首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cytochromes P450 (P450s) incur phosphorylation. Although the precise role of this post-translational modification is unclear, marking P450s for degradation is plausible. Indeed, we have found that after structural inactivation, CYP3A4, the major human liver P450, and its rat orthologs are phosphorylated during their ubiquitin-dependent proteasomal degradation. Peptide mapping coupled with mass spectrometric analyses of CYP3A4 phosphorylated in vitro by protein kinase C (PKC) previously identified two target sites, Thr264 and Ser420. We now document that liver cytosolic kinases additionally target Ser478 as a major site. To determine whether such phosphorylation is relevant to in vivo CYP3A4 degradation, wild type and CYP3A4 with single, double, or triple Ala mutations of these residues were heterologously expressed in Saccharomyces cerevisiae pep4Δ strains. We found that relative to CYP3A4wt, its S478A mutant was significantly stabilized in these yeast, and this was greatly to markedly enhanced for its S478A/T264A, S478A/S420A, and S478A/T264A/S420A double and triple mutants. Similar relative S478A/T264A/S420A mutant stabilization was also observed in HEK293T cells. To determine whether phosphorylation enhances CYP3A4 degradation by enhancing its ubiquitination, CYP3A4 ubiquitination was examined in an in vitro UBC7/gp78-reconstituted system with and without cAMP-dependent protein kinase A and PKC, two liver cytosolic kinases involved in CYP3A4 phosphorylation. cAMP-dependent protein kinase A/PKC-mediated phosphorylation of CYP3A4wt but not its S478A/T264A/S420A mutant enhanced its ubiquitination in this system. Together, these findings indicate that phosphorylation of CYP3A4 Ser478, Thr264, and Ser420 residues by cytosolic kinases is important both for its ubiquitination and proteasomal degradation and suggest a direct link between P450 phosphorylation, ubiquitination, and degradation.Hepatic cytochromes P450 (P450s)3 are integral endoplasmic reticulum (ER)-anchored hemoproteins engaged in the oxidative biotransformation of various endo- and xenobiotics. Of these, human CYP3A4 is the most dominant liver enzyme, accounting for >30% of the hepatic microsomal P450 complement, and responsible for the oxidative metabolism of over 50% of clinically relevant drugs (1). In common with all the other ER-bound P450s, CYP3A4 is a monotopic protein with its N-terminal ≈33-residue domain embedded in the ER membrane with the bulk of its structure in the cytosol. Our in vivo studies of the heterologously expressed CYP3A4 in the yeast Saccharomyces cerevisiae as well as of its rat liver CYP3A2/3A23 orthologs in primary hepatocytes have revealed that human and rat liver CYPs 3A are turned over via ubiquitin (Ub)-dependent proteasomal degradation (UPD) (28). Thus, CYPs 3A represent excellent prototypic substrates of ER-associated degradation (ERAD), specifically of the ERAD-C pathway (611). Consistent with this CYP3A ERAD process, our studies of in vivo and/or in vitro reconstituted systems have led us to conclude that CYPs 3A are ubiquitinated by the UBC7/gp78 Ub-ligase complex and recruited by the p97-Npl4-Ufd1 complex before their degradation by the 26 S proteasome (48, 12). Because all these processes are energy-dependent, it is not surprising that in vitro reconstitution of CYP3A4 UPD requires ATP. However, inclusion of γ-S-[32P]ATP in an in vitro reconstituted CYP3A4 ubiquitination system catalyzed by rat liver cytosolic fraction II (FII) resulted in CYP3A4 protein phosphorylation, i.e. γ-[32P]phosphoryl transfer onto CYP3A4 target residues (13, 14). This phosphorylation was enhanced after cumene hydroperoxide (CuOOH)-mediated CYP3A4 inactivation. The physiological role, if any, of this CYP3A4 post-translational modification is unclear.CYP3A4 is not the only P450 that is phosphorylated. Since the in vitro phosphorylation of a hepatic P450 (CYP2B4) by cAMP-dependent protein kinase A (PKA) was first described (15), various P450s, particularly those belonging to the subfamily 2, were documented to be phosphorylated in cell-free systems, hepatocyte incubations, and intact animals (1632). Common features of such P450 phosphorylation were the presence of a cytosolically exposed PKA recognition sequence (RRXS) with the Ser residue as the exclusive kinase target, and the ensuing loss of prosthetic heme, conversion to the inactive P420 species, and consequent dramatic functional inactivation (1520). Studies in intact rats also identified CYPs 3A and 2C6 as kinase targets (21). Although both these P450s lack the hallmark PKA recognition sequence, apparently they possess secondary PKA targeting sequences or are phosphorylated by other protein kinases such as PKC. Indeed, in vitro studies revealed that P450s were phosphorylated in an isoform-dependent manner by either PKA or PKC, except for CYP2B1, which was heavily phosphorylated by both (20). Over the years since this particular post-translational P450 modification was recognized, it has been assigned various functional roles (17, 2933). Among these, as first proposed by Taniguchi et al. (16) and later explored both by Eliasson et al. (2326) and us (13, 14), P450 phosphorylation served as a marker for its degradation. Accordingly, the phosphorylation of CYP2E1Ser129 and CYP3A1Ser393 by a microsomal cAMP-dependent protein kinase has been proposed to predispose these P450s but not the similarly phosphorylated CYP2B1 to proteolytic degradation by an integral ER Mg2+-ATP-activated serine protease (2327). However, heterologous expression of CYP2E1S129A/S129G site-directed mutants in COS7 cells apparently had no effect on its relative stability thereby revealing that if CYP2E1 phosphorylation is important for its degradation (34, 35), then alternate Ser/Thr residues (i.e. in plausible secondary PKA recognition sites, Lys-Lys-Ser209-Lys and Lys-Lys-Ser449-Ala) may be recruited.On the other hand, on the basis of rapid phosphorylation of CuOOH-inactivated CYP3A4 that precedes its ubiquitination and 26 S proteasomal degradation in an in vitro liver cytosolic FII-catalyzed system, we have proposed that CYP3A4 phosphorylation was essential for targeting it to proteins participating in its UPD/ERAD (13). Indeed, several examples of similar phosphorylation for targeting proteins to UPD exist, of which IκBα phosphorylation is the most notable and perhaps the best documented (3647; see “Discussion”).Our in vitro studies with specific kinase inhibitors as probes identified both PKC and PKA as the major FII kinases responsible for CYP3A4 phosphorylation (14). Indeed, in vitro model studies of CYP3A4 with PKC as the kinase, coupled with lysylendopeptidase C (Lys-C) digestion of the phosphorylated protein and liquid chromatography-tandem mass spectrometric (LC-MS/MS) analyses of the Lys-C digests, identified two PKC-phosphorylated CYP3A4 peptides 258ESRLEDpTQK266 and 414FLPERFpSK421 unambiguously phosphorylated at Thr264 and Ser420 (14). These same residues were also phosphorylated in corresponding studies with PKA.4 Furthermore, although both native and CuOOH-inactivated CYP3A4 were phosphorylated at Thr264, Ser420 phosphorylation was particularly enhanced after CuOOH-mediated CYP3A4 inactivation (14). Corresponding studies of CuOOH-inactivated CYP3A4 using rat liver cytosolic FII as the source of the kinase(s), revealed 32P phosphorylation of both these peptides as well as that of an additional CYP3A4 peptide 477LS(p)LGGLLQPEKPVVLK492. Unlike the unambiguous mass spectrometric identification of Thr264 and Ser420 as the phosphorylated CYP3A4 residues, the phosphorylation of Ser478, the only plausible phosphorylatable residue in this 32P-labeled peptide, was not similarly established. Nevertheless, the predominant phosphorylation of Thr264 in native CYP3A4 (14), but of two additional residues in the CuOOH-inactivated enzyme, is consistent with the inactivation-induced structural unraveling of this enzyme with exposure of otherwise concealed and/or kinase-inaccessible domains (48). Such unraveling of CYP3A4 protein stems from the irreversible modification of its active site by fragments generated from CuOOH-mediated oxidative destruction of its prosthetic heme (49). In this study, using mass spectrometric analyses of Lys-C digests of FII-phosphorylated CYP3A4, we have provided unambiguous evidence that in addition to Thr264 and Ser420, Ser478 is indeed phosphorylated. More importantly, through alanine-scanning mutagenesis of these three residues, we now document that although neither the structural conformation nor the catalytic function of this triple CYP3A4T264A/S420A/S478A mutant is altered, its degradation after heterologous expression in S. cerevisiae is significantly impaired. This is also true of CYP3A4T264A/S420A/S478A mutant degradation in human embryonic kidney (HEK293T) cells. Furthermore, using an in vitro reconstituted CYP3A4 ubiquitination system, catalyzed by human Ub-conjugating E2 enzyme UBC7 and integral ER protein gp78 as the E3 Ub ligase (12), we document that PKA/PKC-mediated phosphorylation of the wild type CYP3A4 (CYP3A4wt) considerably enhanced its UBC7/gp78-mediated ubiquitination. Together these findings reveal the critical importance of CYP3A4 phosphorylation at these residues for its UPD and suggest a direct link between phosphorylation and its ubiquitination and degradation.  相似文献   

2.
Phosphorylation of SNARE proteins may provide a critical link between cell activation and secretory processes. Platelets contain all three members of the SNAP-23/25/29 gene family, but by comparison to brain tissue, SNAP-23 is the most highly enriched of these proteins in platelets. SNAP-23 function is required for exocytosis from platelet alpha, dense, and lysosomal granules. SNAP-23 was phosphorylated largely on serine residues in platelets activated with thrombin. Phosphorylation kinetics paralleled or preceded granule secretion. Inhibition studies suggested that SNAP-23 phosphorylation proceeds largely through a protein kinase C (PKC) mechanism and purified PKC directly phosphorylated recombinant (r-) SNAP-23 (up to 0.3 mol of phosphate/mol of protein). Five major tryptic phosphopeptides were identified in cellular SNAP-23 isolated from activated platelets; three phosphopeptides co-migrated with those identified in PKC-phosphorylated r-SNAP-23. In contrast, only one major phosphopeptide was identified when SNAP-23, engaged in a ternary SNARE complex, was phosphorylated by PKC. Ion trap mass spectrometry revealed that platelet SNAP-23 was phosphorylated at Ser23/Thr24 and Ser161, after cell activation by thrombin; these sites were also identified in PKC-phosphorylated r-SNAP-23. SNAP-23 mutants that mimic phosphorylation at Ser23/Thr24 inhibited syntaxin 4 interactions, whereas a phosphorylation mutant of Ser161 had only minor effects. Taken together these studies show that SNAP-23 is phosphorylated in platelets during cell activation through a PKC-related mechanism at two or more sites with kinetics that parallel or precede granule secretion. Because mutants that mimic SNAP-23 phosphorylation affect syntaxin 4 interactions, we hypothesize that SNAP-23 phosphorylation may be important for modulating SNARE-complex interactions during membrane trafficking and fusion.  相似文献   

3.
During autophagy, the microtubule-associated protein light chain 3 (LC3), a specific autophagic marker in mammalian cells, is processed from the cytosolic form (LC3-I) to the membrane-bound form (LC3-II). In HEK293 cells stably expressing FLAG-tagged LC3, activation of protein kinase C inhibited the autophagic processing of LC3-I to LC3-II induced by amino acid starvation or rapamycin. PKC inhibitors dramatically induced LC3 processing and autophagosome formation. Unlike autophagy induced by starvation or rapamycin, PKC inhibitor-induced autophagy was not blocked by the PI-3 kinase inhibitor wortmannin. Using orthophosphate metabolic labeling, we found that LC3 was phosphorylated in response to the PKC activator PMA or the protein phosphatase inhibitor calyculin A. Furthermore, bacterially expressed LC3 was directly phosphorylated by purified PKC in vitro. The sites of phosphorylation were mapped to T6 and T29 by nanoLC-coupled tandem mass spectrometry. Mutations of these residues significantly reduced LC3 phosphorylation by purified PKC in vitro. However, in HEK293 cells stably expressing LC3 with these sites mutated either singly or doubly to Ala, Asp or Glu, autophagy was not significantly affected, suggesting that PKC regulates autophagy through a mechanism independent of LC3 phosphorylation.  相似文献   

4.
A vented column, capillary liquid chromatography (LC) microelectrospray ionization (ESI) Fourier transform ion cyclotron resonance (FT-ICR (9.4 T)) mass spectrometry (MS) approach to phosphopeptide identification is described. A dual-ESI source capable of rapid (approximately 200 ms) switching between two independently controlled ESI emitters was constructed. The dual-ESI source, combined with external ion accumulation in a linear octopole ion trap, allowed for internal calibration of every mass spectrum during LC. LC ESI FT-ICR positive-ion MS of protein kinase C (PKC) revealed four previously unidentified phosphorylated peptides (one within PKC(alpha), one within PKC(delta), and two within PKC(zeta)). Internal calibration improved the mass accuracy for LC MS spectra from an absolute mean (47 peptide ions) of 11.5 ppm to 1.5 ppm. Five additional (out of eight known) activating sites of PKC phosphorylation, not detected in positive-ion experiments, were observed by subsequent negative-ion direct infusion nanoelectrospray. Extension of the method to enable infrared multiphoton dissociation of all ions in the ICR cell prior to every other mass measurement revealed the diagnostic neutral loss of H3PO4 from phosphorylated peptide ions. The combination of accurate-mass MS and MS/MS offers a powerful new tool for identifying the presence and site(s) of phosphorylation in peptides, without the need for additional wet chemical derivatization.  相似文献   

5.
A 40-kD protein kinase C (PKC)epsilon related activity was found to associate with human epithelial specific cytokeratin (CK) polypeptides 8 and 18. The kinase activity coimmunoprecipitated with CK8 and 18 and phosphorylated immunoprecipitates of the CK. Immunoblot analysis of CK8/18 immunoprecipitates using an anti-PKC epsilon specific antibody showed that the 40-kD species, and not native PKC epsilon (90 kD) associated with the cytokeratins. Reconstitution experiments demonstrated that purified CK8 or CK18 associated with a 40-kD tryptic fragment of purified PKC epsilon, or with a similar species obtained from cells that express the fragment constitutively but do not express CK8/18. A peptide pseudosubstrate specific for PKC epsilon inhibited phosphorylation of CK8/18 in intact cells or in a kinase assay with CK8/18 immunoprecipitates. Tryptic peptide map analysis of the cytokeratins that were phosphorylated by purified rat brain PKC epsilon or as immunoprecipitates by the associated kinase showed similar phosphopeptides. Furthermore, PKC epsilon immunoreactive species and CK8/18 colocalized using immunofluorescent double staining. We propose that a kinase related to the catalytic fragment of PKC epsilon physically associates with and phosphorylates cytokeratins 8 and 18.  相似文献   

6.
The 26S proteasome complex, which consists of a 20S proteasome and a pair of 19S regulatory particles, plays important roles in the degradation of ubiquitinated proteins in eukaryotic cells. The alpha7 subunit of the budding yeast 20S proteasome is a major phosphorylatable subunit; serine residue(s) in its C-terminal region are phosphorylated in vitro by CKII. However, the exact in vivo phosphorylation sites have not been identified. In this study, using electrospray ionization quadrupole time-of-flight mass spectrometry analysis, we detected a mixture of singly, doubly, and triply phosphorylated C-terminal peptides isolated from a His-tagged construct of the alpha7 subunit by nickel-immobilized metal affinity chromatography. In addition, we identified three phosphorylation sites in the C-terminal region using MS/MS analysis and site-directed mutagenesis: Ser258, Ser263, and Ser264 residues. The MS/MS analysis of singly phosphorylated peptides showed that phosphorylation at these sites did not occur successively.  相似文献   

7.
Using a phosphorylation-dependent cell-free system to study NADPH oxidase activation (McPhail, L. C., Qualliotine-Mann, D., and Waite, K. A. (1995) Proc. Natl. Acad. Sci. U. S. A. 92, 7931-7935), we previously showed that p47(phox), a cytosolic NADPH oxidase component, is phosphorylated. Now, we show that p22(phox), a subunit of the NADPH oxidase component flavocytochrome b(558), also is phosphorylated. Phosphorylation is selectively activated by phosphatidic acid (PA) versus other lipids and occurs on a threonine residue in p22(phox). We identified two protein kinase families capable of phosphorylating p22(phox): 1) a potentially novel, partially purified PA-activated protein kinase(s) known to phosphorylate p47(phox) and postulated to mediate the phosphorylation-dependent activation of NADPH oxidase by PA and 2) conventional, but not novel or atypical, isoforms of protein kinase C (PKC). In contrast, all classes of PKC isoforms could phosphorylate p47(phox). In a gel retardation assay both the phosphatidic acid-dependent kinase and conventional PKC isoforms phosphorylated all molecules of p22(phox). These findings suggest that phosphorylation of p22(phox) by conventional PKC and/or a novel PA-activated protein kinase regulates the activation/assembly of NADPH oxidase.  相似文献   

8.
Mammalian hepatic cytochromes P450 (P450s) are endoplasmic reticulum (ER)-anchored hemoproteins engaged in the metabolism of numerous xeno- and endobiotics. P450s exhibit widely ranging half-lives, utilizing both autophagic-lysosomal (ALD) and ubiquitin-dependent 26S proteasomal (UPD) degradation pathways. Although suicidally inactivated hepatic CYPs 3A and "native" CYP3A4 in Saccharomyces cerevisiae are degraded via UPD, the turnover of native hepatic CYPs 3A in their physiological milieu has not been elucidated. Herein, we characterize the degradation of native, dexamethasone-inducible CYPs 3A in cultured primary rat hepatocytes, using proteasomal (MG-132 and MG-262) and ALD [NH4Cl and 3-methyladenine (3-MA)] inhibitors to examine their specific degradation route. Pulse-chase with immunoprecipitation analyses revealed a basal 52% 35S-CYP3A loss over 6 h, which was stabilized by both proteasomal inhibitors. By contrast, no corresponding CYP3A stabilization was detected with either ALD inhibitor NH4Cl or 3-MA. Furthermore, MG-262-induced CYP3A stabilization was associated with its polyubiquitylation, thereby verifying that native CYPs 3A were also degraded via UPD. To identify the specific participants in this process, cellular proteins were cross-linked in situ with paraformaldehyde (PFA) in cultured hepatocytes. Immunoblotting analyses of CYP3A immunoprecipitates after PFA-cross-linking revealed the presence of p97, a cytosolic AAA ATPase instrumental in the extraction and delivery of ubiquitylated ER proteins for proteasomal degradation. Such native CYP3A-p97 interactions were greatly magnified after CYP3A suicidal inactivation (which accelerates UPD), and/or proteasomal inhibition, and were confirmed by proteomic and confocal immunofluorescence microscopic analyses. These findings clearly reveal that native CYPs 3A undergo UPD and implicate a role for p97 in this process.  相似文献   

9.
The hepatitis C virus (HCV) NS5A protein is phosphorylated by a cellular, serine/threonine kinase. To identify the major site(s) of NS5A phosphorylation, radiolabeled HCV-H NS5A phosphopeptides were purified and subjected to phosphoamino acid analysis and Edman degradation. These data identified the major intracellular phosphorylation site in the HCV-H NS5A protein as Ser(2321), a result verified by two additional, independent methods: (i) substitution of Ala for Ser(2321) and the concomitant disappearance of the major in vivo phosphorylated peptides and corresponding in vitro phosphorylated peptides; and (ii) comigration of the digestion products of a synthetic peptide phosphorylated on Ser(2321) with the major in vivo phosphorylated NS5A peptides. Site-directed mutagenesis of Ser(2321) suggested that phosphorylation of NS5A is dispensable for previously described interactions with NS4A and PKR, a cellular, antiviral kinase that does not appear to catalyze NS5A phosphorylation. The proline-rich nature of the amino acid sequence flanking Ser(2321) (PLPPPRS(2321) PPVPPPR) suggests that a proline-directed kinase is responsible for the majority of HCV NS5A phosphorylation, consistent with previous kinase inhibitor studies.  相似文献   

10.
Ca2+-dependent protein kinase (CDPK-1) was purified from maize seedlings, and its substrate specificity studied using a set of synthetic peptides derived from the phosphorylatable sequence RVLSRLHS15VRER of maize sucrose synthase 2. The decapeptide LARLHSVRER was found to be efficiently phosphorylated as a minimal substrate. The same set of peptides were found to be phosphorylated by mammalian protein kinase Cbeta (PKC), but showed low reactivity with protein kinase A (PKA). Proceeding from the sequence LARLHSVRER, a series of cellulose-membrane-attached peptides of systematically modified structure was synthesised. These peptides had hydrophobic (Ala, Leu) and ionic (Arg, Glu) amino acids substituted in each position. The phosphorylation of these substrates by CDPK-1 was measured and the substrate specificity of the maize protein kinase characterised by the consensus sequence motif A/L-5X-4R-3X-2X-1SX+1R+2Z+3R+4, where X denotes a position with no strict amino acid requirements and Z a position strictly not tolerating arginine compared with the other three varied amino acids. This motif had a characteristic sequence element RZR at positions +2 to +4 and closely resembled the primary structure of the sucrose synthase phosphorylation site. The sequence surrounding the phosphorylatable serine in this consensus motif was similar to the analogous sequence K/RXXS/TXK/R proposed for mammalian PKC, but different from the consensus motif RRXS/TX for PKA.  相似文献   

11.
Phosphorylation of connexin 32, the major liver gap-junction protein, was studied in purified liver gap junctions and in hepatocytes. In isolated gap junctions, connexin 32 was phosphorylated by cAMP-dependent protein kinase (cAMP-PK), by protein kinase C (PKC) and by Ca2+/calmodulin-dependent protein kinase II (Ca2+/CaM-PK II). Connexin 26 was not phosphorylated by these three protein kinases. Phosphopeptide mapping of connexin 32 demonstrated that cAMP-PK and PKC primarily phosphorylated a seryl residue in a peptide termed peptide 1. PKC also phosphorylated seryl residues in additional peptides. CA2+/CaM-PK II phosphorylated serine and to a lesser extent, threonine, at sites different from those phosphorylated by the other two protein kinases. A synthetic peptide PSRKGSGFGHRL-amine (residues 228-239 based on the deduced amino acid sequence of rat connexin 32) was phosphorylated by cAMP-PK and by PKC, with kinetic properties being similar to those for other physiological substrates phosphorylated by these enzymes. Ca2+/CaM-PK II did not phosphorylate the peptide. Phosphopeptide mapping and amino acid sequencing of the phosphorylated synthetic peptide indicated that Ser233 of connexin 32 was present in peptide 1 and was phosphorylated by cAMP-PK or by PKC. In hepatocytes labeled with [32P]orthophosphoric acid, treatment with forskolin or 20-deoxy-20-oxophorbol 12,13-dibutyrate (PDBt) resulted in increased 32P-incorporation into connexin 32. Phosphopeptide mapping and phosphoamino acid analysis showed that a seryl residue in peptide 1 was most prominently phosphorylated under basal conditions. Treatment with forskolin or PDBt stimulated the phosphorylation of peptide 1. PDBt treatment also increased the phosphorylation of seryl residues in several other peptides. PDBt did not affect the cAMP-PK activity in hepatocytes. It has previously been shown that phorbol ester reduces dye coupling in several cell types, however in rat hepatocytes, dye coupling was not reduced by treatment with PDBt. Thus, activation of PKC may have differential effects on junctional permeability in different cell types; one source of this variability may be differences in the sites of phosphorylation in different gap-junction proteins.  相似文献   

12.
A role for second messenger-regulated protein kinases in the early post-IL-3 receptor signal transduction pathway was investigated in the mast cell/megakaryocyte line R6-XE.4. The activity of the calcium- and phospholipid-dependent protein kinase C (PKC) was assessed by the ability of the enzyme to phosphorylate histone H1 in the presence of calcium, diacylglycerol, and phosphatidylserine or after proteolytic activation of PKC with trypsin. In high serum-supplemented cells, but not in cells that were preincubated in serum-deficient media for 6 h, subsequent treatment for 15 min with synthetic IL-3 (10 micrograms/ml) caused up to a sixfold increase in the calcium- and lipid-stimulated histone H1 phosphorylating activity of particulate-associated PKC after fractionation on MonoQ. However, there was no corresponding reduction of cytosolic PKC activity. Therefore, IL-3 appeared to modify the activity of preexisting membrane-associated PKC rather than eliciting its recruitment from the cytoplasm in R6-XE.4 cells. This was in contrast to the situation with FDC-P1 cells, where IL-3 induced PKC translocation. IL-3 also stimulated a cytosolic protein kinase that phosphorylated a synthetic peptide patterned after a phosphorylation site in ribosomal protein S6, but this IL did not alter the activity of cAMP-dependent protein kinase.  相似文献   

13.
Phosphorylation of the cystic fibrosis transmembrane conductance regulator.   总被引:17,自引:0,他引:17  
Regulation of epithelial chloride flux, which is defective in patients with cystic fibrosis, may be mediated by phosphorylation of the cystic fibrosis transmembrane conductance regulator (CFTR) by cyclic AMP-dependent protein kinase (PKA) or protein kinase C (PKC). Part of the R-domain of CFTR (termed CF-2) was expressed in and purified from Escherichia coli. CF-2 was phosphorylated on seryl residues by PKA, PKC, cyclic GMP-dependent protein kinase (PKG), and calcium/calmodulin-dependent protein kinase I (CaM kinase I). Direct amino acid sequencing and peptide mapping of CF-2 revealed that serines 660, 700, 737, and 813 as well as serine 768, serine 795, or both were phosphorylated by PKA and PKG, and serines 686 and 790 were phosphorylated by PKC. CFTR was phosphorylated in vitro by PKA, PKC, or PKG on the same sites that were phosphorylated in CF-2. Kinetic analysis of phosphorylation of CF-2 and of synthetic peptides confirmed that these sites were excellent substrates for PKA, PKC, or PKG. CFTR was immunoprecipitated from T84 cells labeled with 32Pi. Its phosphorylation was stimulated in response to agents that activated either PKA or PKC. Peptide mapping confirmed that CFTR was phosphorylated at several sites identified in vitro. Thus, regulation of CFTR is likely to occur through direct phosphorylation of the R-domain by protein kinases stimulated by different second messenger pathways.  相似文献   

14.
Equilibrative Nucleoside Transporters (SLC29) are a family of proteins that transport nucleosides, nucleobases and nucleoside analogue drugs across cellular membranes. ENT1 is expressed ubiquitously in mammalian tissues and responsible for a significant portion of nucleoside analog drug uptake in humans. Despite the important clinical role of ENT1, many aspects of the regulation of this protein remain unknown. A major outstanding question in this field is the whether ENT1 is phosphorylated directly. To answer this question, we overexpressed tagged human (h) and mouse (m) ENT1, affinity purified protein using the tag, conducted phosphoamino acid analysis and found that m/hENT1 is predominantly phosphorylated at serine residues. The large intracellular loop of ENT1, between transmembrane domains 6 and 7, has been suggested to be a site of regulation by phosphorylation, therefore we generated His/Ubiquitin tagged peptides of this region and used them for in vitro kinase assays to identify target serines. Our data support a role for PKA and PKC in the phosphorylation of ENT1 within the intracellular loop and show that PKA can phosphorylate multiple sites within this loop while PKC specifically targets serines 279 and 286 and threonine 274. These data demonstrate, for the first time, that ENT1 is a phosphoprotein that can be directly phosphorylated at several sites by more than one kinase. The presence of multiple kinase targets within the loop suggests that ENT1 phosphorylation is considerably more complex than previously thought and thus ENT1 may be subject to phosphorylation by multiple pathways.  相似文献   

15.
Arachidonic acid has been implicated to play a role in physiological and pathophysiological processes and is selectively released by the 85-kDa cytosolic phospholipase A(2) (cPLA(2)). The activity of cPLA(2) is regulated by calcium, translocating the enzyme to its substrate, and by phosphorylation by a mitogen-activated protein kinase (MAPK) family member and a MAPK-activated protein kinase. In this study, the signal transduction pathways in growth factor-induced phosphorylation of p42/44(MAPK) and cPLA(2) activation were investigated in Her14 fibroblasts. p42/44(MAPK) in response to epidermal growth factor was not only phosphorylated via the Raf-MEK pathway but mainly through protein kinase C (PKC) or a related or unrelated kinase in which the phosphorylated p42/44(MAPK) corresponded with cPLA(2) activity. Serum-induced phosphorylation of p42/44(MAPK) also corresponded with cPLA(2) activity but is predominantly mediated via Raf-MEK and partly through PKC or a related or unrelated kinase. In contrast, activation of PKC by phorbol ester did not result in increased cPLA(2) activity, while p42/44(MAPK) is phosphorylated, mainly via Raf-MEK and through MEK. Moreover, p42/44(MAPK) phosphorylation is present in quiescent and proliferating cells, and p42/44(MAPK) is entirely phosphorylated via Raf-MEK, but it only corresponds to cPLA(2) activity in the former cells. Collectively, these data show that p42/44(MAPK) in proliferating, quiescent, and stimulated cells is phosphorylated by various signal transduction pathways, suggesting the activation of different populations of p42/44(MAPK) and cPLA(2).  相似文献   

16.
Abstract

Equilibrative Nucleoside Transporters (SLC29) are a family of proteins that transport nucleosides, nucleobases and nucleoside analogue drugs across cellular membranes. ENT1 is expressed ubiquitously in mammalian tissues and responsible for a significant portion of nucleoside analog drug uptake in humans. Despite the important clinical role of ENT1, many aspects of the regulation of this protein remain unknown. A major outstanding question in this field is the whether ENT1 is phosphorylated directly. To answer this question, we overexpressed tagged human (h) and mouse (m) ENT1, affinity purified protein using the tag, conducted phosphoamino acid analysis and found that m/hENT1 is predominantly phosphorylated at serine residues. The large intracellular loop of ENT1, between transmembrane domains 6 and 7, has been suggested to be a site of regulation by phosphorylation, therefore we generated His/Ubiquitin tagged peptides of this region and used them for in vitro kinase assays to identify target serines. Our data support a role for PKA and PKC in the phosphorylation of ENT1 within the intracellular loop and show that PKA can phosphorylate multiple sites within this loop while PKC specifically targets serines 279 and 286 and threonine 274. These data demonstrate, for the first time, that ENT1 is a phosphoprotein that can be directly phosphorylated at several sites by more than one kinase. The presence of multiple kinase targets within the loop suggests that ENT1 phosphorylation is considerably more complex than previously thought and thus ENT1 may be subject to phosphorylation by multiple pathways.  相似文献   

17.
Dihydropyridine-sensitive Ca2+ channels from skeletal muscle are multisubunit proteins and are regulated by protein phosphorylation. The purpose of this study was to determine: 1) which subunits are the preferential targets of various protein kinases when the channels are phosphorylated in vitro in their native membrane-bound state and 2) the consequences of these phosphorylations in functional assays. Using as substrates channels present in purified transverse (T) tubule membranes, cAMP-dependent protein kinase (PKA), protein kinase C (PKC), and a multifunctional Ca2+/calmodulin-dependent protein kinase (CaM protein kinase) preferentially phosphorylated the 165-kDa alpha 1 subunit to an extent that was 2-5-fold greater than the 52-kDa beta subunit. A protein kinase endogenous to the skeletal muscle membranes preferentially phosphorylated the beta peptide and showed little activity toward the alpha 1 subunit; however, the extent of phosphorylation was low. Reconstitution of partially purified channels into liposomes was used to determine the functional consequences of phosphorylation by these kinases. Phosphorylation of channels by PKA or PKC resulted in an activation of the channels that was observed as increases in both the rate and extent of Ca2+ influx. However, phosphorylation of channels by either the CaM protein kinase or the endogenous kinase in T-tubule membranes was without effect. Phosphorylation did not affect the sensitivities of the channels toward the dihydropyridines. Taken together, the results demonstrate that the alpha 1 subunit is the preferred substrate of PKA, PKC, and CaM protein kinase when the channels are phosphorylated in the membrane-bound state and that phosphorylation of the channels by PKA and PKC, but not by CaM protein kinase or an endogenous T-tubule membrane protein kinase, results in activation of the dihydropyridine-sensitive Ca2+ channels from skeletal muscle.  相似文献   

18.
Stathmin/Op18 is a highly conserved 19 kDa cytosolic phosphoprotein. Human and chicken stathmin share 93% identity with only 11 amino acid substitutions. One of the substituted amino acids is serine 25, which is a glycine in chicken stathmin. In human stathmin, serine 25 is the main phosphorylation site for MAP kinase. In this study, we have compared the phosphorylation of human and chicken stathmin. The proteins were expressed in Sf9 cells using the baculovirus expression system and purified for in vitro phosphorylation assays. Phosphorylation with MAP kinase showed that chicken stathmin was phosphorylated 10 times less than human stathmin. To identify the phosphorylation sites we used liquid chromatography/mass spectrometry (LC/MS/MS). The only amino acid found phosphorylated was serine 38, which corresponds to the minor phosphorylation site in human stathmin. Phosphorylation with p34(cdc2)- and cGMP-dependent protein kinases gave almost identical phosphorylation levels in the two stathmins.  相似文献   

19.
CoQ(6) (coenzyme Q(6)) biosynthesis in yeast is a well-regulated process that requires the final conversion of the late intermediate DMQ(6) (demethoxy-CoQ(6)) into CoQ(6) in order to support respiratory metabolism in yeast. The gene CAT5/COQ7 encodes the Cat5/Coq7 protein that catalyses the hydroxylation step of DMQ(6) conversion into CoQ(6). In the present study, we demonstrated that yeast Coq7 recombinant protein purified in bacteria can be phosphorylated in vitro using commercial PKA (protein kinase A) or PKC (protein kinase C) at the predicted amino acids Ser(20), Ser(28) and Thr(32). The total absence of phosphorylation in a Coq7p version containing alanine instead of these phospho-amino acids, the high extent of phosphorylation produced and the saturated conditions maintained in the phosphorylation assay indicate that probably no other putative amino acids are phosphorylated in Coq7p. Results from in vitro assays have been corroborated using phosphorylation assays performed in purified mitochondria without external or commercial kinases. Coq7p remains phosphorylated in fermentative conditions and becomes dephosphorylated when respiratory metabolism is induced. The substitution of phosphorylated residues to alanine dramatically increases CoQ(6) levels (256%). Conversely, substitution with negatively charged residues decreases CoQ(6) content (57%). These modifications produced in Coq7p also alter the ratio between DMQ(6) and CoQ(6) itself, indicating that the Coq7p phosphorylation state is a regulatory mechanism for CoQ(6) synthesis.  相似文献   

20.
Microtubule-associated protein 2 (MAP2) is an excellent substrate for both cyclic-AMP (cAMP)-dependent and Ca2+/calmodulin-dependent kinases. A recently purified cytosolic Ca2+/calmodulin-dependent kinase (now designated CaM kinase II) phosphorylates MAP2 as a major substrate. We now report that microtubule-associated cAMP-dependent and calmodulin-dependent protein kinases phosphorylate MAP2 on separate sites. Tryptic phosphopeptide digestion and two-dimensional phosphopeptide mapping revealed 11 major peptides phosphorylated by microtubule-associated cAMP-dependent kinase and five major peptide species phosphorylated by calmodulin-dependent kinase. All 11 of the cAMP-dependently phosphorylated peptides were phosphorylated on serine residues, whereas four of five major peptides phosphorylated by the calmodulin-dependent kinase were phosphorylated on threonine. Only one peptide spot phosphorylated by both kinases was indistinguishable by both migration and phosphoamino acid site. The results indicate that cAMP-dependent and calmodulin-dependent kinases may regulate microtubule and cytoskeletal dynamics by phosphorylation of MAP2 at distinct sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号