首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The HMG1/2 family is a large group of proteins that share a conserved sequence of ~80 amino acids rich in basic, aromatic and proline side chains, referred to as an HMG box. Previous studies show that HMG boxes can bind to DNA in a structure-specific manner. To define the basis for DNA recognition by HMG boxes, we characterize the interaction of two model HMG boxes, one a structure-specific box, rHMGb from the rat HMG1 protein, the other a sequence-specific box, Rox1 from yeast, with oligodeoxynucleotide substrates. Both proteins interact with single-stranded oligonucleotides in this study to form 1:1 complexes. The stoichiometry of binding of rHMGb to duplex or branched DNAs differs: for a 16mer duplex we find a weak 2:1 complex, while a 4:1 protein:DNA complex is detected with a four-way DNA junction of 16mers in the presence of Mg2+. In the case of the sequence-specific Rox1 protein we find tight 1:1 and 2:1 complexes with its cognate duplex sequence and again a 4:1 complex with four-way branched DNA. If the DNA branching is reduced to three arms, both proteins form 3:1 complexes. We believe that these multimeric complexes are relevant for HMG1/2 proteins in vivo, since Mg2+ is present in the nucleus and these proteins are expressed at a very high level.  相似文献   

2.
The high-mobility group (HMG) proteins HMG1, HMG2 and HMG2a are relatively abundant vertebrate DNA-binding and bending proteins that bind with structure specificity, rather than sequence specificity, and appear to play an architectural role in the assembly of nucleoprotein complexes. They have two homologous "HMG-box" DNA-binding domains (which show about 80 % homology) connected by a short basic linker to an acidic carboxy-terminal tail that differs in length between HMG1 and 2. To gain insights into the role of the acidic tail, we examined the DNA-binding properties of HMG1, HMG2b and HMG2a from chicken erythrocytes (corresponding to HMG1, HMG2 and HMG2a in other vertebrates). HMG1, with the longest acidic tail, is less effective than HMG2a and 2b (at a given molar input ratio) in supercoiling relaxed, closed circular DNA, in inducing ligase-mediated circularisation of an 88 bp DNA fragment, and in binding to four-way DNA junctions in a gel-shift assay. Removal of the acidic tail increases the affinity of the HMG boxes for DNA and largely abolishes the differences between the three species. Switching the acidic tail of HMG1 for that of HMG2a or 2b gives hybrid proteins with essentially the same DNA-binding properties as HMG2a, 2b. The length (and possibly sequence) of the acidic tail thus appears to be the dominant factor in mediating the differences in properties between HMG1, 2a and 2b and finely tunes the rather similar DNA-binding properties of the tandem HMG boxes, presumably to fulfill different cellular roles. The tail is essential for structure-selective DNA-binding of the HMG boxes to DNA minicircles in the presence of equimolar linear DNA, and has little effect on the affinity for this already highly distorted DNA ligand, in contrast to binding to linear and four-way junction DNA.  相似文献   

3.
We have compared HMG1 with the product of tryptic removal of its acidic C-terminal domain termed HMG3, which contains two 'HMG-box' DNA-binding domains. (i) HMG3 has a higher affinity for DNA than HMG1. (ii) Both HMG1 and HMG3 supercoil circular DNA in the presence of topoisomerase I. Supercoiling by HMG3 is the same at approximately 50 mM and approximately 150 mM ionic strength, as is its affinity for DNA, whereas supercoiling by HMG1 is less at 150 mM than at 50 mM ionic strength although its affinity for DNA is unchanged, showing that the acidic C-terminal tail represses supercoiling at the higher ionic strength. (iii) Electron microscopy shows that HMG3 at a low protein:DNA input ratio (1:1 w/w; r = 1), and HMG1 at a 6-fold higher ratio, cause looping of relaxed circular DNA at 150 mM ionic strength. Oligomeric protein 'beads' are apparent at the bases of the loops and at cross-overs of DNA duplexes. (iv) HMG3 at high input ratios (r = 6), but not HMG1, causes DNA compaction without distortion of the B-form. The two HMG-box domains of HMG1 are thus capable of manipulating DNA by looping, compaction and changes in topology. The acidic C-tail down-regulates these effects by modulation of the DNA-binding properties.  相似文献   

4.
5.
The HMG1 ta(i)le     
We have studied structural changes in DNA/protein complexes using the CD spectroscopy, upon the interaction of HMG1-domains with calf thymus DNA at different ionic strengths. HMG1 protein isolated from calf thymus and recombinant HMG1-(A+B) protein were used. Recombinant protein HMG1-(A+B) represents a rat HMG1 lacking C-terminal acidic tail. At low ionic strength (15 mM NaCl) we observed similar behavior of both proteins upon interaction with DNA. Despite this, at higher ionic strength (150 mM NaCl) their interaction with DNA leads to a completely different structure of the complexes. In the case of HMG1-(A+B)/DNA complexes we observed the appearance of DNA fractions possessing very high optical activity. This could be a result of formation of the highly-ordered DNA structures modulated by the interaction with HMG1-domains. Thus the comparison studies of HMG1 and HMG1-(A+B) interaction with DNA show that negatively charged C-terminal tail of HMG1 modulates interaction of the protein with DNA. The striking difference of the behaviour of these two systems allows us to explain the functional role of multiple HMG1 domains in some regulatory and architectural proteins.  相似文献   

6.
A high mobility group (HMG) nonhistone protein fraction HMG(1 + 2), composed of HMG1 and HMG2, was prepared from pig thymus chromatin. In order to examine a possibility that the HMG(1 + 2) participates in the unwinding of the DNA double-helix, DNA hydrolysis assay systems with the endonucleases specific for single-stranded DNA were employed. In the presence of HMG(1 + 2), the hydrolysis of double-stranded DNA by N. crassa endonuclease was markedly promoted, while the hydrolysis of single-stranded DNA was hardly enhanced. The reaction kinetic data showed that the stimulation of the hydrolysis of double-stranded DNA in the presence of HMG(1 + 2) was due to the unwinding of the DNA double-helix by the HMG(1 + 2), and not due to stimulation of enzyme activity of the endonuclease by the protein. The unwinding reactions were dependent on the HMG protein concentration at low weight protein to DNA ratios and reached a maximum at the ratio of 0.025. The region unwound in the whole DNA was partial. Similar results were obtained for experiments with nuclease S1. Isolated HMG1 and HMG2 fractions showed DNA unwinding activity of similar extents. The association constant obtained by fluorescence quenching analysis showed that the HMG(1 + 2) has higher affinity to single-stranded DNA than to double-stranded DNA. The susceptibility to the unwinding differed with the DNA source. These results suggest that HMG(1 + 2) at a low weight protein to DNA ratio binds to some limited double-stranded region in DNA and unwinds the DNA partially.  相似文献   

7.
Rat liver HMG1: a physiological nucleosome assembly factor.   总被引:24,自引:10,他引:14       下载免费PDF全文
Incubation of rat liver single-stranded DNA-binding protein HMG1 with the four core histones at 0.15 M NaCl favors histone association primarily into tetramers and, to a lesser extent, into octamers. The assembly of pre-formed histone-HMG1 complexes with DNA yields nucleosome-like subunits which satisfy most of the criteria defining native core particles: (i) the circular DNA extracted from the complexes is supercoiled indicating that the initially relaxed DNA acquired superhelical turns during complex formation in the presence of topoisomerase I; (ii) the digestion of the complexes with micrococcal nuclease yields a DNA fragment of approximately 140 bp in length; (iii) electron microscopy of the reconstituted complexes shows a beaded structure with the DNA wrapped around the histone cores, leading to a reduction in the contour length of the genome compared with free DNA. Moreover, in the presence of HMG1, nucleosome assembly occurs rapidly at 0.15 M NaCl. Therefore, in addition to its DNA-binding properties, HMG1 mediates the assembly of nucleosomes in vitro under conditions of physiological ionic strength. The possible involvement of these properties in the DNA replication process is discussed.  相似文献   

8.
The high mobility group proteins 1 and 2 (HMG1/2) and histone B4 are major components of chromatin within the nuclei assembled during the incubation of Xenopus sperm chromatin in Xenopus egg extract. To investigate their potential structural and functional roles, we have cloned and expressed Xenopus HMG1 and histone B4. Purified histone B4 and HMG1 form stable complexes with nucleosomes including Xenopus 5S DNA. Both proteins associate with linker DNA and stabilize it against digestion with micrococcal nuclease, in a similar manner to histone H1. However, neither histone B4 nor HMG1 influence the DNase I or hydroxyl radical digestion of DNA within the nucleosome core. We suggest that HMG1/2 and histone B4 have a shared structural role in organizing linker DNA in the nucleosome.  相似文献   

9.
The interaction between nonhistone chromosomal protein HMG1 and plasmid DNA was studied by optical and hydrodynamical methods. The recombinant protein HMG1 produced by yeast Pichia pastoris strain was used. We have shown that according to the CD spectra local conformational changes in DNA helix occur in the region of DNA-protein interaction. These changes are most significant at r < 3 (w/w). Both gel-shift assay and ultracentrifugation, as well as CD data, indicate that protein-protein interactions between HMG1 molecules play a major role in the formation of DNA-protein complexes. It is suggested that the protein C-terminus may affect HMG1-DNA binding not only by a direct interaction with DNA helix, but also by protein-protein interactions.  相似文献   

10.
The HMG domains of the chromosomal high mobility group proteins homologous to the vertebrate HMG1 and HMG2 proteins preferentially recognize distorted DNA structures. DNA binding also induces a substantial bend. Using fluorescence resonance energy transfer (FRET), we have determined the changes in the end-to-end distance consequent on the binding of selected insect counterparts of HMG1 to two DNA fragments, one of 18 bp containing a single dA(2) bulge and a second of 27 bp with two dA(2) bulges. The observed changes are consistent with overall bend angles for the complex of the single HMG domain with one bulge and of two domains with two bulges of approximately 90-100 degrees and approximately 180-200 degrees, respectively. The former value contrasts with an inferred value of 150 degrees reported by Heyduk et al. (1) for the bend induced by a single domain. We also observe that the induced bend angle is unaffected by the presence of the C-terminal acidic region. The DNA bend of approximately 95 degrees observed in the HMG domain complexes is similar in magnitude to that induced by the TATA-binding protein (80 degrees), each monomeric unit of the integration host factor (80 degrees), and the LEF-1 HMG domain (107 degrees). We suggest this value may represent a steric limitation on the extent of DNA bending induced by a single DNA-binding motif.  相似文献   

11.
The method of circular dichroism (CD) was used to compare DNA behavior during its interaction with linker histone H1 and with non-histone chromosomal protein HMG1 at different ionic strength and at different protein content in the system. The role of negatively charged C-terminal fragment of HMG1 was analyzed using recombinant protein HMG1-(A + B), which lacks the C terminal amino acid sequence. The psi-type CD spectra were common for DNA interaction with histone H1, but no spectra of this type were observed in HMG1-DNA systems even at high ionic strength. The CD spectrum of the truncated recombinant protein at high salt concentration somewhat resembled the psi-type spectrum. Two very intense positive bands were located near 215 nm and near 273 nm, and the whole CD spectrum was positive. The role of C-terminal tail of HMG1 in formation of the ordered DNA-protein complexes is discussed.  相似文献   

12.
Chemical cross-linking was used to study the interaction between non-histone high-mobility-group (HMG)1 and histone H5 in free solution. The presence of acidic C-terminal domain in HMG1 was shown to be a prerequisite for HMG1 binding to histone H5. The objective of this communication is to ascertain whether HMG1 could affect the conformation of DNA associated with a linker histone H5. Complexes of histone H5 with chicken erythrocyte DNA or an alternating purine-pyrimidine polynucleotide poly[d(A-T)] were prepared at different molar ratios H5/DNA. Changes in DNA conformation in the complexes with histone H5 or H5/HMG1 were monitored by circular dichroism (c.d.). Depending on the molar ratio H5/poly[d(A-T)], under conditions limiting the complex aggregation, three distinct types of c.d. spectra were observed. The addition of HMG1 to H5-DNA complexes reduced in all cases the histone H5-induced conformational changes in poly[d(A-T)]. The sensitivity of H5-poly[d(A-T)] complexes to HMG1 was inversely proportional to the amount of H5 in the complex. The effect of HMG1 was not observed upon removal of the acidic C-terminal domain of HMG1.  相似文献   

13.
14.
HMG 14 and protamine can be used to enhance intermolecular ligation of low concentrations of linear DNA. Adding HMG 14 (50 moles per mole DNA) caused 50% of blunt-ended DNA to form predominantly dimers, and all cohesive-ended DNA to form multimers (greater than 6-mer) in response to T4 ligase. Protamine was maximally effective at 40:1, producing mostly dimers and trimers. Adding higher concentrations of HMG 14 did not affect the ligation pattern of cohesive-ended DNA, while higher concentrations of protamine inhibit the formation of multimers. Phosphorylation of HMG 14 at Ser 20 by Ca(++)-phospholipid dependent protein kinase abolished the ability of HMG 14 to stimulate intermolecular ligation, but did not substantially interfere with intramolecular ligation, or the binding of HMG 14 to linear or circular DNA as assessed by gel mobility. Thus Ser 20, which is located in the amino terminal DNA-binding domain of HMG 14, appears to modulate DNA-DNA interactions.  相似文献   

15.
Cohen SM  Mikata Y  He Q  Lippard SJ 《Biochemistry》2000,39(38):11771-11776
HMG-domain proteins bind strongly to bent DNA structures, including cruciform and cisplatin-modified duplexes. Such protein-platinated DNA complexes, formed where the DNA is modified by the active cis but not the inactive trans isomer of diamminedichloroplatinum(II), are implicated in the cytotoxic mechanism of the drug. A series of oligonucleotide duplexes with deoxyguanosine nucleosides flanking a cis-[Pt(NH(3))(2)?d(GpG)-N7(1),-N7(2)?] cross-link have been synthesized. These probes were used to determine the flanking sequence dependence of the affinity of the individual HMG domains of HMG1 toward cisplatin-modified DNA. Nine related sequences, where N(1) and N(2) are not dG and GG is the 1,2-intrastrand cisplatin adduct in N(1)GGN(2), were previously investigated [Dunham, S. U., and Lippard, S. J. (1997) Biochemistry 36, 11428-11436]. Three of the seven remaining possible sequences for which N(1) and/or N(2) was dG were prepared here by using normal deoxyguanosine, but the rest, where N(1) is dG and N(2) is dA, dC, T, or dG, could not be isolated in pure form. These sequences were accessed by using the synthetic bases 7-deazaadenine and 7-deazaguanine, which lack the nucleophilic N7 atom in the purine ring. Deaza nucleotides accurately mimic the properties of the natural bases, allowing the interaction of the HMG-domain proteins with cisplatin-modified DNA to be examined. These experiments reveal that the flexibility of A.T versus G.C flanking base pairs, rather than base-specific contacts, determines HMG1domA protein selectivity. This conclusion was supported by use of mutant HMG1domA and HMG1domB proteins, which exhibit identical flanking sequence selectivity. The methods and results obtained here not only improve our understanding of how proteins might mediate cisplatin genotoxicity but also should apply more generally in the investigation of how other proteins interact with damaged DNA.  相似文献   

16.
Two lymphoid cell-specific proteins, RAG-1 and RAG-2, initiate V(D)J recombination by introducing DNA breaks at recombination signal sequences (RSSs). Although the RAG proteins themselves bind and cleave DNA substrates containing either a 12-RSS or a 23-RSS, DNA-bending proteins HMG-1 and HMG-2 are known to promote these processes, particularly with 23-RSS substrates. Using in-gel cleavage assays and DNA footprinting techniques, I analyzed the catalytic activity and protein-DNA contacts in discrete 12-RSS and 23-RSS complexes containing the RAG proteins and either HMG-1 or HMG-2. I found that both the cleavage activity and the pattern of protein-DNA contacts in RAG-HMG complexes assembled on 12-RSS substrates closely resembled those obtained from analogous 12-RSS complexes lacking HMG protein. In contrast, 23-RSS complexes containing both RAG proteins and either HMG-1 or HMG-2 exhibited enhanced cleavage activity and displayed an altered distribution of cleavage products compared to 23-RSS complexes containing only RAG-1 and RAG-2. Moreover, HMG-dependent heptamer contacts in 23-RSS complexes were observed. The protein-DNA contacts in RAG-RSS-HMG complexes assembled on 12-RSS or 23-RSS substrates were strikingly similar at comparable positions, suggesting that the RAG proteins mediate HMG-dependent heptamer contacts in 23-RSS complexes. Results of ethylation interference experiments suggest that the HMG protein is positioned 5' of the nonamer in 23-RSS complexes, interacting largely with the side of the duplex opposite the one contacting the RAG proteins. Thus, HMG protein plays the dual role of bringing critical elements of the 23-RSS heptamer into the same phase as the 12-RSS to promote RAG binding and assisting in the catalysis of 23-RSS cleavage.  相似文献   

17.
H Hamada  M Bustin 《Biochemistry》1985,24(6):1428-1433
The interaction of chromosomal proteins HMG 1 and 2 with various DNA structures has been examined with plasmid pPst-0.9, which contains DNA sequences that can form the Z-DNA conformation and palindromic sequences that can form cruciform structures. Direct binding and competition experiments with 32P-labeled plasmid indicated that proteins HMG 1 and 2 preferentially bind to supercoiled form I DNA as compared to double-stranded linear DNA. The preferential binding to form I is due to the presence of single-stranded regions in this DNA. The binding of HMG 1 and 2 to the form I plasmid results in inhibition of S1 nuclease digestion in a selective manner. The B-Z junction is preferentially protected as compared to the cruciform, which in turn is more protected than other minor S1-sensitive structures present in pPst-0.9. Our results indicate that the binding of HMG 1 and 2 proteins to DNA is not random in that HMG 1 and 2 can distinguish between various S1 nuclease sensitive sites in the plasmid. The existence of a hierarchy of DNA binding sites for these proteins suggests that they can selectively affect the structure of distinct regions in the genome.  相似文献   

18.
19.
The ROX1 gene of Saccharomyces cerevisiae encodes a protein required for the repression of genes expressed under anaerobic conditions. ROX1 belongs to a family of DNA binding proteins which contain the high mobility group motif (HMG domain). To ascertain whether the HMG domain of ROX1 is required for specific DNA binding we synthesized a series of ROX1 protein derivatives, either in vitro or in Escherichia coli as fusions to glutathione S-transferase (GST) protein, and tested them for their ability to bind to DNA. Both ROX1 proteins that were synthesized in vitro and GST-ROX1 fusion proteins containing the intact HMG domain were able to bind to specific target DNA sequences. In contrast, ROX1 proteins which contained deletions within the HMG domain were no longer capable of binding to DNA. The oligomerization of ROX1 in vitro was demonstrated using affinity-purified GST-ROXI protein and ROX1 labelled with [35S]methionine. Using various ROX1 protein derivatives we were able to demonstrate that the domain required for ROX1-ROX1 interaction resides within the N-terminal 100 amino acids which constitute the HMG domain. Therefore, the HMG domain is required for both DNA binding activity and oligomerization of ROX1.  相似文献   

20.
Jamieson ER  Lippard SJ 《Biochemistry》2000,39(29):8426-8438
High-mobility group (HMG) domain proteins bind specifically to the major DNA adducts formed by the anticancer drug cisplatin and can modulate the biological response to this inorganic compound. Stopped-flow fluorescence studies were performed to investigate the kinetics of formation and dissociation of complexes between HMG-domain proteins and a series of 16-mer oligonucleotide probes containing both a 1,2-intrastrand d(GpG) cisplatin cross-link and a fluorescein-modified deoxyuridine residue. Rate constants, activation parameters, and dissociation constants were determined for complexes formed by HMG1 domain A and the platinated DNA probes. The sequence context of the cisplatin adduct modulates the value of the associative rate constant for HMG1 domain A by a factor of 2-4, contributing significantly to differences in binding affinity. The rates of association or dissociation of the protein-DNA complex were similar for a 71 bp platinated DNA analogue. Additional kinetic studies performed with HMG1 domain B, an F37A domain A mutant, and the full-length HMG1 protein highlight differences in the binding properties of the HMG domains. The stopped-flow studies demonstrate the utility of the fluorescein-dU probe in studying protein-DNA complexes. The kinetic data will assist in determining what role these proteins might play in the cisplatin mechanism of action.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号