首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have used cryo-electron microscopy of vitrified specimens to study microtubules assembled both from three cycle purified tubulin (3x-tubulin) and in cell free extracts of Xenopus eggs. In vitro assembled 3x-tubulin samples have a majority of microtubules with 14 protofilaments whereas in cell extracts most microtubules have 13 protofilaments. Microtubule polymorphism was observed in both cases. The number of protofilaments can change abruptly along individual microtubules usually by single increments but double increments also occur. For 3x-tubulin, increasing the magnesium concentration decreases the proportion of 14 protofilament microtubules and decreases the average separation between transitions in these microtubules. Protofilament discontinuities may correspond to dislocation-like defects in the microtubule surface lattice.  相似文献   

2.
Mutations of parkin, a protein-ubiquitin isopeptide ligase (E3), appear to be the most frequent cause of familial Parkinson's disease (PD). Our previous studies have demonstrated that parkin binds strongly to alpha/beta tubulin heterodimers and microtubules. Here we show that the strong binding between parkin and tubulin, as well as that between parkin and microtubules, was mediated by three independent domains: linker, RING1, and RING2. These redundant strong interactions made it virtually impossible to separate parkin from microtubules by high concentrations of salt (3.8 m) or urea (0.5 m). Parkin co-purified with tubulin and was found in highly purified tubulin preparation. Expression of either full-length parkin or any of its three microtubule-binding domains significantly attenuated colchicine-induced microtubule depolymerization. The abilities of parkin to bind to and stabilize microtubules were not affected by PD-linked mutations that abrogate its E3 ligase activity. Thus, the tubulin/microtubule-binding activity of parkin and its E3 ligase activity are independent. The strong binding between parkin and tubulin/microtubules through three redundant interaction domains may not only stabilize microtubules but also guarantee the anchorage of this E3 ligase on microtubules. Because many misfolded proteins are transported on microtubules, the localization of parkin on microtubules may provide an important environment for its E3 ligase activity toward misfolded substrates.  相似文献   

3.
Longitudinal microtubules are predominant in epidermal cellsof the 3rd internodes of dwarf pea (Pisum sativum L. cv. LittleMarvel) seedlings. In more than 50% of the cells, cortical microtubulesare running parallel to the cell axis. GA3 promotes elongation of the internodes and gives rise toa predominance of transverse microtubules. In more than 60%of the GA3-treatd cells, cortical microtubules are running transverseto the cell axis. Longitudinal microtubules in the GA3-untreated cells are resistantto low-temperature treatment, but transverse microtubules inthe GA3-treated cells are sensitive to it. Longitudinal microtubulesare present in GA3-treated epidermal cells with low frequency.They are resistant to low-temperature treatment. Longitudinal, oblique and transverse microtubules are presentwith almost the same frequency in epidermal cells of the 3rdinternodes of tall pea (cv. Early Alaska) seedlings. GA3 promoteselongation of the internodes also in tall pea seedlings, butit does not alter the direction of cortical microtubules sodistinctly as it does in dwarf pea seedlings. As in dwarf pea seedlings, longitudinal microtubules are resistantto low-temperature treatment, and transverse microtubules aresensitive to it in tall pea seedlings. (Received September 19, 1986; Accepted December 26, 1986)  相似文献   

4.
The subcellular distribution of microtubules containing acetylated alpha-tubulin in mammalian cells in culture was analyzed with 6-11B-1, a monoclonal antibody specific for acetylated alpha-tubulin. Cultures of 3T3, HeLa, and PtK2 cells were grown on coverslips and observed by immunofluorescence microscopy after double-staining by 6-11B-1 and B-5-1-2, a monoclonal antibody specific for all alpha-tubulins. The antibody 6-11B-1 binds to primary cilia, centrioles, mitotic spindles, midbodies, and to subsets of cytoplasmic microtubules in 3T3 and HeLa cells, but not in PtK2 cells. These observations confirm that the acetylation of alpha-tubulin is a modification occurring in different microtubule structures and in a variety of eukaryotic cells. Some features of the acetylation of cytoplasmic microtubules of mammalian cells are also described here. First, acetylated alpha-tubulin is present in microtubules that, under depolymerizing conditions, are more stable than the majority of cytoplasmic microtubules. In addition to the specific microtubule frameworks already mentioned, cytoplasmic microtubules resistant to nocodazole or colchicine, but not cold-resistant microtubules, contain more acetylated alpha-tubulin than the rest of cellular microtubules. Second, the alpha-tubulin in all cytoplasmic microtubules of 3T3 and HeLa cells becomes acetylated in the presence of taxol, a drug that stabilizes microtubules. Third, acetylation and deacetylation of cytoplasmic microtubules are reversible in cells released from exposure to 0 degrees C or antimitotic drugs. Fourth, the epitope recognized by the antibody 6-11B-1 is not absolutely necessary for cell growth and division. This epitope is absent in PtK2 cells. The acetylation of alpha-tubulin could regulate the presence of microtubules in specific intracellular spaces by selective stabilization.  相似文献   

5.
6.
Rho-GTPase stabilizes microtubules that are oriented towards the leading edge in serum-starved 3T3 fibroblasts through an unknown mechanism. We used a Rho-effector domain screen to identify mDia as a downstream Rho effector involved in microtubule stabilization. Constitutively active mDia or activation of endogenous mDia with the mDia-autoinhibitory domain stimulated the formation of stable microtubules that were capped and oriented towards the wound edge. mDia co-localized with stable microtubules when overexpressed and associated with microtubules in vitro. Rho kinase was not necessary for the formation of stable microtubules. Our results show that mDia is sufficient to generate and orient stable microtubules, and indicate that Dia-related formins are part of a conserved pathway that regulates the dynamics of microtubule ends.  相似文献   

7.
Gravity-induced reorientation of cortical microtubules observed in vivo   总被引:6,自引:0,他引:6  
Cortical microtubules play an important role during morphogenesis by determining the direction of cellulose deposition. Although many triggers are known that can induce the reorientation of cortical plant microtubules, the reorientation mechanism has remained obscure. In our approach, we used gravitropic stimulation which is a strong trigger for microtubule reorientation in epidermal cells of maize coleoptiles. To visualize the gravitropically induced microtubule reorientation in living cells, we injected rhodamine-conjugated tubulin into epidermal cells of intact maize coleoptiles that were exposed to gravitropic stimulation. From these in vivo observations, we propose a reorientation mechanism consisting of four different stages: (1) a transitional stage with randomly organized microtubules; (2) emergence of a few microtubules in a slightly oblique orientation; (3) co-alignment: neighbouring microtubules adopt the oblique orientation resulting in parallel organized microtubules; and (4) the angle of these parallel, organized microtubules increases gradually. Thus, the overall reorientation process could include selective stabilization/ disassembly of microtubules (stage 2) as well as movement of individual microtubules (stages 3 and 4).  相似文献   

8.
Mal3 is a fission yeast homolog of EB1, a plus-end tracking protein (+TIP). We have generated a mutation (89R) replacing glutamine with arginine in the calponin homology (CH) domain of Mal3. Analysis of the 89R mutant in vitro has revealed that the mutation confers a higher affinity to microtubules and enhances the intrinsic activity to promote the microtubule-assembly. The mutant Mal3 is no longer a +TIP, but binds strongly the microtubule lattice. Live cell imaging has revealed that while the wild type Mal3 proteins dissociate from the tip of the growing microtubules before the onset of shrinkage, the mutant Mal3 proteins persist on microtubules and reduces a rate of shrinkage after a longer pausing period. Consequently, the mutant Mal3 proteins cause abnormal elongation of microtubules composing the spindle and aster. Mal3 is phosphorylated at a cluster of serine/threonine residues in the linker connecting the CH and EB1-like C-terminal motif domains. The phosphorylation occurs in a microtubule-dependent manner and reduces the affinity of Mal3 to microtubules. We propose that because the 89R mutation is resistant to the effect of phosphorylation, it can associate persistently with microtubules and confers a stronger stability of microtubules likely by reinforcing the cylindrical structure.  相似文献   

9.
We have used a polyclonal antibody (Ab196) that specifically recognizes the βII tubulin isotype to examine the subcellular distribution and properties of microtubules enriched in this isotype. Antibody specificity was tested by a method that involves the analysis of its interaction with individual β isotypes. Using photoimaging analysis, we observed βII tubulin-enriched microtubules in the perinuclear region, as well as in the microtubules close to the periphery of interphase cells. The observed sorting of βII-enriched microtubules together with the reported increased levels of βII tubulin in taxol-resistant cells (M. Haberet al.,1995,J. Biol. Chem.270, 31269–31275) prompted us to study the behavior of microtubules enriched in this isotype after different depolymerizing treatments. After cold or nocodazol treatments, βII-enriched microtubules anchored at the centrosome and at the cell periphery were observed. In addition, cold-resistant microtubules were marked mainly by the specific anti-βII tubulin antibody but not by anti-acetylated α tubulin, suggesting the presence of different stable microtubule subsets enriched in particular tubulin isoforms.  相似文献   

10.
The microtubule cytoskeleton and the mitotic spindle are highly dynamic structures, yet their sizes are remarkably constant, thus indicating that the growth and shrinkage of their constituent microtubules are finely balanced. This balance is achieved, in part, through kinesin-8 proteins (such as Kip3p in budding yeast and KLP67A in Drosophila) that destabilize microtubules. Here, we directly demonstrate that Kip3p destabilizes microtubules by depolymerizing them--accounting for the effects of kinesin-8 perturbations on microtubule and spindle length observed in fungi and metazoan cells. Furthermore, using single-molecule microscopy assays, we show that Kip3p has several properties that distinguish it from other depolymerizing kinesins, such as the kinesin-13 MCAK. First, Kip3p disassembles microtubules exclusively at the plus end and second, remarkably, Kip3p depolymerizes longer microtubules faster than shorter ones. These properties are consequences of Kip3p being a highly processive, plus-end-directed motor, both in vitro and in vivo. Length-dependent depolymerization provides a new mechanism for controlling the lengths of subcellular structures.  相似文献   

11.
Kinesin-14 motor proteins play a variety of roles during metaphase and anaphase. However, it is not known whether members of this family of motors also participate in the dramatic changes in mitotic spindle organization during the transition from telophase to cytokinesis. We have identified the minus-end-directed motor, KIFC3, as an important contributor to central bridge morphology at this stage. KIFC3’s unique motor-dependent localization at the central bridge allows it to congress microtubules, promoting efficient progress through cytokinesis. Conversely, when KIFC3 function is perturbed, abscission is delayed, and the central bridge is both widened and extended. Examination of KIFC3 on growing microtubules in interphase indicates that it caps microtubules released from the centrosome, both in the region of the centrosome and in the cell periphery. In line with other kinesin-14 family members, KIFC3 may guide free microtubules to their destination at the bridge and/or may slide and crosslink central bridge microtubules in order to stage the cells for abscission.  相似文献   

12.
Mutants of the yeast Kar3 protein are defective in nuclear fusion, or karyogamy, during mating and show slow mitotic growth, indicating a requirement for the protein both during mating and in mitosis. DNA sequence analysis predicts that Kar3 is a microtubule motor protein related to kinesin, but with the motor domain at the C-terminus of the protein rather than the N-terminus as in kinesin heavy chain. We have expressed Kar3 as a fusion protein with glutathione S-transferase (GST) and determined the in vitro motility properties of the bacterially expressed protein. The GST-Kar3 fusion protein bound to a coverslip translocates microtubules in gliding assays with a velocity of 1-2 microns/min and moves towards microtubule minus ends, unlike kinesin but like kinesin-related Drosophila ncd. Taxol-stabilized microtubules bound to GST-Kar3 on a coverslip shorten as they glide, resulting in faster lagging end, than leading end, velocities. Comparison of lagging and leading end velocities with velocities of asymmetrical axoneme-microtubule complexes indicates that microtubules shorten preferentially from the lagging or minus ends. The minus end-directed translocation and microtubule bundling of GST-Kar3 is consistent with models in which the Kar3 protein crosslinks internuclear microtubules and mediates nuclear fusion by moving towards microtubule minus ends, pulling the two nuclei together. In mitotic cells, the minus end motility of Kar3 could move chromosomes polewards, either by attaching to kinetochores and moving them polewards along microtubules, or by attaching to kinetochore microtubules and pulling them polewards along other polar microtubules.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Conventional kinesin (Kinesin-1), the founding member of the kinesin family, was discovered in the squid giant axon, where it is thought to move organelles on microtubules. In this study, we identify a second squid kinesin by searching an expressed sequence tag database derived from the ganglia that give rise to the axon. The full-length open reading frame encodes a 1753 amino acid sequence that classifies this protein as a Kinesin-3. Immunoblots demonstrate that this kinesin, unlike Kinesin-1, is highly enriched in chaotropically stripped axoplasmic organelles, and immunogold electron microscopy (EM) demonstrates that Kinesin-3 is tightly bound to the surfaces of these organelles. Video microscopy shows that movements of purified organelles on microtubules are blocked, but organelles remain attached, in the presence Kinesin-3 antibody. Immunogold EM of axoplasmic spreads with antibody to Kinesin-3 decorates discrete sites on many, but not all, free organelles and localizes Kinesin-3 to organelle/microtubule interfaces. In contrast, label for Kinesin-1 decorates microtubules but not organelles. The presence of Kinesin-3 on purified organelles, the ability of an antibody to block their movements along microtubules, the tight association of Kinesin-3 with motile organelles and its distribution at the interface between native organelles and microtubules suggest that Kinesin-3 is a dominant motor in the axon for unidirectional movement of organelles along microtubules.  相似文献   

14.
In the internal cytoplasm of interphase cells the density of microtubules is the highest in the centrosome area and decreases to the cell periphery. As a rule, the quantity of fluorescent microtubules cannot be counted up in the internal cytoplasm, but it is possible to estimate microtubules quantity using measuring of their optical density. In living 3T3 and CHO cells the microtubules optical density decreased according to different mathematical dependences that apparently reflected the differences of their microtubule system organization. To determine appropriateness that circumscribe the reduction of microtubules optical density from the centrosome region to the direction of cell margin, we modeled cell contours with the certain ratio and interposition of centrosome-attached and free microtubules in vector schedules CorelDraw program. The decrease of optical density was analyzed in MetaMorph program as it was described earlier (Smurova et al., 2002). It was shown that fluorescent microtubules optical density decreased exponentially (y = ae(-bx)) if the system joined only microtubules growing from the centrosome up to the cell margin. The curve became smoother in the case of not all radial centrosome-attached microtubules reached the margin, and adding of free microtubules into the system led to the sharp fall in optical density in the centrosome area and to its gradual decrease at the cell periphery. The increase in free microtubules quantity changed the character of the curve describing the reduction of optical density microtubule system which included free and centrosome-attached microtubules in proportions of 5 : 1 was described by the equation of linear regression (f= k . x + b). Thus, the mathematical dependence describing the microtubules distribution from the centrosome to the cell periphery, depends on the ratio of microtubules and their relative positioning in the cell volume. The data obtained using model systems have coincided with the results of experiments. The graphs which described the increase in microtubules optical density during microtubule repolymerization after nocodazole treatment, corresponded to the graphs for model cells. Thus, the method we used allows to analyze the microtubule system in the cases when the direct observation of individual microtubules is difficult.  相似文献   

15.
Glycolytic enzyme interactions with tubulin and microtubules   总被引:2,自引:0,他引:2  
Interactions of the glycolytic enzymes glucose-6-phosphate isomerase, aldolase, glyceraldehyde-3-phosphate dehydrogenase, triose-phosphate isomerase, enolase, phosphoglycerate mutase, phosphoglycerate kinase, pyruvate kinase, lactate dehydrogenase type-M, and lactate dehydrogenase type-H with tubulin and microtubules were studied. Lactate dehydrogenase type-M, pyruvate kinase, glyceraldehyde-3-phosphate dehydrogenase, and aldolase demonstrated the greatest amount of co-pelleting with microtubules. The presence of 7% poly(ethylene glycol) increased co-pelleting of the latter four enzymes and two other enzymes, glucose-6-phosphate isomerase, and phosphoglycerate kinase with microtubules. Interactions also were characterized by fluorescence anisotropy. Since the KD values of glyceraldehyde-3-phosphate dehydrogenase, pyruvate kinase and lactate dehydrogenase for tubulin and microtubules were all found to be between 1 and 4 microM, which is in the range of enzyme concentration in cells, these enzymes are probably bound to microtubules in vivo. These observations indicate that interactions of cytosolic proteins, such as the glycolytic enzymes, with cytoskeletal components, such as microtubules, may play a structural role in the formation of the microtrabecular lattice.  相似文献   

16.
Truncation mutations in the adenomatous polyposis coli protein (APC) are responsible for familial polyposis, a form of inherited colon cancer. In addition to its role in mediating beta-catenin degradation in the Wnt signaling pathway, APC plays a role in regulating microtubules. This was suggested by its localization to the end of dynamic microtubules in actively migrating areas of cells and by the apparent correlation between the dissociation of APC from polymerizing microtubules and their subsequent depolymerization [1, 2]. The microtubule binding domain is deleted in the transforming mutations of APC [3, 4]; however, the direct effect of APC protein on microtubules has never been examined. Here we show that binding of APC to microtubules increases microtubule stability in vivo and in vitro. Deleting the previously identified microtubule binding site from the C-terminal domain of APC does not eliminate its binding to microtubules but decreases the ability of APC to stabilize them significantly. The interaction of APC with microtubules is decreased by phosphorylation of APC by GSK3 beta. These data confirm the hypothesis that APC is involved in stabilizing microtubule ends. They also suggest that binding of APC to microtubules is mediated by at least two distinct sites and is regulated by phosphorylation.  相似文献   

17.
Microtubule-binding proteins are a group of molecules that associate with microtubules, regulate the structural properties of microtubules, and thereby participate in diverse microtubule-mediated cellular activities. A recent mass spectrometry-based proteomic study has identified microtubule-associated protein 7 (MAP7) domain-containing 3 (Mdp3) as a potential microtubule-binding protein. However, its subcellular localization and functional importance are not characterized. In this study, by GST-pulldown assays, we found that Mdp3 interacted with tubulin both in cells and in vitro. Immunofluorescence microscopy and microtubule cosedimentation assays revealed that Mdp3 also associated with microtubules. Serial deletion experiments showed that the two coiled coil motifs of Mdp3 were critical for its interaction with tubulin and microtubules. Cold recovery and nocodazole washout assays further demonstrated an important role for Mdp3 in regulating cellular microtubule assembly. Our data also showed that Mdp3 significantly enhanced the stability of cellular microtubules. By tubulin turbidity assay, we found that Mdp3 could promote microtubule assembly and stability in the purified system. In addition, we found that Mdp3 expression varied during the cell cycle and in primary tissues. These findings thus establish Mdp3 as a novel microtubule-binding protein that regulates microtubule assembly and stability.  相似文献   

18.
A 3D reconstruction of the centrosome region was made based on series of semithick sections in tissue culture cells. It was shown that: 1) the total number of microtubules attached to the centrosome is about 30-50 of which only 20% or less run farther than 2 microns away from the centrosome; 2) a certain number of short microtubules (less than 1 micron length) is present in the vicinity of the centrosome, the majority of them are attached to the centrosome; 3) many microtubules around the centrosome have no direct contact with either centrioles, or other microtubule-convergent structures; 4) the majority of free microtubules are comparatively long (more than 1 micron length); 5) almost all the microtubules running closer than 2 microns to the centrosome are oriented towards it with their proximal ends. The radial distribution of free microtubules around the centrosome support the supposition that they may appear as a result of their detachment from the microtubule-nucleating centres.  相似文献   

19.
Formin family proteins coordinate actin filaments and microtubules. The mechanisms by which formins bind and regulate the actin cytoskeleton have recently been well defined. However, the molecular mechanism by which formins coordinate actin filaments and microtubules remains poorly understood. We demonstrate here that Isoform-Ib of the Formin-1 protein (Fmn1-Ib) binds to microtubules via a protein domain that is physically separated from the known actin-binding domains. When expressed at low levels in NIH3T3 fibroblasts, Fmn1-Ib protein localizes to cytoplasmic filaments that nocodazole disruption confirmed as interphase microtubules. A series of progressive mutants of Fmn1-Ib demonstrated that deletion of exon-2 caused dissociation from microtubules and a stronger association with actin membrane ruffles. The exon-2-encoded peptide binds purified tubulin in vitro and is also sufficient to localize GFP to microtubules. Exon-2 does not contain any known formin homology domains. Deletion of exon 5, 7, 8, the FH1 domain or FH2 domain did not affect microtubule binding. Thus, our results indicate that exon-2 of Fmn1-Ib encodes a novel microtubule-binding peptide. Since formin proteins associate with actin filaments through the FH1 and FH2 domains, binding to interphase microtubules through this exon-2-encoded domain provides a novel mechanism by which Fmn1-Ib could coordinate actin filaments and microtubules.  相似文献   

20.
Par1b/MARK2 is a serine/threonine kinase that plays key roles in the development of cell polarity, but its precise mechanism of action remains unknown. Here we report that GEF-H1, a guanine nucleotide exchange factor for Rho-family small GTPases, is a novel substrate for Par1b. GEF-H1 directly associates with microtubules via its N-terminal C1 domain, which is known to regulate the activity of GEF-H1. Ectopically expressed GEF-H1 markedly promotes stabilization of microtubules, resulting in acetylation of microtubules. We find that Par1b phosphorylates GEF-H1 at three serine residues conserved in vertebrates and releases GEF-H1 from microtubules, which abrogates stabilization and acetylation of microtubules induced by GEF-H1 overexpression. The alanine mutant for the three phosphorylation sites (3SA) of GEF-H1 strongly induces stabilization and acetylation of microtubules, which was resistant to Par1b. Time-lapse imaging analyses reveal that GFP-fused GEF-H1 dynamically moved on microtubules from one protrusion to another, whereas the 3SA mutant was static. These data suggest that Par1b-phosphorylation regulates turnover of GEF-H1 localization by regulating its interaction with microtubules, which may contribute to cell polarization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号