首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ethyl beta-carboline-3-carboxylate has recently been isolated from human urine and it was proposed that derivatives of this compound might be related to an endogenous ligand for benzodiazepine receptors. In the present study we investigated high-affinity binding of [3H]propyl beta-carboline-3-carboxylate ([3H]PrCC) to rat brain membranes. [3H]PrCC binds specifically and with high affinity (half-maximal binding at ca. 1nM) to rat brain membranes. The regional and subcellular distributions of specific [3H]PrCC binding are similar, but not identical, to the distributions of [3H]flunitrazepam or [3H]-diazepam binding. The total numbers of binding sites labelled by [3H]PrCC and [3H]flunitrazepam in rat cerebellum are closely similar, and both ligands bind to cerebellar membranes in a mutually exclusive way. The pharmacological selectivity of [3H]PrCC and [3H]diazepam binding is almost identical. Binding of [3H]PrCC like binding of [3H]diazepam, can be increased in vitro by muscimol, GABA and SQ 20.009. Although subtle differences in binding characteristics were observed, these results indicate that [3H]PrCC and benzodiazepines bind to a common recognition site on benzodiazepine receptors.  相似文献   

2.
A1 adenosine receptors were labeled in rat brain sections with the antagonist [3H]8-cyclopentyl-1,3-dipropylxanthine ([3H]DPCPX) and visualized at the light microscopic level using autoradiography. The specific binding of [3H]DPCPX to the sections showed the pharmacological characteristics of A1 adenosine receptors and was accompanied by very low levels of nonspecific binding. Whereas GTP had no significant effect on [3H]DPCPX binding to rat brain membranes, the addition of 100 microM GTP increased the apparent affinity of [3H]DPCPX to tissue sections fivefold (from 1.83 to 0.35 nM), enhancing it to the affinity measured in membranes. However, GTP altered neither the binding capacity nor the distribution of binding sites in tissue sections. It is suggested that a competitive antagonism with endogenous adenosine explains the lower affinity of [3H]DPCPX in the absence of GTP. The autoradiographic pattern of [3H]DPCPX binding was characteristic for A1 adenosine receptors. Distinct labeling of the different layers of the cerebellar cortex was shown by photomicrographs generated with the coverslip technique. In addition, several fiber tracts were found to be labeled. The high selectivity for A1 adenosine receptors and low nonspecific binding of [3H]DPCPX, the ability to produce high-resolution autoradiograms, together with the fact that the effects of endogenous adenosine can be eliminated by the addition of GTP make [3H]DPCPX a very useful tool in the autoradiographic study of A1 adenosine receptors.  相似文献   

3.
The characteristics of [3H]ouabain binding were examined in various areas of rat brain. In the striatum, Scatchard analysis revealed a single class of "high-affinity" binding sites with an apparent binding affinity (KD) of 10.4 +/- 0.9 nM and an estimated binding capacity (Bmax) of 7.6 +/- 1.9 pmol/mg protein. Similar monophasic Scatchard plots were found in the brainstem, cerebellum, hypothalamus, and frontal cerebral cortex. [3H]Ouabain binding to rat brain was sodium- and ATP-dependent and strongly inhibited by potassium. Proscillariden A was the most potent cardiac glycoside tested in inhibiting specific [3H]ouabain binding to brain membranes, and the rank order of inhibitory potencies for a series of cardiac glycosides was similar to that previously reported for inhibition of heart Na,K-ATPase. To assess whether the high-affinity binding sites for [3H]ouabain were localized to neuronal or nonneuronal membranes, the effect of discrete kainic acid lesions on striatal [3H]ouabain binding was examined. Kainic acid lesions of the striatum reduced [3H]ouabain binding to striatal homogenates by 79.6 +/- 1.6%. This suggests that the "high-affinity" [3H]ouabain binding sites measured in our experiments are localized to neuronal elements. Thus, the high-affinity binding of [3H]ouabain to brain membranes may selectively label a neuronal form or conformation of Na,K-ATPase.  相似文献   

4.
—The specific binding of [3H]kainic acid to synaptic membranes from rat brain was saturable with a dissociation constant of about 60 nm . The apparent maximal number of binding sites was about 1 pmol/mg protein. The most effective displacer of specific [3H]kainic acid binding was quisqualic acid, a powerful excitant which is structurally similar to l -glutamate. However, quisqualic acid was one-third as potent a displacer as kainic acid itself. l -Glutamate was the next potent in displacing [3H]kainic acid binding, but also was less effective (1/25) than kainic acid itself. All other compounds including suspected neurotransmitters were at least an order of magnitude lower in potency compared to l -glutamate. When various tissues and brain regions were tested for specific [3H]kainic acid binding, we found the specified binding was localized to grey matter in the brain. In studies of subcellular fractionation of the brain, we found that crude synaptosomal membrane preparations were most enriched in specific [3H]kainic acid binding. Specific [3H]kainic acid binding in various regions of the rat brain varied 5- to 6-fold.  相似文献   

5.
Previous studies have indicated that kainate and AMPA receptors are altered in cerebral cortex of dogs with chronic hepatic encephalopathy (HE). To ascertain whether receptors in dog cerebellum are similarly altered in HE [3H]kainate and [3H]-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) binding assays were performed on crude synaptosomal membranes prepared from cerebellar tissue from dogs with congenital portosystemic encephalopathy (PSE) and control dogs. There was no pathophysiologically relevant difference in the affinity or density of kainate or AMPA binding sites in PSE cerebellar tissue compared with control dogs. The failure to demonstrate alterations in these binding parameters in cerebellar tissue was expected as clinical signs of HE reflect cortical rather than cerebellar dysfunction.  相似文献   

6.
Abstract: The synthesis of (2 S ,3 S ,4 S )-4-[1-(4-azidobenzamidomethyl)ethenyl]-2-carboxy-3-pyrrolidineacetic acid (ABCPA) is described. This novel kainic acid analogue, bearing a photolabile functionality on the isopropenyl side chain, was proven to be a good inhibitor of [3H]CNQX and [3H]kainic acid binding on chick cerebellar membranes. [3H]ABCPA was photoaffinity cross-linked on the membrane fraction of chick cerebellum. Electrophoretic analysis with sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed two major radioactive bands with apparent molecular masses of 45 and 33.5 kDa. [3H]ABCPA incorporation in both bands was completely blocked by 2 m M CNQX. When photoaffinity labeling was performed in the presence of 2 m M kainic acid, incorporation of [3H]ABCPA was blocked by ∼70% in the 45-kDa band and by 18% in the 33.5-kDa band. Incorporation of radioactivity in both bands was blocked by ∼30% with 10 m M glutamate.  相似文献   

7.
The investigation of [3H] PCP and [3H] TCP binding properties to rat cerebrum and cerebellum resulted in the demonstration of multiple binding sites for the two drugs. In the two tissue preparations PCP had a lower affinity than TCP. In membranes from the cerebrum an equal number of high affinity binding sites were present for [3H] PCP and [3H] TCP. However, low affinity binding sites were two times more numerous for [3H] PCP than for [3H] TCP. In the cerebellum, the number of high and low affinity sites labeled by the two radioligands was identical, but the number of high affinity sites was about 7 fold lower than in the cerebrum. Taken together these results may indicate that in the cerebrum [3H] PCP labels other sites than NMDA/PCP receptor(s), maybe sigma receptors and/or the dopamine uptake complex. In human cerebral cortex samples [3H] TCP also bound to two different sites. The number of high and low affinity sites were 12 and 3 times, respectively, less abundant than in the rat cerebrum. Low affinity sites were of higher affinity (5 times) than corresponding sites in the rat brain. In the human cerebellum [3H] TCP binding parameters were identical to those measured in the same region in the rat.  相似文献   

8.
The properties of muscimol, beta-carboline (BC), and benzodiazepine (BZD) binding to crude synaptic membranes were studied in the spinal cord and cerebellum of rats. In cerebellar membranes, the density of high-affinity [3H]muscimol and [3H]6,7-dimethoxy-4-ethyl-beta-carboline ([3H]BCCM) binding sites is almost identical to that of [3H]flunitrazepam ([3H]FLU) or [3H]flumazenil (Ro 15-1788; ethyl-8-fluoro-5,6-dihydro-5-methyl-6-oxo-4H-imidazo[1,5-a] [1-4]benzodiazepine-3-carboxylate). In contrast to the cerebellum, the number of muscimol and BC binding sites in rat spinal cord is approximately 20-25% of the number of FLU or flumazenil binding sites. Moreover, in spinal cord membranes, BC recognition site ligands displace [3H]-flumazenil bound to those sites, with low affinity and a Hill slope significantly less than 1; the potency of the different BCs in displacing [3H]flumazenil is 20-50-fold lower in the spinal cord than in the cerebellum. [3H]Flumazenil is not displaced from spinal cord membranes by the peripheral BZD ligand Ro 5-4864 (4'-chlorodiazepam), whereas it is displaced with low affinity and a Hill slope of less than 1 (nH = 0.4) by CL 218,872 (3-methyl-6-(3-trifluoromethylphenyl)-1,2,4-triazolol[4,3-b] pyridazine). These data suggest that a large number of BZD binding sites in spinal cord (approximately 80%) are of the central-type, BZD2 subclass, whereas the BZD binding sites in cerebellum are predominantly of the central-type, BZD1 subclass.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
We describe a rapid ion-exchange syringe assay for [3H]inositol 1,4,5-trisphosphate binding to detergent-solubilized receptors. In extracts of rat cerebellar membranes, the assay resolves rapidly dissociating ligand complexes, detecting two to three times higher receptor abundance than conventional gel filtration spun column assays, and provides evidence for two classes of IP3-binding sites, representing 0.5-1.0% of total cerebellar membrane protein. Receptors purified from bovine and rat cerebellum exhibit a single class of high-affinity sites, with equilibrium dissociation constants (Kd = 4-8 nM) reflecting 20 to 25-fold higher affinity than reported in studies with spun-column methods.  相似文献   

10.
Benyhe S  Farkas J  Tóth G  Wollemann M 《Life sciences》1999,64(14):1189-1196
[3H]Met-enkephalin-Arg6-Phe7 (MERF) has been shown to label opioid (kappa2 and delta) and sigma2 sites in rat and frog brain membrane preparations, and no specific binding to kappa1 opioid receptors could be established (refs. 6 and 8). In this study the binding was examined in rat cerebellar membranes which are relatively rich in kappa2-sites, and in guinea pig cerebellar preparations where kappa1 opioid receptors are almost exclusively present. In accordance with our previous results, [3H]MERF binding could not be displaced in guinea pig cerebellar membranes neither with U-69,593 nor with naloxone or levorphanol suggesting no interaction with opioid sites, nevertheless a Kd of 2.8 nM was calculated in cold saturation experiments. In rat cerebellar membrane fractions about the half of the specific [3H]MERF binding sites was inhibited by opiate alkaloids such as naloxone, ethylketocyclazocine, or bremazocine. This portion of the heptapeptide binding sites was stereoselective as demonstrated by the difference in the affinities of the enantiomeric compounds levorphanol and dextrorphan, therefore it would represent an opioid site. In both tissues (-)N-allyl-normetazocine (SKF-10,047), which is also considered as sigma2 ligand, displayed the highest affinities. Among opioid peptides beta-endorphin and dynorphin(1-13) showed the highest potencies, displacing [3H]MERF also from its non-opioid sites. It was concluded therefore that [3H]MERF does not bind to kappa1 sites, and besides kappa2-opioid sites substantial binding to peptide preferring non-opioid sites, and/or sigma2 receptors also occurs.  相似文献   

11.
Distribution of GABA Receptors in the Rat Cerebellum   总被引:4,自引:4,他引:0  
The distribution of GABA receptors in the cerebellum is not homogeneous. In comparison with detergent-treated membranes from the whole tissue the number of [3H]muscimol binding sites per mg protein (Bmax) is about doubled in preparations enriched in large fragments of the cerebellar glomeruli, and it is about one-third in the dissected deep nuclei. On the other hand, the apparent affinity (Kd) is similar in the different preparations. Comparison of the results with earlier studies suggests a heterogeneity in cerebellar GABA receptors and/or their control.  相似文献   

12.
1-[2-(4-Aminophenyl)ethyl]-4-(3-trifluoromethylphenyl)piperazine (PAPP) inhibits [3H]5-hydroxytryptamine (5-HT, serotonin) binding to 5-HT1A and 5-HT1B sites in rat brain with apparent equilibrium dissociation constants (KD) of 2.9 and 328 nM, respectively. [3H]PAPP was synthesized, its binding to central serotonin receptors was examined, and its potential usefulness as a 5-HT1A receptor radioligand was evaluated. With either 10 microM 5-HT or 1 microM 8-hydroxy-2-(di-n-propylamino)tetralin to define nonspecific binding, [3H]PAPP bound to a single class of sites in rat cortical membranes with a KD of 1.6 nM and a maximal binding density (Bmax) of 162 fmol/mg of protein. d-Lysergic acid diethylamide and 5-HT, two nonselective inhibitors of [3H]5-HT binding, displaced 1 nM [3H]PAPP with a potency that matched their affinity for 5-HT1 receptors. Spiperone and 8-hydroxy-2-(di-n-propylamino)tetralin, two compounds that discriminate [3H]5-HT binding to 5-HT1A and 5-HT1B sites, inhibited [3H]PAPP binding in accordance with their much higher affinities for the 5-HT1A receptor subtype. Furthermore, the ability of N-(m-trifluoromethylphenyl)piperazine and ketanserin to inhibit [3H]PAPP binding reflected their low affinities for the 5-HT1A receptor. Several nonserotonergic compounds were also found to be relatively poor displacers of [3H]PAPP binding. The regional distribution of serotonin-sensitive [3H]PAPP sites correlated with the densities of 5-HT1A receptors in the cortex, hippocampus, corpus striatum, and cerebellum of the rat. These results indicate that [3H]PAPP binds selectively and with high affinity to 5-HT1A receptor sites in rat brain.  相似文献   

13.
The development of the specific binding sites for L-[3H]glutamic acid (KD = 370 nM) and for [3H]kainic acid (KD = 39 nM) was studied in the rat cerebellum. Specific binding at both sites remains low during the first week after birth but increases markedly during the second and third weeks after birth, when glutamatergic parallel fiber synaptogenesis occurs. The development of the kainate site lags behind that of the glutamate site, indicating their autonomy.  相似文献   

14.
The synthesis and characterization of a novel opioid receptor photoaffinity probe [3H]naltrexyl urea phenylazido derivative ([3H]NUPA) is described. In the absence of light, [3H]NUPA binds with high affinity in a reversible and saturable manner to rat brain and guinea pig cerebellum membranes. Dissociation constants and binding capacities (Scatchard plots) are 0.11 nM and 250 fmol/mg of protein for rat brain and 0.24 nM and 135 fmol/mg of protein for guinea pig cerebellum. Competition experiments indicate that this ligand interacts with high affinity at both mu- and kappa-opioid binding sites while exhibiting low affinity at delta sites (Ki = 21 nM). On irradiation, [3H]NUPA incorporates irreversibly into rat brain and guinea pig cerebellum membranes. SDS gel electrophoresis of rat brain membranes reveals specific photolabeling of a 67-kDa molecular mass band. Conversely, a major component of 58 kDa and a minor component of 36 kDa are obtained from [3H]NUPA-labeled guinea pig cerebellum membranes. Different photolabeling patterns are obtained in rat brain (mu/delta/kappa, 4/5/1) and guinea pig cerebellum (mu+delta/kappa, 1,5/8,5) membranes in the presence of selective opioid ligands indicating labeling of mu and kappa sites, respectively. Thus, [3H]NUPA behaves as an efficient photoaffinity probe of mu- and kappa-opioid receptors, which are probably represented by distinct glycoproteins of 67 and 58 kDa, respectively.  相似文献   

15.
Specific binding ofl-[3H]glutamate ([3H]Glu) andl-[3H]asparate ([3H]Asp) to cerebellar membranes represented a time-, temperature- pH- and protein-dependent interaction which was both saturable and reversible. Binding sites for both radioligands appeared maximally enriched in synaptosomal fractions isolated by gradient centrifugation. Kinetically derived dissociation constant (K off/K on=K d) for [3H]Glu binding to this fraction indicated high-affinity (443 nM). Competition experiments employing analogs of excitatory amino acids, including new antagonists, helped identify binding sites for [3H]Glu and [3H]Asp as receptors with differential pharmacological, specificities. Membrane freezing reduced numbers of both receptor types, but binding activity could be recovered partially by incubation at 37°C. Glu receptors exhibited a pronounced deleterious sensitivity to thiol modifying reagents andl-Glu (50–1000 M) provided protection, against these compounds during co-incubation with cerebellar membranes. It is suggested that cold storage may induce partially reversible receptor inactivation by promoting sulfhydryl group/bond modification. Rat cerebellar glutamatergic function (endogenous Glu content, Glu uptake and receptor sites) exhibited an apparent ontogenetic peak between days 8–12 postpartum with a plateauing profile from day 30 to adulthood. The accelerated development (days 8–12) coincides with the first demonstrable Glu release and kainic acid neurotoxicity, as described previously.  相似文献   

16.
The specific binding of [3H]-kainic acid to membrane fragments of rat striatum was examined. The specific binding was found to be saturable and of high affinity. The dissociation constant was about 71 nM, while the apparent maximal number of receptor sites was 254 fmoles/mg protein. [3H]-Kainic acid binding was effectively competed by both unlabeled kainic acid and glutamate, Lesions of the striatum by stereotaxic injection of 5 nmoles of kainic acid reduced the density of [3H]-kainic acid binding sites by half, without affecting their affinity. Lesions of the cortico-striatal afferents, however, did not affect the binding of [3H]-kainic acid, although sodium-dependent glutamate uptake was reduced by 30%. It is concluded that [3H]-kainic acid binds to a population of receptors localized on neurons of the caudate-putamen.  相似文献   

17.
This study examined (+)-[3H]5-methyl-10,11-dihydro-5H-dibenzo[a,d] cyclohepten-5,10-imine maleate [( 3H]MK801) binding to the N-methyl-D-aspartate (NMDA) receptor in membranes prepared from six regions of rat brain. Highest levels of binding were found in hippocampus and cortex, whereas much lower densities were found in brainstem and cerebellum. NMDA receptors in cerebellum exhibited a significantly lower affinity for [3H]MK801 than cortical NMDA receptors. To determine whether forebrain and hindbrain NMDA receptors were distinct, the actions of glutamate, NMDA, ibotenate, quinolinate, glycine, and spermine were investigated. These agents increased [3H]MK801 binding in all brain regions examined. However, agonists were uniformly less efficacious in hindbrain compared to forebrain regions. NMDA mimetics and spermine were less potent in cerebellum compared to cortex whereas glycine was equipotent. Antagonists that act at the various modulatory sites on the NMDA receptor were also examined. DL-Amino-phosphonopentanoic acid and 7-chlorokynurenate were approximately equipotent in cortex and cerebellum. However, antagonists that are believed to act inside the NMDA-operated ion channel, including Mg2+ and phencyclidine, were approximately threefold less potent in cerebellum. The diminished regulation of [3H]MK801 binding by glutamate and glycine in the cerebellum was associated with a smaller effect of these agonists on the dissociation of [3H]MK801 from its binding site. The levels of glutamate, aspartate, glycine, serine, and glutamine in the membrane preparations were determined. However, variations in the levels of endogenous amino acids were not sufficient to account for the regional differences in [3H]MK801 binding. These results do not support the hypothesis that a distinct NMDA receptor exists in hindbrian regions of the rat CNS.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Distribution of the Glucose Transporter in the Mammalian Brain   总被引:8,自引:4,他引:4  
We used [3H]cytochalasin B as a specific ligand to study the glucose transporter of the following tissue preparations: (a) microvessels derived from the cerebral cortex and cerebellum of the rat and pig, (b) particulate fractions of the cerebral cortex and cerebellum of the rat and pig, (c) lateral, third, and fourth ventricular choroid plexus of the pig, and (d) synaptosomes from the pig cerebral cortex. Specific, D-glucose-displaceable binding of [3H]cytochalasin B was present in all the preparations studied. This binding was saturable and displayed the kinetics of a single class of binding sites, similar to the glucose transporter found in other mammalian tissues. The density of the glucose transporter was much higher in cerebral and cerebellar microvessels and choroid plexus than either in crude particulate fractions of the cerebrum and cerebellum or in cerebral synaptosomes. These findings agree with the physiologic function of brain microvessels that transport glucose, not only for their own use, but also for the much greater mass of the entire brain. In the pig, the density of the glucose transporter in cerebral microvessels was significantly higher than in cerebellar microvessels. Irreversible photoaffinity labeling of the glucose transporter of synaptosomal membranes with [3H]cytochalasin B followed by solubilization and polyacrylamide gel electrophoresis demonstrated a single region of radioactivity that corresponded to a molecular mass of 60,000-64,000 daltons.  相似文献   

19.
Abstract— The treatment of cerebellar membranes of rat brain with a low concentration of Triton X-100 followed by sufficient washing results in an increase of the Na+-independent binding of [3H]GABA and a total loss of the Na +-dependent binding of [3H]GABA. The Na+-independent binding of [3H]GABA was more abundant in membranes of cerebellum than in membranes of other rat brain regions and mainly localized in the synaptic membrane fraction of a cerebellar homogenate. In the Triton-treated membranes, the Na+-independent binding of [3H]GABA was a saturable process, which could be resolved into two components, a high and a low affinity component with dissociation constants of 4.5 and 30 nm , respectively. The neurophysiological agonists, muscimol, GABA, and imidazole acetic acid, and the antagonist, bicuculline, inhibited the high affinity Na+-independent binding of [3H]GABA by 50% at 0.003, 0.012, 0.3 and 10 μm respectively. These data suggest that the Na+-independent binding of [3H]GABA in the Triton-treated cerebellar membranes represents the synaptic receptors of GABA. It is emphasized that extensive washing of the membranes after a Triton treatment is necessary in order to detect the high affinity Na+-independent binding of [3H]GABA.  相似文献   

20.
Mesulergine displays approximately 50-fold higher affinity for the rat 5-HT2 receptor than for the human receptor. Comparison of the deduced amino acid sequences of cDNA clones encoding the human and rat 5-HT2 receptors reveals only 3 amino acid differences in their transmembrane domains. Only one of these differences (Ser----Ala at position 242 of TM5) is near to regions implicated in ligand binding by G protein-coupled receptors. We investigated the effect of mutating Ser242 of the human 5-HT2 receptor to an Ala residue as is found in the rat clone. Both [3H]mesulergine binding and mesulergine competition of [3H]ketanserin binding showed high affinity for rat membranes and the mutant human clone but low affinity for the native human clone, in agreement with previous studies of human postmortem tissue. These studies suggest that a single naturally occurring amino acid change between the human and the rat 5-HT2 receptors makes a major contribution to their pharmacological differences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号