首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The percentage of erthrocytes with thorn-shaped protuberances--echinocytes--was calculated in the blood smears of 10 healthy men before and after a 48 hour sharp hypobaric hypoxia in the climatic chamber of Tabai. The absorbtion spectra at the range 400-650 nm were investigated in the smooth erythrocytes and echinocytes. The methemoglobin content in the echinocytes is higher than in the smooth erythrocytes. The sharp hypobaric hypoxia results in the increase in the percentage of echinocytes and erythrocytes with fetal hemoglobin, in the change of osmotic stability and acidic resistance of erythrocytes, and in the rise of peroxid oxidation of lipids. The role of methemoglobin production upon a sharp hypobaric hypoxia is discussed.  相似文献   

2.
The methemoglobin reductase system plays a vital role in maintaining the equilibrium between hemoglobin and methemoglobin in blood. Exposure of red blood cells to oxidative stress (pathological/physiological) may cause impairment to this equilibrium. We studied the status of erythrocytic methemoglobin and the related reductase system during Plasmodium yoelii nigeriensis infection in mice and P. berghei infection in mastomys. Malaria infection was induced by intraperitoneal inoculation with 106 infected erythrocytes. The present investigation revealed a significant decrease in the activity of methemoglobin reductase, with a concomitant rise in methemoglobin content during P. yoelii nigeriensis infection in mice erythrocytes. This was accompanied with a significant increase in reduced glutathione and ascorbate levels. The activity of lactate dehydrogenase, glucose 6-phosphate dehydrogenase and glutathione reductase increased with a progressive rise in parasitemia. However, no methemoglobin or associated reductase activity was detected in normal and P. berghei-infected mastomys. P. berghei infection in mastomys resulted in an increase in the level of reduced glutathione and ascorbate in erythrocytes, and also in the activity of lactate dehydrogenase, glucose 6-phosphate dehydrogenase and glutathione reductase. These results suggest that antioxidants/antioxidant enzymes may prevent or reduce the formation of methemoglobin in the host and thereby protect the host from methemoglobinemia.  相似文献   

3.
A NADPH-dehydrogenase of human erythrocytes was exhaustively purified to a homogeneous protein judging from the electrophoresis on a polyacrylamide gel in the presence of sodium dodecyl sulfate. Studies on the specificity for the electron acceptor of this enzyme suggest that flavins serve as the natural and direct electron acceptor. The enzyme showed a broad specificty for flavins and the Michaelis constants for flavins were estimated to be 5 × 10?5 M for both FMN and riboflavin. Rapid reduction of methemoglobin by the enzyme in the presence of flavin was demonstrated, and the reduction was explained by the reduction of flavin by the enzyme, and subsequent non-enzymatic reduction of methemoglobin by the reduced flavin. The therapeutic significance of flavins was discussed with reference to the flavin reductase activity in hereditary methemoglobinemia.  相似文献   

4.
The NADH methemoglobin-reductase (EC 1.6.2.2) is mainly responsible for the maintenance of hemoglobin in its reduced and active state. The present study reveals the comparative status of this enzyme in normal Beagle dogs, rats, mice, mastomys and hamsters erythrocytes. The spectrophotometric and electrophoretic determinations showed that the above mentioned enzyme was deficient in the Beagle dog's erythrocytes. Furthermore, in vitro studies on the sensitivity of these rodents and Beagle dogs hemolysate towards oxidants, like primaquine and sodium nitrate, depicted a higher level of methemoglobin formation in the Beagle dogs hemolysate as compared to that of the rodent species. The deficiency of methemoglobin reductase in Beagle dogs erythrocytes could be responsible for their increased sensitivity towards oxidant induced methemoglobinemia.  相似文献   

5.
Effects of acute and chronic cold stress on glutathione and related enzymes in rat erythrocytes were investigated. Blood from both cold-acclimated (CA) and cold-adapted (CG) rats had significantly lower concentrations of glutathione than blood from control animals. Superoxide dismutase activity was increased significantly in CA rats and tended to rise in CG rats. Activity of glutathione peroxidase in erythrocytes was inconsistent in that it tended to increase in CA rats but decreased significantly in CG rats. The results may imply that CG rats suffered deleterious effects of hydrogen peroxide. On the other hand, there were marked decreases in glutathione peroxidase and glutathione reductase activities in acutely cold-exposed rats in conjunction with unchanged levels of glutathione. In all treatments the state of riboflavin metabolism was estimated to be adequate, since no increases were observed in the erythrocyte glutathione reductase activity coefficient.  相似文献   

6.
The prooxidative effects of 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) were observed in human erythrocytes. Incubation of red blood cells with the membrane-permeable TEMPO leads to a decrease in the concentration of intracellular reduced glutathione, accompanied by the reduction of TEMPO. Extracellular ferricyanide inhibited the loss of glutathione and reduction of TEMPO. TEMPO induced glutathione release from the cells and oxidation of hemoglobin to methemoglobin; ferricyanide prevented these effects. These results indicate that TEMPO may act as an oxidant to erythrocytes, whilst extracellular ferricyanide protects against its effects.  相似文献   

7.
Methemoglobin formation was examined in erythrocytes of 16 patients with Parkinson’s disease (PD) (stage 3–4 by the Hoehn and Yahr scale). The patients receiving levodopa-containing drugs (madopar, nakom) were also treated with intramuscular injections of mexidol (daily dose 100 mg/day) for 14 days. Control group included 12 clinically healthy persons. The erythrocyte methemoglobin content was determined by electronic paramagnetic resonance (EPR) using the EPR signal intensity with the g-factor 6.0. The methemoglobin content was significantly higher in erythrocytes of PD patients than in healthy donors. The complex therapy with mexidol normalized the methemoglobin content in erythrocytes of PD patients. Incubation in vitro of erythrocytes of donors and PD patients with acrolein increased the methemoglobin content, while incubation with carnosine normalized the methemoglobin content in erythrocytes of PD patients. Prophylactic (i.e. before acrolein addition) and therapeutic administration of carnosine to the incubation system with acrolein decreased the methemoglobin content to its initial level. Results of this study suggest that inclusion of the antioxidants mexidol and carnosine in the scheme of basic therapy of PD may reduce side effects associated with methemoglobinemia.  相似文献   

8.
Urate, 3-ribosylurate, ascorbate, glutathione and plasma protected bovine, porcine and human erythrocytes from hemolysis caused by t-butyl hydroperoxide (t-BHP). Urate partially protected porcine erythrocytes from hemolysis by t-BHP when it was added 15 min after the addition of the t-BHP, but it did not protect when added 30 min after the t-BHP. Glutathione and ascorbate protected oxyhemoglobin from oxidation to methemoglobin by t-BHP; 3-ribosylurate gave only slight protection. Urate stimulated the formation of methemoglobin from oxyhemoglobin during treatment with t-BHP.  相似文献   

9.
Adaptation of rats following sodium nitrite induced methemoglobinemia. The effect of repeated intraperitoneal injections of sodium nitrite on methemoglobin, hemoglobin and blood sugar level, on leucine aminopeptidase activity in plasma and methemoglobin reductase activity in red blood cells was investigated in rats. Repeated methemoglobinemia produced gradual disappearance of hyperglycemia, changes of hemoglobin content in blood and increase of methemoglobin reductase activity in red blood cells.  相似文献   

10.
The effect of adenosine on the shape, aggregate morphology and aggregability of ATP-depleted erythrocytes was studied. It is shown that the ATP-depletion of erythrocyte leads to the change in their shape: diskocytes transform to echinocytes. It is found that the aggregability of such cells in autologous plasma significantly decreased. Incubation of echinocytes with adenosine largely restored discoid shape and erythrocyte aggregability.  相似文献   

11.
Since glutathionyl-hemoglobin has been suggested to be a clinical marker of oxidative stress in human blood and given the growing biological relevance of oxidative stress as a pathogenic factor in several diseases, we describe a method to measure glutathionyl-hemoglobin concentration in erythrocytes, by using cation-exchange high-pressure liquid chromatography with UV detection. The glutathionyl-hemoglobin peak has been identified on the basis of the following findings: (a) the peak increased when the sample was incubated with oxidized glutathione; (b) the peak disappeared when the sample was reduced with dithiothreitol, with the simultaneous increase of that corresponding to hemoglobin A(0); (c) the peak could be detected by incubating hemoglobin A(0) with reduced glutathione; (e) deconvoluted mass spectrum of the glutathionyl-hemoglobin peak showed a 16172.0-Da molecular mass, corresponding to hemoglobin beta bound to glutathione. Glutathionyl-hemoglobin concentration has been determined in erythrocytes of 40 healthy subjects, with a mean value of 2.58+/-0.7%, calculated as the percentage of its peak area ratio to that of total hemoglobin (HbA(0)+HbA(2)+HbA(1C)+glutathionyl-hemoglobin). The availability of a simple and reproducible method to detect glutathionyl-hemoglobin concentration in blood could be useful in monitoring oxidative stress, and for investigating the efficacy of antioxidant therapies in clinical trials.  相似文献   

12.
Carp (Cyprinus carpio) hemoglobin readily autoxidizes in blood smears. Quantification of Soret-band absorbance in individual erythrocytes by means of scanning cytophotometry therefore requires more elaborate methods of preparation of blood samples. Of the fixatives that have been tested, suspension of whole blood in isotonic salt solutions containing glutaraldehyde was most suitable. Glutaraldehyde-fixed red blood cells are totally resistant to hemolysis. In the course of fixation, hemoglobin is transformed to methemoglobin. Spectrophotometry indicated extensive similarities between glutaraldehyde-fixed carp methemoglobin and human methemoglobin. In aqueous solutions, the intensity of the Soret-peak was pH-dependent. The allosteric modifier organic polyphosphate caused an R----T transition, resulting in increased molar extinctions. Dried preparations showed Soret-spectra that were not influenced from either pH or organic polyphosphate concentration of the aqueous suspensions in which the erythrocytes had been stored. The same was true for slide preparations of cyanomethemoglobin, easily derived from methemoglobin on addition of potassium cyanide. In the absence of oxygen fresh blood cells from carp slowly transform their hemoglobin into deoxyhemoglobin. Spectra of the intermediate stages of deoxygenation, Hb4(O2)3, Hb4(O2)2 and Hb4(O2), as well as mixtures of these intermediates, could be monitored.  相似文献   

13.
Isosorbide dinitrate (ISDN) has been used in the treatment of ischaemic cardiovascular diseases for many years. ISDN is the most popular nitric oxide donor and causes methemoglobinemia as an important side-effect. The purpose of this study was to examine antioxidant states and methemoglobin reductase activity after giving ISDN and ISDN plus vitamin E. Rats were divided into three groups according to the treatment: control group, ISDN group and ISDN plus vit. E group. We measured reduced glutathione in blood (GSH), plasma malondialdehyde (MDA), erythrocyte superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and NADH-dependent methemoglobin reductase activities. In the ISDN group, plasma MDA levels were significantly high compared to the control and ISDN + vit. E groups (p < 0.001). In the ISDN and ISDN + vit. E groups, blood GSH levels were higher than those of the control group (p < 0.05). Changes of SOD and GPx activities were not significant. In the ISDN and ISDN + vit. E groups the erythrocyte catalase and NADH-dependent methemoglobin reductase activities were significantly higher than that in the control group (p < 0.001). We conclude that oxidant drugs such as ISDN need to be carefully used because of lipid peroxidation and methemoglobinemia. These findings support the notion that vitamine E protects tissues against oxidative stress.  相似文献   

14.
Reduced and oxidized glutathione (GSH and GSSG), protein-bound glutathione, lipid peroxidation and antioxidant enzyme activities were determined in the erythrocyte lysates and membranes of type I and II alcoholics in order to clarify the effect of age-of-onset and the duration of the alcohol consumption on erythrocyte oxidant and antioxidant status. The osmotic fragility and susceptibility of the erythrocytes to haemolysis were also determined. Erythrocyte lipid peroxidation was significantly increased but, GSH and protein-bound GSH, GSH/GSSG ratio and antioxidant enzyme activities were markedly decreased in the erythrocytes of the alcoholic subgroups. Erythrocyte count and haemoglobin content in the blood of alcoholics were found to be decreased in accordance with the finding that erythrocytes were more fragile and less resistant to haemolysis particularly in type II alcoholics. The present study showed that ethanol-induced oxidative stress in erythrocytes can lead to haemolysis and membrane-specific injuries in erythrocytes of the alcoholic subtypes.  相似文献   

15.
We have examined the effect of exposure of human erythrocytes to the new chemotherapy drug 2-chlorodeoxyadenosine (2-CdA, cladribine), focusing on the glutathione (GSH and GSSG) content and the adenine energy charge (AEC). Incubation of erythrocytes with 0.1-5 microg/ml 2-CdA induced no significant change in the reduced or total glutathione level or in the AMP and ATP concentrations. The ADP concentration increased slightly and the AEC value is in the range typical of healthy organisms. Incubation of erythrocytes with 2-CdA also caused cell shape changes, converting most of the cells to echinocytes.  相似文献   

16.
The relationship between shape and spontaneous and fibrinogen-induced aggregation change in human erythrocytes was studied. Spontaneous and fibrinogen-induced erythrocyte aggregation was investigated using a rheoscope designed according to the method of H. Schmid-Schonbein et al. (1973). The erythrocyte shape was studied by means of light microscopy. It was shown that plasma enriched with lysophosphatidic acid and ATP depletion of erythrocytes led to the change of erythrocyte shape: discocytes transformed into echinocytes. It was found that spontaneous aggregation of such cells was considerably decreased. Aggregation of erythrocytes, treated with lysophosphatidic acid, was diminished more markedly. Fibrinogen-induced aggregation of echinocytes, obtained after treatment with lysophosphatidic acid and produced by ATP depletion, was also greatly reduced.  相似文献   

17.
The involvement of glutathione, a major cellular antioxidant, in cisplatin-mediated development of various hematological changes in mice bearing ascites Dalton lymphoma tumor was investigated. With tumor growth, glutathione levels decreased in blood but increased in tumor cells. Cisplatin treatment of tumor-bearing mice caused a decrease in glutathione levels in blood, ascites supernatant, and tumor cells. Blood hemoglobin, erythrocytes, packed cell volume and leukocytes (eosinophils, basophils, and lymphocytes) were also decreased along with the development of various morphological abnormalities in erythrocytes (microcytes, macrocytes, echinocytes, acanthocytes, etc.) after cisplatin treatment. All these hematotoxic features were noted to be increased more when buthionine sulfoximine (a specific glutathione-depleting agent) was also given prior to cisplatin treatment. However, combination treatment of cysteine (precursor for glutathione synthesis) plus cisplatin resulted in an improvement in the glutathione levels and decrease in hematological toxicities. It is noted that the glutathione levels in blood and abnormalities in erythrocytes and other hematological parameters are inversely related in cisplatin-mediated cancer chemotherapy. It is suggested that blood glutathione may play an important role in the development of cisplatin-mediated hematological toxicity in the host. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
The formation of two hemoglobin forms (methemoglobin and nitrite methemoglobin) in native human erythrocytes in the presence of sodium nitrite in suspension was shown. In normal erythrocytes, the interaction of intracellular oxyhemoglobin with nitrite ions results in the formation of methemoglobin, whereas in metabolically exhausted erythrocytes, this leads predominantly to the formation of nitrite methemoglobin. The nitrite methemoglobin reacts with hydrogen peroxide to form reactive intermediates (e.g. peroxynitrous acid) and the products of hemoglobin destruction. During the storage of erythrocyte suspensions containing methemoglobin and modified nitrite methemoglobin, differences in the forms of erythrocytes and the degree of their hemolysis were revealed. It is assumed that the formation of methemoglobin leads to the destruction of erythrocytes.  相似文献   

19.
The main metabolic properties of human red blood cells (RBC) overloaded with glucose catabolizing enzymes such as hexokinase and glucose oxidase were evaluated. Human erythrocytes loaded with human hexokinase metabolized 3.1 +/- 0.2 mumol/h/ml RBC of glucose, an amount double that consumed by normal and unloaded cells (1.46 +/- 0.16 mumol/h/ml RBC), while glucose oxidase-loaded erythrocytes consumed up to 5.5 +/- 0.5 mumol/h/ml RBC of glucose but with a time-dependent increase in methemoglobin formation due to the H2O2 produced in the glucose oxidase reaction. This methemoglobin production was greatly reduced while glucose consumption was increased (8.1 +/- 0.4 mumol/h/ml RBC) by coentrapment of hexokinase and glucose oxidase. Similar results were obtained in mouse red blood cells, although the role of hexokinase was less pronounced due to a higher basal level of this enzyme. When administered to diabetic mice the hexokinase/glucose oxidase-overloaded erythrocytes had a circulating half-life of 5 days and were able to regulate blood glucose at near physiological levels. A single intraperitoneal administration of 500 microliters of enzyme-loaded cells maintained a near-normal blood glucose concentration for 7 +/- 1 days, while repeated administrations at 10-day intervals were effective in the regulation of blood glucose levels for several weeks. These results suggest that enzyme-loaded erythrocytes can behave as circulating bioreactors and can provide a new way to reduce abnormally elevated blood glucose.  相似文献   

20.
Riboflavin deficiency inhibits the growth of malaria parasites both in vitro and in vivo in infected animals and humans. Although the precise mechanisms underlying this inhibition are unknown, they may involve enhanced requirements for riboflavin by parasites. To investigate this possibility, the rate of uptake of [14C]riboflavin and the biosynthesis of FMN and FAD from riboflavin were studied in infected (5-8% parasitemia) and uninfected human erythrocytes. All cells were incubated for 0-3 h at 37 degrees C in phosphate buffered saline containing MgCl2, glucose, and [14C]riboflavin (2.5-7.5 microM). At hourly intervals, samples were removed, centrifuged, washed twice with cold buffer, and lysed before counting the radioactivity. The rate of in vitro biosynthesis of FMN and FAD from riboflavin in erythrocytes was measured by ion exchange chromatography and reverse isotope dilution techniques. Results showed that the rate of riboflavin uptake and the biosynthesis of FMN and FAD were enhanced in erythrocytes with parasitemia as compared with results in unparasitized erythrocytes. Riboflavin uptake in erythrocytes was proportional to the extent of parasitemia and especially to percent of schizonts present in erythrocytes. These studies indicate that the requirement for riboflavin may be greater in the parasite than in the host erythrocyte. This increased riboflavin requirement may be due to rapid multiplication, higher metabolic rate, and extreme vulnerability to oxidative stress of malaria parasites compared with that of host erythrocytes. The differential requirement of riboflavin by the host and the malaria parasite may hold important potential for developing new strategies for malaria chemotherapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号