首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Laquinimod is an immunomodulator that is currently in clinical trials. For pharmacokinetic and toxicokinetic studies in animals and humans a sensitive and accurate bioanalytical method was required. In this paper a bioanalytical method for the determination of laquinimod by liquid chromatography is described. After a protein precipitation step the plasma sample was injected onto a coupled-column HPLC system. After further purification from macromolecules on a short restricted access material C(18) column the analyte was transferred to a reversed-phase C(18) analytical column and separated from interfering substances. The analyte was detected by UV detection. The method was validated with respect to linearity, selectivity, precision, accuracy, limit of quantitation, limit of detection, recovery and stability. The limit of quantitation was 0.75 micromol/L, the intermediate precision was 1.8-3.6% (C.V.) and the accuracy was 97.7-114.7%. In conclusion, the method was found to perform well and is suitable for use in pharmacokinetic and toxicokinetic studies.  相似文献   

2.
A rapid method for the determination of olanzapine in plasma using high-performance liquid chromatography with ultra violet detection is described. Olanzapine was extracted from plasma with a mixture of hexane/dichloromethane (85:15), and then back extracted into phosphate buffer pH 2.8. Separation was achieved on a RP Select B C(18) column and commonly administered drugs did not interfere with the assay. The limit of quantitation was 1.5 microg/l and the inter-day and intra-day relative standard deviations were less than 10%. Olanzapine was shown to be stable in plasma for up to 7 days when stored at 4 degrees C. Moreover, the addition of ascorbic acid was not necessary for the achievement of chemical stability during storage, or during the assay procedure. The method has been used to measure olanzapine concentrations in patients treated with various doses of the drug varying from 5 to 40 mg/day.  相似文献   

3.
A simple HPLC method has been developed for the determination of ticlopidine in human plasma. Plasma samples were buffered at pH 9 and extracted with n-heptane-isoamyl alcohol (98.5: 1.5, v/v). Imipramine was used as internal standard. Chromatography was performed isocratically with acetonitrile-methanol-0.05 M KH2PO4 (20:25:55, v/v) at pH 3.0 containing 3% triethylamine at a flow-rate of 1 ml/min. A reversed-phase column, Supelcosil LC-8-DB, 15 cm × 4.6 mm I.D., 5 μm particle size, was used. The effluent was monitored by UV absorbance detection at 235 nm. The method showed good accuracy, precision and linearity in the concentration range 5–1200 ng/ml. The limit of quantitation was 5 ng/ml, with a precision (C.V.) of 8.91%, which is the same as that achieved by other authors with a previously published GC-MS method. The procedure described in this paper is simple and allows the routine assessment of ticlopidine plasma concentration in pharmacokinetic studies following therapeutic doses in human subjects.  相似文献   

4.
A high-performance liquid chromatographic (HPLC) assay for the determination of nicotine and cotinine in human milk was developed using an extraction by liquid-liquid partition combined with back extraction into acid, and followed by reverse-phase chromatography with UV detection of analytes. The assay was linear up to 500 microg/l for both nicotine and cotinine. Intra- and inter-day relative standard deviations (R.S.D.) were <10% (25-500 microg/l) for both nicotine and cotinine. Limits of quantitation (LOQ) were 10 and 12 microg/l for nicotine and cotinine, respectively, while the limits of detection (LOD) were 8 and 10 microg/l for nicotine and cotinine, respectively. The mean recoveries were 79-93% (range 25-500 microg/l) for nicotine and 78-89% (range 25-500 microg/l) for cotinine. The amount of fat in the milk did not affect the recovery. We found that this method was sensitive and reliable in measuring nicotine and cotinine concentrations in milk from a nursing mother who participated in a trial of the nicotine patch for smoking cessation.  相似文献   

5.
An isocratic reversed-phase high-performance liquid chromatographic method for the simultaneous determination of ketamine and xylazine in canine plasma is described. Plasma samples (500 microl) are cleaned up via liquid-liquid extraction. The analytes and the internal standard clonidine are separated on a cyano (CN) column using a mobile phase containing acetonitrile-0.005 M phosphate buffer adjusted to pH 5.5 (3:2) at a detection wavelength of 215 nm. The method was validated according to specificity, sensitivity, accuracy and reproducibility and was used to determine the plasma concentrations of both compounds in dogs after intramuscular injection.  相似文献   

6.
A simple, sensitive and specific HPLC method with UV detection (210 nm) was developed and validated for quantitation of Valdecoxib in human plasma, the newest addition to the group of non-steroidal anti-inflammatory drugs-a highly selective cyclooxygenase-2 inhibitor. The analyte and an internal standard (Rofecoxib) were extracted with diethyl ether/dichloromethane (70/30 (v/v)). The chromatographic separation was performed on reverse phase ODS-AQ column with an isocratic mobile phase of water/methanol (47/53 (v/v)). The lower limit of quantitation was 10 ng/ml, with a relative standard deviation of <20%. A linear range of 10-500 ng/ml was established. This HPLC method was validated with between-batch and within-batch precision of 1.27-7.45 and 0.79-6.12%, respectively. The between-batch and within-batch bias was 0.74-7.40 and -0.93 to 7.70%, respectively. Frequently coadministered drugs did not interfere with the described methodology. Stability of Valdecoxib in plasma was excellent, with no evidence of degradation during sample processing (autosampler) and 30 days storage in a freezer. This validated method is suitable for bioequivalence studies following single dose in healthy volunteers.  相似文献   

7.
A method is described for the determination of celecoxib in human plasma. Samples were extracted using 3M Empore membrane extraction cartridges and separated under normal-phase HPLC conditions using a Nucleosil-NO2 (150×4.6 mm, 5 μm) column. Detection was accomplished using UV absorbance at 260 nm. The HPLC method included a column switching procedure, in which late eluting compounds were diverted to waste, to reduce run-time to 12 min. The assay was linear in the concentration range of 25–2000 ng/ml when 1-ml aliquots of plasma were extracted. Recoveries of celecoxib were greater than 91% over the calibration curve range. Intraday precision and accuracy for this assay were 5.7% C.V. or better and within 2.3% of nominal, respectively. The assay was used to analyze samples collected during human clinical studies.  相似文献   

8.
A simple and sensitive high-performance liquid chromatographic (HPLC) method with UV absorbance detection is described for the quantification of donepezil, a centrally and selectively acting acetyleholinesterase inhibitor, in human plasma. After sample alkalinization with 0.5 ml of NaOH (0.1 M), the test compound was extracted from I ml of plasma using isopropanol-hexane (3:97, v/v). The organic phase was back-extracted with 75 microl of HCl (0.1 M) and 50 microl of the acid solution was injected into a C18 STR ODS-II analytical column (5 microm, 150x4.6 mm I.D.). The mobile phase consisted of phosphate buffer (0.02 M, pH 4.6), perchloric acid (6 M) and acetonitrile (59.5:0.5:40, v/v) and was delivered at a flow-rate of 1.0 ml/min at 40 degrees C. The peak was detected using a UV detector set at 315 nm, and the total time for a chromatographic separation was approximately 8 min. The method was validated for the concentration range 3-90 ng/ml. Mean recoveries were 89-98%. Intra- and inter-day relative standard deviations were less than 7.3 and 7.6%, respectively, at the concentrations ranging from 3 to 90 ng/ml. The method shows good specificity with respect to commonly prescribed psychotropic drugs, and it could be successfully applied for pharmacokinetic studies and therapeutic drug monitoring.  相似文献   

9.
A method is described for simultaneous quantitation of reduced (GSH) and oxidized (GSSG) glutathione in erythrocytes by HPLC. They were determined by standard addition method. Blood samples were collected in tubes containing 1,10-phenanthroline. The separated erythrocytes were hemolyzed with water containing standard. After deproteinization, GSH and GSSG were converted to N-(2,4-dinitrophenyl) derivatives and analyzed by HPLC with UV detection. The coefficients of variation of GSH and GSSG on replicate assays were 6% and 8%, respectively. The stabilities of GSH and GSSG and of the derivatives were also examined. The present method appears to be satisfactory for determination of these physiological concentrations in erythrocytes.  相似文献   

10.
A validated high-performance liquid chromatography method is described for the determination of scutellarin in rat plasma using a liquid-liquid extraction and ultraviolet (UV) absorbance detection. The separation used a Diamonsil ODS column (250 mm x 4.6mm i.d., 5 microm particle size) with an isocratic mobile phase consisting of methanol-acetonitrile-50mM dihydrogen ammonium phosphate buffer (22:15:63 (v/v/v), adjusted to pH 2.5 with 1M phosphoric acid). The ultraviolet detector operated at 335 nm. Plasma samples were extracted with ethyl acetate after acidification. The extraction recovery of scutellarin ranged from 68.1 to 80.5%. High selectivity and a low quantitation limit (0.050 microg/ml) were achieved. The linear range was 0.050-12.5 microg/ml, correlation coefficient r=0.9981. The method has a good reproducibility, R.S.D. values were below 7.9% for within-day and between-day precision. The method is simple, rapid, and applicable to preliminary pharmacokinetic studies of scutellarin in rats.  相似文献   

11.
A simple, specific and sensitive high-performance liquid chromatographic (HPLC) method was developed for the determination of rifampin in human plasma. Rifampin and sulindac (internal standard) are extracted from human plasma using a C2 Bond Elut extraction column. A 100-μl volume of 0.1 M HCl is added to the plasma before extraction to increase the retenction of the compounds on the extraction column. Methanol (1 ml) is used to elute the compounds and 0.5 ml of 3 mg/ml ascorbic acid in water is added to the final eluate to reduce the oxidation of rifampin. Separation is achieved by reversed-phase chromatography on a Zorbax Rx C8 column with a mobile phase composed of 0.05 M potassium dihydrogen phosphate-acetonitrile (55:45, v/v). Detection is by ultraviolet absorbance at 340 nm. The retention times of rifampin and internal standard are approximately 4.4 and 7.8 min, respectively. The assay is linear in concentration ranges of 50 to 35 000 ng/ml. The quantitation limit is 50 ng/ml. Both intra-day and inter-day accuracy and precision data showed good reproducibility.  相似文献   

12.
13.
A simple, specific and sensitive high-performance liquid chromatographic (HPLC) method was developed for the determination of rifabutin in human plasma. Rifabutin and sulindac (internal standard) are extracted from human plasma using a C8 Bond Elut extraction column. Methanol (1 ml) is used to elute the compounds. The methanol is dried down under nitrogen and reconstituted in 250 μl of mobile phase. Separation is achieved by HPLC on a Zorbax Rx C8 column with a mobile phase composed of 0.05 M potassium dihydrogen phosphate and 0.05 M sodium acetate at pH 4.0-acetonitrile (53:47, v/v). Detection is by ultraviolet absorbance at 275 nm. The retention times of rifabutin and internal standard were approximately 10.8 and 6.9 min, respectively. The assay is linear over the concentration range of 5–600 ng/ml. The quantitation limit was 5 ng/ml. Both intra-day and inter-day accuracy and precision data showed good reproducibility.  相似文献   

14.
An isocratic high-performance liquid chromatographic (HPLC) method with UV absorbance detection is described for the quantification of clozapine (8-chloro-11-(4′-methyl)piperazino-5H-dibenzo[b,e]-1,4-diazepine) and its two major metabolites in plasma and red blood cells (RBCs). The method involves sample clean-up by liquid-liquid extraction with ethyl acetate. The organic phase was back-extracted with 0.1 M hydrochloric acid. Loxapine served as the internal standard. The analytes were separated by HPLC on a Kromasil Ultrabas C18 analytical column (5 μm particle size; 250×4.6 mm I.D.) using acetonitrile-phosphate buffer pH 7.0 (48:52, v/v) as eluent and were measured by UV absorbance detection at 254 nm. The limits of quantification were 20 ng/ml for clozapine and N-desmethylclozapine and 30 ng/ml for clozapine N-oxide. Recovery from plasma or RBCs proved to be higher than 62%. Precision, expressed as % C.V., was in the range 0.6–15%. Accuracy ranged from 96 to 105%. The method's ability to quantify clozapine and two major metabolites simultaneously with precision, accuracy and sensitivity makes it useful in therapeutic drug monitoring.  相似文献   

15.
A reversed-phase high-performance liquid chromatographic (HPLC) using ultraviolet (UV) absorbance detection method for simultaneous determination of clofibrate (I) and its major metabolite clofibric acid (II) in human plasma has been developed to support a clinical study. I, II and internal standard (I.S., III) are isolated from human plasma by 96-well solid-phase extraction (SPE) C(18)z.ccirf;AR plate and quantified by direct injection of the SPE eluent onto the HPLC with UV detection wavelength at 230 nm. Two chromatographic methods, isocratic and step gradient, have been validated from 1.0 to 100.0 microg/ml and successfully applied to plasma sample analysis for a clinical study. The lower limit of quantitation (LLOQ) is 1.0 microg/ml for both I and II when 500 microl plasma sample is processed. Sample collection and preparation is conducted at 5 degrees C to minimize the hydrolysis of I to II in human plasma.  相似文献   

16.
Carvedilol is a beta/alpha1-adrenoceptor blocker. A sensitive method for measuring plasma levels of carvedilol in human administrated low doses is needed since its plasma concentration is low. We measured carvedilol and carvedilol M21-aglycon using high-performance liquid chromatography (HPLC) with electrochemical detection. The amperometric detector was operated at 930 mV versus Ag/AgCl. Mean coefficients of variation (n = 5) for carvedilol and M21-aglycon were 4.0 and 7.7% (intra) and 6.1 and 6.7% (inter), respectively. The lower limit of quantification for each analyte was 0.10 ng/ml (signal-to-noise ratio = 3). This lower limit of quantification for carvedilol was sufficient for clinical use.  相似文献   

17.
A chromatographic method was developed to detect and confirm the presence of chlorpropamide (I) in horse plasma samples, for antidoping control. The plasma sample (1 ml) was extracted with dichloromethane and screened by high-performance liquid chromatography, and confirmation of the drug's presence was accomplished by using gas chromatography–mass spectrometry (GC–MS). The limit of detection was found to be 3.5 ng/ml at a signal-to-noise ratio of three. Derivatization of I with N,O-bis-(trimethylsilyl)trifluoroacetamide with 1% trimethylchlorosilane allowed for highly stable, accurate and sensitive GC–MS analysis. Plasma samples collected after the administration of diabinese were positive for I (one–five days) in all samples analysed.  相似文献   

18.
A simple and sensitive isocratic high-performance liquid chromatographic (HPLC) method with UV detection for the quantitation of perillic acid, a major circulating metabolite of perillyl alcohol and d-limonene, in plasma is described. Sample preparation involved protein precipitation and subsequent transfer and dilution with 10 mM NaHCO3. The mobile phase consisted of acetonitrile (36%) and 0.05 M ammonium acetate buffer pH 5.0 (64%). Separations were achieved on a C18 column and the effluent monitored for UV absorption at the analytes' respective UVmax. Separation was excellent with no interference from endogenous plasma constituents. This method was found suitable for quantifying drug concentrations in the range of 0.25 to 200.0 μg/ml using a 0.05-ml plasma sample, and was used to study the plasma pharmacokinetics of perillic acid in mice.  相似文献   

19.
A rapid, sensitive and specific high-performance liquid chromatography (HPLC) procedure for the quantification of indinavir, a potent human immunodeficiency virus (HIV) protease inhibitor, in human plasma is described. Following C18 solid-phase extraction, indinavir was chromatographed on a reversed-phase C8 column using a simple binary mobile phase of phosphate buffer–acetonitrile (60:40, v/v). UV detection at 210 nm led to an adequate sensitivity without interference from endogenous matrix components. The limit of quantification was 25 ng/ml with a 0.1 ml plasma sample. The standard curve was linear across the range from 25 to 2500 ng/ml with an average recovery of 91.4%. The mean relative standard deviations for concentrations within the standard curve ranged between 1.4 and 9.7%. Quality control standards gave satisfactory intra- and inter-assay precision (R.S.D. from 3.5 to 15.8%) and accuracy within 15% of the nominal concentration. Sample handling experiments, including HIV heat inactivation, demonstrated analyte stability under expected handling processes. The assay is suitable for the analysis of samples from adult and pediatric patients infected with HIV.  相似文献   

20.
An analytical method is described for the quantification of S-nitrosoglutathione (GSNO), a potent physiological vasodilator and inhibitor of platelet aggregation, in the presence of a high excess of reduced glutathione (GSH). The method is based on the quantitative elimination of GSH by N-ethylmaleimide, the conversion of GSNO by 2-mercaptoethanol to GSH, its reaction with o-phthalaldehyde (OPA) to form a highly fluorescent and UV-absorbing tricyclic isoindole derivative, and subsequent high-performance liquid chromatographic (HPLC) separation with fluorescence and/or UV absorbance detection. The OPA derivatives of GSH and GSNO obtained by this method were found to be identical by mass spectrometry. GSH (up to 50 microM) did not interfere with the analysis of GSNO (up to 1000 nM). The limits of detection of the method for buffered aqueous solutions of GSNO were determined as 3 nM using fluorescence and 70 nM using UV absorbance detection. Isolation of GSNO by HPLC analysis (pH 7.0) of plasma ultrafiltrate samples (200 microl) prior to derivatization allows specific and artifact-free quantification of GSNO in human and rat plasma. Reduced and oxidized glutathione, nitrite, and cysteine did not interfere with the measurement of GSNO in human and rat plasma. The limit of quantitation (LOQ) of the combined method was determined as 100 nM of GSNO in human plasma ultrafiltrate using fluorescence detection. No endogenous GSNO could be detected in ultrafiltrate samples of plasma of 10 healthy humans at concentrations exceeding the LOQ of the method. After iv infusion of GSNO (125 micromol/kg body wt) in a rat for 20 min GSNO and GSH were detected in rat plasma at 60 and 130 microM, respectively. The method should be useful to investigate formation, metabolism, and reactions of GSNO in vitro and in vivo at physiologically relevant concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号