flagellar alpha-tubulin lysine residue.  相似文献   

5.
Polarity of flagellar assembly in Chlamydomonas.   总被引:1,自引:0,他引:1       下载免费PDF全文
During mating of the alga Chlamydomonas, two biflagellate cells fuse to form a single quadriflagellate cell that contains two nuclei and a common cytoplasm. We have used this cell fusion during mating to transfer unassembled flagellar components from the cytoplasm of one Chlamydomonas cell into that of another in order to study in vivo the polarity of flagellar assembly. In the first series of experiments, sites of tubulin addition onto elongating flagellar axonemes were determined. Donor cells that had two full-length flagella and were expressing an epitope-tagged alpha-tubulin construct were mated (fused) with recipient cells that had two half-length flagella. Outgrowth of the shorter pair of flagella followed, using a common pool of precursors that now included epitope-tagged tubulin, resulting in quadriflagellates with four full-length flagella. Immunofluorescence and immunoelectron microscopy using an antiepitope antibody showed that both the outer doublet and central pair microtubules of the recipient cells' flagellar axonemes elongate solely by addition of new subunits at their distal ends. In a separate series of experiments, the polarity of assembly of a class of axonemal microtubule-associated structures, the radial spokes, was determined. Wild-type donor cells that had two full-length, motile flagella were mated with paralyzed recipient cells that had two full-length, radial spokeless flagella. Within 90 min after cell fusion, the previously paralyzed flagella became motile. Immunofluorescence microscopy using specific antiradial spoke protein antisera showed that radial spoke proteins appeared first at the tips of spokeless axonemes and gradually assembled toward the bases. Together, these results suggest that both tubulin and radial spoke proteins are transported to the tip of the flagellum before their assembly into flagellar structure.  相似文献   

6.
Detachment of flagella in Chlamydomonas reinhardii stimulates a rapid accumulation of tubulin mRNAs. The induced tubulin mRNAs are normally rapidly degraded following flagellar regeneration, but inhibition of protein synthesis with cycloheximide prevents their degradation. alpha-Tubulin poly(A) tail lengths were measured during normal accumulation and degradation, and in cycloheximide-treated cells. To measure alpha-tubulin mRNA poly(A) chain lengths with high resolution, specific 3' fragments of alpha 1- and alpha 2-tubulin mRNAs, generated by RNase H digestion of mRNA-oligonucleotide hybrids, were sized by Northern analysis. Both alpha-tubulin mRNAs have a newly synthesized poly(A) chain of about 110 adenylate residues. The poly(A) tails shorten with time, and show an average length of 40 to 60 adenylate residues by 90 minutes after deflagellation, at which time induced alpha-tubulin mRNA is being rapidly degraded. Poly(A) loss is significantly accelerated in cycloheximide-treated cells, and this loss is not attributible simply to the longer time the stabilized molecules spend in the cytoplasm. A large fraction of alpha-tubulin mRNA accumulates as mRNA with very short poly(A) tails (less than 10 residues) in the presence of cycloheximide, indicating that deadenylated alpha-tubulin mRNAs can be stable in vivo, at least in the absence of protein synthesis. The rate and extent of poly(A) loss in cycloheximide are greater for alpha 2-tubulin mRNA than for alpha 1-tubulin mRNA. This difference cannot be attributed to differential ribosome loading. This finding is interesting in that the two mRNAs are very similar in sequence with the exception of their 3' untranslated regions.  相似文献   

7.
Improved methods of specimen preparation and dual-axis electron tomography have been used to study the structure and organization of basal bodies in the unicellular alga Chlamydomonas reinhardtii. Novel structures have been found in both wild type and strains with mutations that affect specific tubulin isoforms. Previous studies have shown that strains lacking delta-tubulin fail to assemble the C-tubule of the basal body. Tomographic reconstructions of basal bodies from the delta-tubulin deletion mutant uni3-1 have confirmed that basal bodies contain mostly doublet microtubules. Our methods now show that the stellate fibers, which are present only in the transition zone of wild-type cells, repeat within the core of uni3-1 basal bodies. The distal striated fiber is incomplete in this mutant, rootlet microtubules can be misplaced, and multiflagellate cells have been observed. A suppressor of uni3-1, designated tua2-6, contains a mutation in alpha-tubulin. tua2-6; uni3-1 cells build both flagella, yet they retain defects in basal body structure and in rootlet microtubule positioning. These data suggest that the presence of specific tubulin isoforms in Chlamydomonas directly affects the assembly and function of both basal bodies and basal body-associated structures.  相似文献   

8.
9.
目的:在莱茵衣藻细胞中构建并筛选鞭毛组装缺陷突变体,克隆缺陷基因,探索其对鞭毛组装的影响。方法:使用带有巴龙霉素(Paromomycin)抗性的基因片段随机插入衣藻细胞基因组中,通过性状筛选和基因序列分析获得与CrPP2C(Chlamydomonas reinhardtii type 2C protein phosphatase)基因相关的鞭毛异常突变体,根据突变体基本生物学性状和生化分析对CrPP2C基因的功能进行分析。结果:采用电转法成功获得衣藻细胞鞭毛缺陷相关突变体,部分细胞具有短鞭毛,部分细胞则不具有鞭毛;通过RESDA-PCR(restriction enzyme site-directed amplification PCR)对突变体基因序列分析,鞭毛缺陷性状由CrPP2C基因遭到破坏导致;把含有完整CrPP2C基因的重组质粒通过电转法导入突变体后,其鞭毛几乎恢复为野生型长度,并可检测到PP2C-HA融合蛋白的表达;观察鞭毛再生,突变体鞭毛只能再生为原有长度;使用药物处理使鞭毛缩短,突变体鞭毛能正常解聚;电镜检测突变体的鞭毛显微结构,发现过渡区的Y形结构缺陷。结论:CrPP2C基因的破坏导致鞭毛过渡区结构缺失,影响鞭毛组装过程,不组装鞭毛或组装短鞭毛。  相似文献   

10.
Many studies have used velocity measurements, waveform analyses, and theoretical flagella models to investigate the establishment, maintenance, and function of flagella of the biflagellate green algae Chlamydomonas reinhardtii. We report the first direct measurement of Chlamydomonas flagellar swimming force. Using an optical trap ("optical tweezers") we detect a 75% decrease in swimming force between wild type (CC124) cells and mutants lacking outer flagellar dynein arms (oda1). This difference is consistent with previous estimates and validates the force measurement approach. To examine mechanisms underlying flagella organization and function, we deflagellated cells and examined force generation during flagellar regeneration. As expected, fully regenerated flagella are functionally equivalent to flagella of untreated wild type cells. However, analysis of swimming force vs. flagella length and the increase in force over regeneration time reveals intriguing patterns where increases in force do not always correspond with increases in length. These investigations of flagellar force, therefore, contribute to the understanding of Chlamydomonas motility, describe phenomena surrounding flagella regeneration, and demonstrate the advantages of the optical trapping technique in studies of cell motility.  相似文献   

11.
The cationic dye, Stains-all, is known to stain brain beta-tubulin blue and alpha-tubulin red (Serrano, L. et al. (1986) J. Biochem. Biophys. Methods 12, 281-287; Serrano, L. et al. (1989) Biochem. Int., 19, 235-246). The present experiments show that this stain can also be applied to detect beta-tubulin in axonemal tubulins from various sources such as cilia of protozoa, sperm flagella of echinoderm, and sperm flagella of mollusc. Furthermore, these experiments showed that it selectively stains isoforms of axonemal beta-tubulin blue following isoelectric focusing, whereas those of alpha-tubulin are stained red. These results indicate that Stains-all staining is a useful tool for electrophoretic analysis of axonemal tubulins.  相似文献   

12.
Two types of polymeric post-translational modifications of alpha/beta-tubulin, glycylation and glutamylation, occur widely in cilia and flagella. Their respective cellular functions are poorly understood. Mass spectrometry and immunoblotting showed that two closely related species, the ciliates Tetrahymena and Paramecium, have dramatically different compositions of tubulin post-translational modifications in structurally identical axonemes. Whereas the axonemal tubulin of Paramecium is highly glycylated and has a very low glutamylation content, the axonemal tubulin of Tetrahymena is glycylated and extensively glutamylated. In addition, only the alpha-tubulin of Tetrahymena undergoes detyrosination. Mutations of the known glycylation sites in Tetrahymena tubulin affected the level of each polymeric modification type in both the mutated and nonmutated subunits, revealing cross-talk between alpha- and beta-tubulin. Ultrastructural analyses of glycylation site mutants uncovered defects in the doublet B-subfiber of axonemes and revealed an accumulation of dense material in the ciliary matrix, reminiscent of intraflagellar transport particles seen by others in Chlamydomonas. We propose that polyglycylation and/or polyglutamylation stabilize the B-subfiber of outer doublets and regulate the intraflagellar transport.  相似文献   

13.
We describe the presence of alpha-tubulin and MAP2 acetyltransferase activities in mouse brain. The enzyme(s) copurified with microtubules through two cycles of assembly-disassembly. Incubation of microtubule proteins with [3H]acetyl CoA resulted in a strong labeling of both alpha-tubulin and MAP2. To determine the site of the modification, tubulin was purified and digested with Glu-C endoproteinase. A unique radioactive peptide was detected and purified by HPLC. Edman degradation sequencing showed that this peptide contained epsilon N-acetyllysine at position 40 of the alpha-tubulin molecule. This result demonstrates that mouse brain alpha-tubulin was acetylated at the same site as in Chlamydomonas. Isoelectric focusing analysis showed that acetylated alpha-tubulin was resolved into five isoelectric variants, denoted alpha 3 and alpha 5 to alpha 8. This heterogeneity is not due to acetylation of other sites but results from a single acetylation of Lys40 of an heterogeneous population of alpha-tubulin isoforms. These isoforms are produced by posttranslational addition of one to five glutamyl units. Thus, neuronal alpha-tubulin is extensively modified by a combination of modifications including acetylation, glutamylation, tyrosylation, and other yet unknown modifications.  相似文献   

14.
Ciliates and flagellates temporarily swim backwards on collision by generating a mechanoreceptor potential. Although this potential has been shown to be associated with cilia in Paramecium, the molecular entity of the mechanoreceptor has remained unknown. Here we show that Chlamydomonas cells express TRP11, a member of the TRP (transient receptor potential) subfamily V, in the proximal region of the flagella, and that suppression of TRP11 expression results in loss of the avoiding reaction. The results indicate that Chlamydomonas flagella exhibit mechanosensitivity, despite constant motility, by localizing the mechanoreceptor in the proximal region, where active bending is restricted.  相似文献   

15.
16.
We previously found that a mutation at the ODA7 locus in Chlamydomonas prevents axonemal outer row dynein assembly by blocking association of heavy chains and intermediate chains in the cytoplasm. We have now cloned the ODA7 locus by walking in the Chlamydomonas genome from nearby molecular markers, confirmed the identity of the gene by rescuing the mutant phenotype with genomic clones, and identified the ODA7 gene product as a 58-kDa leucine-rich repeat protein unrelated to outer row dynein LC1. Oda7p is missing from oda7 mutant flagella but is present in flagella of other outer row or inner row dynein assembly mutants. However, Oda7 levels are greatly reduced in flagella that lack both outer row dynein and inner row I1 dynein. Biochemical fractionation and rebinding studies support a model in which Oda7 participates in a previously uncharacterized structural link between inner and outer row dyneins.  相似文献   

17.
ABSTRACT. Alcian blue acts as a secretagogue and chemorepellent in a variety of unicellular eukaryotes. We report that alcian blue stimulates flagellar excision and induction of RNA encoding flagellar proteins in Chlamydomonas reinhardtii . Flagellar excision by alcian blue is dependent on extracellular Ca2+ and is blocked by La3+, ruthenium red, and neomycin, and so is similar to flagellar excision by acid shock. However, the adf-l mutant excises its flagella following alcian blue treatment, but not following acid shock, thus genetically distinguishing alcian-blue-induced excision from acid-shock-induced excision. Wild-type, but not adf-1, cells regrow their flagella in the continued presence of alcian blue. Wild-type cells that regrow flagella in the presence of alcian blue fail to excise their flagella in response to either increased concentrations of alcian blue or to acid shock. Alcian blue treatment of cells also induces RNA encoding flagellar components, but in a manner distinct from other means of stimulation. These results suggest that treating Chlamydomonas with the secretagogue alcian blue initiates a Ca2+ influx pathway and that prolonged treatment with alcian blue desensitizes the acid-shock-activated Ca2+ influx pathway to acid treatment. Alcian blue will thus be a useful excitatory ligand in future studies of receptor-mediated Ca2+ signaling in the Chlamydomonas flagellar regeneration system.  相似文献   

18.
Sixteen new mutants of the biflagellate green alga Chlamydomonas reinhardtii with either stumpy-flagella or no flagella at all were examined by electron microscopy. Four of the mutants were found to carry short bulbous flagella containing amorphous electron-dense material which may represent unassembled flagellar protein. Basal bodies of normal ultrastructure were present in all mutants. Dikaryon dominance tests indicated that the stumpy mutations were recessive to wild-type in all cases tested. Stumpy mutations also conferred a measure of detergent resistance to Chlamydomonas, apparently by affecting the detergent-solubility of the flagellar membrane.  相似文献   

19.
Abstract: Using an experimental approach similar to that used for Euglena flagella, we found that flagella and flagellar membrane preparations (isoagglutinins) of the unicellular green algae Chlamydomonas moewusii and C. reinhardtii , but not cells without flagella, bind radiolabelled riboflavin with high affinity and specificity. In addition, flagella and isoagglutinins contain high amounts of methanol-extractable flavins. These results indicate an abundance of proteins with high affinity for riboflavin in the flagella. Since sexual adhesiveness of gametic flagella in C. moewusii is controlled by light, the possibility is discussed that flavoproteins in the flagella are involved in this reaction. Action spectra exhibit maxima at 450 and 600 nm, suggesting–at least for the 450 nm band–a typical blue-light receptor.  相似文献   

20.
Blue light controls the sexual life cycle of Chlamydomonas, mediated by phototropin, a UV-A/blue-light receptor that plays a prominent role in multiple photoresponses. By using fractionation experiments and immunolocalization studies, this blue-light receptor, in addition to its known localization to the cell bodies, also was detected in flagella. Within the flagella, it was completely associated with the axonemes, in striking contrast to the situation in higher plants and the Chlamydomonas cell body where phototropin was observed in the plasma membrane. Its localization was not perturbed in mutants lacking several prominent structural components of the axoneme. This led to the conclusion that phototropin may be associated with the outer doublet microtubules. Analysis of a mutant (fla10) in which intraflagellar transport is compromised suggested that phototropin is a cargo for intraflagellar transport. The blue-light receptor thus seems to be an integral constituent of the flagella of this green alga, extending the list of organisms that harbor sensory molecules within this organelle to unicellular algae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号