首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Viral myocarditis is an important cause of human morbidity and mortality for which reliable and effective therapy is lacking. Using reovirus strain 8B infection of neonatal mice, a well-characterized experimental model of direct virus-induced myocarditis, we now demonstrate that myocardial injury results from apoptosis. Proteases play a critical role as effectors of apoptosis. The activity of the cysteine protease calpain increases in reovirus-infected myocardiocytes and can be inhibited by the dipeptide alpha-ketoamide calpain inhibitor Z-Leu-aminobutyric acid-CONH(CH(2))3-morpholine (CX295). Treatment of reovirus-infected neonatal mice with CX295 protects them against reovirus myocarditis as documented by (i) a dramatic reduction in histopathologic evidence of myocardial injury, (ii) complete inhibition of apoptotic myocardial cell death as identified by terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling, (iii) a reduction in serum creatine phosphokinase, and (iv) improved weight gain. These findings are the first evidence for the importance of a calpain-associated pathway of apoptotic cell death in viral disease. Inhibition of apoptotic signaling pathways may be an effective strategy for the treatment of viral disease in general and viral myocarditis in particular.  相似文献   

2.
Inhibition of the multifunctional Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) or depletion of sarcoplasmic reticulum (SR) Ca(2+) stores protects against apoptosis from excessive isoproterenol (Iso) stimulation in cultured ventricular myocytes, suggesting that CaMKII inhibition could be a novel approach to reducing cell death in conditions of increased adrenergic tone, such as myocardial infarction (MI), in vivo. We used mice with genetic myocardial CaMKII inhibition due to transgenic expression of a highly specific CaMKII inhibitory peptide (AC3-I) to test whether CaMKII was important for apoptosis in vivo. A second line of mice expressed a scrambled, inactive form of AC3-I (AC3-C). AC3-C and wild-type (WT) littermates were used as controls. AC3-I mice have reduced SR Ca(2+) content and are resistant to Iso- and MI-induced apoptosis compared with AC3-C and WT mice. Phospholamban (PLN) is a target for modulation of SR Ca(2+) content by CaMKII. PLN(-/-) mice have increased susceptibility to Iso-induced apoptosis. Verapamil pretreatment prevented Iso-induced apoptosis in PLN(-/-) mice, indicating the involvement of a Ca(2+)-dependent pathway. AC3-I and AC3-C mice were bred into a PLN(-/-) background. Loss of PLN increased and equalized SR Ca(2+) content in AC3-I, AC3-C, and WT mice and abolished the resistance to apoptosis in AC3-I mice after MI. There was a trend (P = 0.07) for increased Iso-induced apoptosis in AC3-I mice lacking PLN compared with AC3-I mice with PLN. These findings indicate CaMKII is proapoptotic in vivo and suggest that regulation of SR Ca(2+) content by PLN contributes to the antiapoptotic mechanism of CaMKII inhibition.  相似文献   

3.
Soluble epoxide hydrolase (sEH) metabolizes epoxyeicosatrienoic acids (EETs) to dihydroxyeicosatrienoic acids. EETs are formed from arachidonic acid during myocardial ischemia and play a protective role against ischemic cell death. Deletion of sEH has been shown to be protective against myocardial ischemia in the isolated heart preparation. We tested the hypothesis that sEH inactivation by targeted gene deletion or pharmacological inhibition reduces infarct size (I) after regional myocardial ischemia-reperfusion injury in vivo. Male C57BL\6J wild-type or sEH knockout mice were subjected to 40 min of left coronary artery (LCA) occlusion and 2 h of reperfusion. Wild-type mice were injected intraperitoneally with 12-(3-adamantan-1-yl-ureido)-dodecanoic acid butyl ester (AUDA-BE), a sEH inhibitor, 30 min before LCA occlusion or during ischemia 10 min before reperfusion. 14,15-EET, the main substrate for sEH, was administered intravenously 15 min before LCA occlusion or during ischemia 5 min before reperfusion. The EET antagonist 14,15-epoxyeicosa-5(Z)-enoic acid (EEZE) was given intravenously 15 min before reperfusion. Area at risk (AAR) and I were assessed using fluorescent microspheres and triphenyltetrazolium chloride, and I was expressed as I/AAR. I was significantly reduced in animals treated with AUDA-BE or 14,15-EET, independent of the time of administration. The cardioprotective effect of AUDA-BE was abolished by the EET antagonist 14,15-EEZE. Immunohistochemistry revealed abundant sEH protein expression in left ventricular tissue. Strategies to increase 14,15-EET, including sEH inactivation, may represent a novel therapeutic approach for cardioprotection against myocardial ischemia-reperfusion injury.  相似文献   

4.
Li HX  Han SY  Ma X  Zhang K  Wang L  Ma ZZ  Tu PF 《Phytomedicine》2012,19(6):477-483
Steamed root of Panax ginseng C.A. Mayer, known as "red ginseng", differs from other ginseng preparations in terms of its saponin components and content, as some partly deglycosylated saponins are produced as artifacts during the steaming process. However, whether saponins derived from red ginseng (SRG) can have a protective effect on cardiomyocytes remains unknown. The present study aimed to explore the effect of SRG on myocardial ischemia in vitro and in vivo. MTT assays revealed that SRG pretreatment significantly increased the viability of cardiomyocytes injured by Na(2)S(2)O(4) hypoxia in vitro. This effect was almost completely abolished by glibenclamide, a blocker of the ATP-sensitive potassium channel, but the cardioprotective activity of SRG was not influenced by the phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002. SRG also significantly reduced the Na(2)S(2)O(4)-induced increase in intracellular calcium, as shown by Fluo-3/AM probes with flow cytometry. Adult rat heart ischemia, which was induced by ligation of the left anterior descending coronary artery, was employed for the in vivo analysis. SRG pretreatment reduced infarct size and resulted in a higher left ventricle (LV) developed pressure, LV (+)dP/dt(max) and LV systolic pressure and lower LV (-)dP/dt(max) and LV end diastolic pressure after 24h of ischemia. Moreover, SRG significantly reduced the level of cardiac Troponin I (cTnI) in the serum, which suggests that cTnI, a protein component of the troponin regulatory complex involved in cardiac contractility, contributes to the SRG-mediated recovery of cardiac systolic function. In conclusion, this study is the first to provide evidence and a mechanistic analysis of the cardioprotective effects of SRG. SRG significantly attenuated myocardial ischemic injury by improving cardiac systole function, partly by reducing cTnI secretion and improving cardiac diastolic function. Also, SRG attenuated the Ca(2+) overload in cardiomyocytes and modulated the K(ATP), but not PI3K, signaling pathway; taken together, these mechanisms synergistically reduced infarct size.  相似文献   

5.
6.
The role of the proapototic Bax gene in ischemia-reperfusion (I/R) injury was studied in three groups of mice: homozygotic knockout mice lacking the Bax gene (Bax(-/-)), heterozygotic mice (Bax(+/-)), and wild-type mice (Bax(+/+)). Isolated hearts were subjected to ischemia (30 min, 37 degrees C) and then to 120 min of reperfusion. The left ventricular developed force of Bax-deficient vs. Bax(+/+) hearts at stabilization and at 120 min of reperfusion was 1,411 +/- 177 vs. 1,161 +/- 137 mg and 485 +/- 69 vs. 306 +/- 68 mg, respectively. Superior cardiac function of Bax(-/-) hearts after I/R was accompanied by a decrease in creatine kinase release, caspase 3 activity, irreversible ischemic injury, and the number of terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling-positive cardiomyocytes. Electron microscopic evaluation revealed reduced damage to mitochondria and the nuclear chromatin structure in Bax-deficient mice. In the Bax(+/-) hearts, the damage markers were moderate. The superior tolerance of Bax knockout hearts to I/R injury recommends this gene as a potential target for therapeutic intervention in patients with severe and intractable myocardial ischemia.  相似文献   

7.
8.
BackgroundChromium (Cr) is a naturally-occurring element that is used in various fields of industry. Humans may be exposed to hexavalent chromium [Cr(VI)], which is one of the stable valence states of the chromium through contaminated soil, air, and water. Exposure to Cr(VI) through contaminated drinking water, soil and air causes various cancers and also fertility problems in animals and humans. Quercetin (QCT), a common flavonoid compound, has numerous biological effects as an antioxidant and free radical scavenger, but its function and mechanisms in reproductive processes in various species remain unclear. This study aims to determine the chromium effects on mice oocyte quality and the ameliorative effect of QCT in both in vitro and in vivo experimental models.MethodsFor the in vitro experiment, oocytes were collected and divided into the control, sham, QCT-treated, Cr(VI) (potassium dichromate), and treatment [Cr(VI)+QCT] groups. Collected oocytes were cultured in maturation medium with or without 10 µM quercetin and 10 µM Cr(VI) for 14 h based on the defined experimental design. For the in vivo experiment, the mice were randomly divided into the control, sham, QCT-treated, Cr(VI), and Cr(VI) + QCT groups. Control and sham mice received regular drinking water and diet. Cr(VI) group received Cr(VI) (50 ppm in drinking water) and Cr(VI) + QCT group received 50 ppm Cr(VI) with QCT (20 mg/kg body wt, through i.p) for a period of 21 days and then oocytes were collected and cultured for 14 h for in vitro maturation. For both experiments, at the end of the culture period, we examined the ameliorative effect of QCT on oocyte maturation, spindle formation, ROS production, mitochondrial function, and apoptosis.ResultsOur in vitro and in vivo results showed that Cr(VI) disrupt the oocyte maturation and spindle formation (P < 0.001). Furthermore, we found that exposure to Cr(VI) significantly increased ROS levels and decreased mitochondrial membrane potential (P < 0.001). In addition, exposure to Cr(VI) induced early apoptosis and downregulated the Bcl-2 mRNA expression and upregulated the Caspase-3 and Bax mRNAs expression (P < 0.01). Finally, quercetin significantly restored the detrimental effects of Cr(VI).ConclusionThe results indicated that quercetin protects the oocytes against Cr(VI) toxicity through the suppression of oxidative stress and apoptosis. The conclusions drawn from our study's findings suggest that quercetin might be useful agent for oocyte maturation in case of possible exposure to toxic substances such as chromium.  相似文献   

9.
HBOC-201 (Biopure; Cambridge, MA) is a glutaraldehyde-polymerized bovine hemoglobin (Hb) solution that is stroma free, has lower viscosity than blood, and promotes O(2) unloading. We investigated the effects of HBOC-201 in a canine model of myocardial ischemia-reperfusion injury. Dogs were anesthetized and subjected to 90 min of regional myocardial ischemia and 270 min of reperfusion. HBOC-201 or 0.9% saline vehicle equivalent to 10% total blood volume was infused 30 min before myocardial ischemia. Hemodynamic data and peripheral blood samples were taken at baseline, 1 h of myocardial ischemia, and 1, 2, and 4 h of reperfusion. At 270 min of reperfusion, the area at risk (AAR) per left ventricle and the area of infarction (Inf) per AAR were determined. The myocardial AARs in the two study groups were similar. In addition, myocardial blood flow (as measured by radioactive microspheres) in the ischemic zone was similar between the vehicle and HBOC-201 groups. HBOC-201-infused dogs demonstrated a significant (P < 0.01) 56% reduction in Inf/AAR. Analysis of blood samples taken at 4 h of reperfusion showed a significant (P < 0.05) reduction in creatine kinase MB isoform for the HBOC-201 group. Histological analysis of the myocardium demonstrated significant (P < 0.01) reductions in neutrophil infiltration in the HBOC-201 group. These data indicate that treatment with HBOC-201 before myocardial ischemia-reperfusion reduces the extent of myocardial inflammation and ischemia-reperfusion injury in the canine myocardium.  相似文献   

10.
Carbon monoxide (CO) is believed to mediate many of the cytoprotective effects attributed to the activation of heme oxygenase (HO-1), the enzyme responsible for CO production. Recently, the study of CO-releasing molecules (CO-RMs) has provided a new approach for the delivery of CO. In the present study, we examined whether the cardioprotective properties of CO-RM2 in isolated rat hearts subjected to an ischemia-reperfusion (I/R) sequence were associated with the presence of CO. In addition, the antioxidant properties of CO-RM2 were evaluated. In hearts pretreated with CO-RM2, the improvement in contractile function at the end of the reperfusion period after 20 min of global total ischemia was significantly greater than in controls. These beneficial effects were accompanied by a reduction in 1) LDH activity release 2) infarct size 3) ventricular superoxide production. The improvement in myocardial function and the reduction in oxidative stress were not observed when hearts were pretreated with inactivated CO-RM2 (iCO-RM2). Additionally, CO-RM2, but not iCO-RM2, was found to exert antioxidant properties. These results suggest that the production of CO is a necessary factor in the cardioprotective and antioxidant actions of CO-releasing compound. These results may open up new ground for a novel class of cardioprotective compounds.  相似文献   

11.
Apoptotic cell death induced by kainic acid (KA) in cultures of rat cerebellar granule cells (CGC) and in different brain regions of Wistar rat pups on postnatal day 21 (P21) was studied. In vitro , KA (100–500 μM) induced a concentration-dependent loss of cell viability in MTT assay and cell death had apoptotic morphology as studied by chromatin staining with propidium iodide (PI). In vivo , twenty-four hours after induction of status epilepticus (SE) by an intraperitoneal KA injection (5 mg/kg) we quantified apoptotic cells in hippocampus (CA1 and CA3), parietal cortex and cerebellum using PI staining and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) technique. We report that dantrolene, a specific ryanodine receptor antagonist, was able to significantly reduce the apoptotic cell death in CGC cultures and in hyppocampal CA1 and parietal cortex regions. Our finding can be valuable for neuroprotective therapy strategies in patients with repeated generalized seizures or status epilepticus.  相似文献   

12.
Exposure of cells to γ-rays induces the production of reactive oxygen species (ROS) that play a main role in ionizing radiation damage. We have investigated the radioprotective effect of phloroglucinol (1,3,5-trihydroxybenzene), phlorotannin compound isolated from Ecklonia cava, against γ-ray radiation-induced oxidative damage in vitro and in vivo. Phloroglucinol significantly decreased the level of radiation-induced intracellular ROS and damage to cellular components such as the lipid, DNA and protein. Phloroglucinol enhanced cell viability that decreased after exposure to γ-rays and reduced radiation-induced apoptosis via inhibition of mitochondria mediated caspases pathway. Phloroglucinol reduced radiation-induced loss of the mitochondrial membrane action potential, reduced the levels of the active forms of caspase 9 and 3 and elevated the expression of bcl-2. Furthermore, the anti-apoptotic effect of phloroglucinol was exerted via inhibition of mitogen-activated protein kinase kinase-4 (MKK4/SEK1), c-Jun NH2-terminal kinase (JNK) and activator protein-1 (AP-1) cascades induced by radiation exposure. Phloroglucinol restored the level of reduced glutathione (GSH) and protein expression of a catalytically active subunit of glutamate-cysteine ligase (GCL), which is a rate-limiting enzyme in GSH biosynthesis. In in vivo study, phloroglucinol administration in mice provided substantial protection against death and oxidative damage following whole-body irradiation. We examined survival with exposure to various radiation doses using the intestinal crypt assay and determined a dose reduction factor (DRF) of 1.24. Based on our findings, phloroglucinol may be possibly useful as a radioprotective compound.  相似文献   

13.
Myocardial ischaemia/reperfusion (I/R) injury attenuates the beneficial effects of reperfusion therapy. Poly(ADP‐ribose) polymerase (PARP) is overactivated during myocardial I/R injury. Mitophagy plays a critical role in the development of myocardial I/R injury. However, the effect of PARP activation on mitophagy in cardiomyocytes is unknown. In this study, we found that I/R induced PARP activation and mitophagy in mouse hearts. Poly(ADP‐ribose) polymerase inhibition reduced the infarct size and suppressed mitophagy after myocardial I/R injury. In vitro, hypoxia/reoxygenation (H/R) activated PARP, promoted mitophagy and induced cell apoptosis in cardiomyocytes. Poly(ADP‐ribose) polymerase inhibition suppressed H/R‐induced mitophagy and cell apoptosis. Parkin knockdown with lentivirus vectors inhibited mitophagy and prevented cell apoptosis in H/R‐treated cells. Poly(ADP‐ribose) polymerase inhibition prevented the loss of the mitochondrial membrane potential (ΔΨm). Cyclosporin A maintained ΔΨm and suppressed mitophagy but FCCP reduced the effect of PARP inhibition on ΔΨm and promoted mitophagy, indicating the critical role of ΔΨm in H/R‐induced mitophagy. Furthermore, reactive oxygen species (ROS) and poly(ADP‐ribosylation) of CypD and TSPO might contribute to the regulation of ΔΨm by PARP. Our findings thus suggest that PARP inhibition protects against I/R‐induced cell apoptosis by suppressing excessive mitophagy via the ΔΨm/Parkin pathway.  相似文献   

14.
Obesity-related disorders are associated with the development of ischemic heart disease. Adiponectin is a circulating adipose-derived cytokine that is downregulated in obese individuals and after myocardial infarction. Here, we examine the role of adiponectin in myocardial remodeling in response to acute injury. Ischemia-reperfusion in adiponectin-deficient (APN-KO) mice resulted in increased myocardial infarct size, myocardial apoptosis and tumor necrosis factor (TNF)-alpha expression compared with wild-type mice. Administration of adiponectin diminished infarct size, apoptosis and TNF-alpha production in both APN-KO and wild-type mice. In cultured cardiac cells, adiponectin inhibited apoptosis and TNF-alpha production. Dominant negative AMP-activated protein kinase (AMPK) reversed the inhibitory effects of adiponectin on apoptosis but had no effect on the suppressive effect of adiponectin on TNF-alpha production. Adiponectin induced cyclooxygenase (COX)-2-dependent synthesis of prostaglandin E(2) in cardiac cells, and COX-2 inhibition reversed the inhibitory effects of adiponectin on TNF-alpha production and infarct size. These data suggest that adiponectin protects the heart from ischemia-reperfusion injury through both AMPK- and COX-2-dependent mechanisms.  相似文献   

15.
16.
BackgroundActivation of NLRP3 inflammasome plays a key role in cardiac dysfunction for acute myocardial ischemia-reperfusion injury. Scutellarin (Scu) is a flavonoid purified from Erigeron breviscapus. Whether Scu has any influence on the activation of NLRP3 inflammasome in cardiomyocytes remains unknown.PurposeWe aimed to examine the therapeutic effect of Scu on cardiomyocyte ischemia-reperfusion (I/R) injury and its effect on NLRP3 inflammasome in rats with acute myocardial I/R injury and anoxia/reoxygenation (A/R)-induced H9c2 injuries.MethodsHeart injuries were induced through 30 min of ischemia followed by 24 h of reperfusion. Scu was intraperitoneally administered 15 min before vascular ligation. Effects of Scu on cardiac injury were detected by echocardiograms, TTC staining, and histological and immunohistochemical analyses. The effects of Scu on biochemical parameters were analyzed. H9c2 cells were pretreated with different concentrations of Scu for 6 h before A/R exposure. Afterward, cell viability, LDH release, and Hoechst 33342 and peromide iodine double staining were determined. Western blot analyses of proteins, including those involved in autophagy, NLRP3, mTOR complex 1 (mTORC1), and Akt signaling, were conducted.ResultsIn vivo study revealed that Scu improved diastolic dysfunction, ameliorated myocardium structure abnormality, inhibited myocyte apoptosis and inflammatory response, and promoted autophagy. Scu reduced NLRP3 inflammasome activation, inhibited mTORC1 activity, and increased Akt phosphorylation. In vitro investigation showed the same results. The Scu-mediated NLRP3 inflammasome and mTORC1 inhibition and cardioprotection were abolished through the genetic silencing of Akt by siRNA.ConclusionsThe cardioprotective effect of Scu was achieved through its anti-inflammatory effect. It suppressed the activation of NLRP3 inflammasome. In addition, inflammasome restriction by Scu was dependent on Akt activation and mTORC1 inhibition.  相似文献   

17.
Sphingosine 1-phosphate (S1P) is released at sites of tissue injury and effects cellular responses through activation of G protein-coupled receptors. The role of S1P in regulating cardiomyocyte survival following in vivo myocardial ischemia-reperfusion (I/R) injury was examined by using mice in which specific S1P receptor subtypes were deleted. Mice lacking either S1P(2) or S1P(3) receptors and subjected to 1-h coronary occlusion followed by 2 h of reperfusion developed infarcts equivalent to those of wild-type (WT) mice. However, in S1P(2,3) receptor double-knockout mice, infarct size following I/R was increased by >50%. I/R leads to activation of ERK, JNK, and p38 MAP kinases; however, these responses were not diminished in S1P(2,3) receptor knockout compared with WT mice. In contrast, activation of Akt in response to I/R was markedly attenuated in S1P(2,3) receptor knockout mouse hearts. Neither S1P(2) nor S1P(3) receptor deletion alone impaired I/R-induced Akt activation, which suggests redundant signaling through these receptors and is consistent with the finding that deletion of either receptor alone did not increase I/R injury. The involvement of cardiomyocytes in S1P(2) and S1P(3) receptor mediated activation of Akt was tested by using cells from WT and S1P receptor knockout hearts. Akt was activated by S1P, and this was modestly diminished in cardiomyocytes from S1P(2) or S1P(3) receptor knockout mice and completely abolished in the S1P(2,3) receptor double-knockout myocytes. Our data demonstrate that activation of S1P(2) and S1P(3) receptors plays a significant role in protecting cardiomyocytes from I/R damage in vivo and implicate the release of S1P and receptor-mediated Akt activation in this process.  相似文献   

18.
Vascular endothelial cell (VEC) apoptosis is the main event occurring during the development of atherosclerosis. Pterostilbene (PT), a natural dimethylated analog of resveratrol, has been the subject of intense research in cancer and inflammation. However, the protective effects of PT against oxidized low-density lipoprotein (oxLDL)-induced apoptosis in VECs have not been clarified. We investigated the anti-apoptotic effects of PT in vitro and in vivo in mice. PT at 0.1–5 μM possessed antioxidant properties comparable to that of trolox in a cell-free system. Exposure of human umbilical vein VECs (HUVECs) to oxLDL (200 μg/ml) induced cell shrinkage, chromatin condensation, nuclear fragmentation, and cell apoptosis, but PT protected against such injuries. In addition, PT injection strongly decreased the number of TUNEL-positive cells in the endothelium of atherosclerotic plaque from apoE−/− mice. OxLDL increased reactive oxygen species (ROS) levels, NF-κB activation, p53 accumulation, apoptotic protein levels and caspases-9 and -3 activities and decreased mitochondrial membrane potential (MMP) and cytochrome c release in HUVECs. These alterations were attenuated by pretreatment with PT. PT inhibited the expression of lectin-like oxLDL receptor-1 (LOX-1) expression in vitro and in vivo. Cotreatment with PT and siRNA of LOX-1 synergistically reduced oxLDL-induced apoptosis in HUVECs. Overexpression of LOX-1 attenuated the protection by PT and suppressed the effects of PT on oxLDL-induced oxidative stress. PT may protect HUVECs against oxLDL-induced apoptosis by downregulating LOX-1-mediated activation through a pathway involving oxidative stress, p53, mitochondria, cytochrome c and caspase protease. PT might be a potential natural anti-apoptotic agent for the treatment of atherosclerosis.  相似文献   

19.
The current study aimed to explore the functions and roles of microRNA-193b (miR-193b) in the myocardium with ischemia-reperfusion (I/R) injury and a potential therapeutic method for myocardial I/R injury. The mice were subjected to myocardial I/R with or without miR-193b pretreatment. The infarct size and myocardial enzymes were detected. The terminal deoxynucleotidyl transferase dUTP nick-end labeling assay was conducted to investigate the effect of miR-193b on cardiomyocyte apoptosis. The expression levels of miR-193b and mastermind-like 1 (MAML1) were validated by quantitative real-time polymerase chain reaction and Western blot analysis. The results suggested that the miR-193b expression level was significantly downregulated in the myocardium with I/R injury compared with control group. miR-193b overexpression is able to reduce infarct size and myocardial enzymes after myocardial I/R injury. Furthermore, overexpression of miR-193b could alleviate the apoptosis level after myocardial I/R injury. Taken together, the present study demonstrated that upregulated miRNA-193b alleviated myocardial I/R injury via targeting MAML1.  相似文献   

20.
Cannabidiol (CBD) is a major, nonpsychoactive Cannabis constituent with anti-inflammatory activity mediated by enhancing adenosine signaling. Inasmuch as adenosine receptors are promising pharmaceutical targets for ischemic heart diseases, we tested the effect of CBD on ischemic rat hearts. For the in vivo studies, the left anterior descending coronary artery was transiently ligated for 30 min, and the rats were treated for 7 days with CBD (5 mg/kg ip) or vehicle. Cardiac function was studied by echocardiography. Infarcts were examined morphometrically and histologically. For ex vivo evaluation, CBD was administered 24 and 1 h before the animals were killed, and hearts were harvested for physiological measurements. In vivo studies showed preservation of shortening fraction in CBD-treated animals: from 48 +/- 8 to 39 +/- 8% and from 44 +/- 5 to 32 +/- 9% in CBD-treated and control rats, respectively (n = 14, P < 0.05). Infarct size was reduced by 66% in CBD-treated animals, despite nearly identical areas at risk (9.6 +/- 3.9 and 28.2 +/- 7.0% in CBD and controls, respectively, P < 0.001) and granulation tissue proportion as assessed qualitatively. Infarcts in CBD-treated animals were associated with reduced myocardial inflammation and reduced IL-6 levels (254 +/- 22 and 2,812 +/- 500 pg/ml in CBD and control rats, respectively, P < 0.01). In isolated hearts, no significant difference in infarct size, left ventricular developed pressures during ischemia and reperfusion, or coronary flow could be detected between CBD-treated and control hearts. Our study shows that CBD induces a substantial in vivo cardioprotective effect from ischemia that is not observed ex vivo. Inasmuch as CBD has previously been administered to humans without causing side effects, it may represent a promising novel treatment for myocardial ischemia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号