首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
Little effort has been made to apply the insights gained from studies of amphibian limb regeneration to higher vertebrates. During amphibian limb regeneration, a functional epithelium called the apical ectodermal cap (AEC) triggers a regenerative response. As long as the AEC is induced, limb regeneration will take place. Interestingly, similar responses have been observed in chicken embryos. The AEC is an equivalent structure to the apical ectodermal ridge (AER) in higher vertebrates. When a limb bud is amputated it does not regenerate; however, if the AER is grafted onto the amputation surface, damage to the amputated limb bud can be repaired. Thus, the AER/AEC is able to induce regenerative responses in both amphibians and higher vertebrates. It is difficult, however, to induce limb regeneration in higher vertebrates. One reason for this is that re-induction of the AER after amputation in higher vertebrates is challenging. Here, we evaluated whether AER re-induction was possible in higher vertebrates. First, we assessed the sequence of events following limb amputation in chick embryos and compared the features of limb development and regeneration in amphibians and chicks. Based on our findings, we attempted to re-induce the AER. When wnt-2b/fgf-10-expressing cells were inserted concurrently with wounding, successful re-induction of the AER occurred. These results open up new possibilities for limb regeneration in higher vertebrates since AER re-induction, which is considered a key factor in limb regeneration, is now possible.  相似文献   

2.
Microsurgical suppression of presumptive endocrine areas in very young embryos of Clitumnus resulted in an arrest in development, which occurred at different stages according to the operation. In most cases however. the duration of embryonic life was not reduced significanly. The repercussions of each operation type on the ecdysteroid content of the embryos were determined using a radioimmunoassay technique.Consideration of the experimental results provides some indication on the part played by each endocrine formation during the last part of embryonic development that is between dorsal closure and hatching time. Our experiments offer original evidence that the corpora allata of the embyro are of utmost importance at the stage VII3t, in initiating the normal expression of larval characteristics.  相似文献   

3.
In the absence of metal ions, the reaction of 5-deoxypyridoxal (III) with α-phenyl-α-aminomalonic acid, (II; R=C6H5) leads to the formation of two 5-deoxypyridoxal-derived products, 5-deoxypyridoxamine (VII) and a dimer-like product (VIII) formed from the condensation of a molecule of III and a molecule of VII (J. W. Thanassi, Biochemistry12, 5109 (1973)). The addition of excess Zn2+ ions or limiting Cu2+ ions leads to the formation of VII only. Addition of excess Cu2+ ions results in an entirely different 5-deoxypyridoxal-derived product, VI, which is a peptide of 5-deoxypyridoxic acid and d,l-α-phenylglycine (V), and which is formed in an oxidative reaction. Mechanisms for the formation of these compounds are discussed in relation to reaction selectivity in vitamin B6 catalysis.  相似文献   

4.
Regeneration, the ability to restore body parts after an injury or an amputation, is a widespread but highly variable and complex phenomenon in animals. While having fascinated scientists for centuries, fundamental questions about the cellular basis of animal regeneration as well as its evolutionary history remain largely unanswered. Here, we present a study of regeneration of the marine annelid Platynereis dumerilii, an emerging comparative developmental biology model, which, like many other annelids, displays important regenerative abilities. When P. dumerilii worms are amputated, they are able to regenerate the posteriormost differentiated part of their body and a stem cell-rich growth zone that allows the production of new segments replacing the amputated ones. We show that posterior regeneration is a rapid process that follows a well reproducible path and timeline, going through specific stages that we thoroughly defined. Wound healing is achieved one day after amputation and a regeneration blastema forms one day later. At this time point, some tissue specification already occurs, and a functional posterior growth zone is re-established as early as three days after amputation. Regeneration timing is only influenced, in a minor manner, by worm size. Comparable regenerative abilities are found for amputations performed at different positions along the antero-posterior axis of the worm, except when amputation planes are very close to the pharynx. Regenerative abilities persist upon repeated amputations without important alterations of the process. We also show that intense cell proliferation occurs during regeneration and that cell divisions are required for regeneration to proceed normally. Finally, 5-ethynyl-2’-deoxyuridine (EdU) pulse and chase experiments suggest that blastemal cells mostly derive from the segment immediately abutting the amputation plane. The detailed characterization of P. dumerilii posterior body regeneration presented in this article provides the foundation for future mechanistic and comparative studies of regeneration in this species.  相似文献   

5.
Regeneration of lost organs involves complex processes, including host defense from infection and rebuilding of lost tissues. We previously reported that Xenopus neuronal pentraxin I (xNP1) is expressed preferentially in regenerating Xenopus laevis tadpole tails. To evaluate xNP1 function in tail regeneration, and also in tail development, we analyzed xNP1 expression in tailbud embryos and regenerating/healing tails following tail amputation in the ‘regeneration’ period, as well as in the ‘refractory’ period, when tadpoles lose their tail regenerative ability. Within 10 h after tail amputation, xNP1 was induced at the amputation site regardless of the tail regenerative ability, suggesting that xNP1 functions in acute phase responses. xNP1 was widely expressed in regenerating tails, but not in the tail buds of tailbud embryos, suggesting its possible role in the immune response/healing after an injury. xNP1 expression was also observed in neural tissues/primordia in tailbud embryos and in the spinal cord in regenerating/healing tails in both periods, implying its possible roles in neural development or function. Moreover, during the first 48 h after amputation, xNP1 expression was sustained at the spinal cord of tails in the ‘regeneration’ period tadpoles, but not in the ‘refractory’ period tadpoles, suggesting that xNP1 expression at the spinal cord correlates with regeneration. Our findings suggest that xNP1 is involved in both acute phase responses and neural development/functions, which is unique compared to mammalian pentraxins whose family members are specialized in either acute phase responses or neural functions.  相似文献   

6.
Three benzimidazolium salts (III-V) and respective selenium adducts (VI-VIII) were designed, synthesized and characterized by various analytical techniques (FT-IR and NMR 1H, 13C). Selected salts and respective selenium N-Heterocyclic carbenes (selenium-NHC) adducts were tested in vitro against Cervical Cancer Cell line (Hela), Breast Adenocarcinoma cell line (MCF-7), Retinal Ganglion Cell line (RGC-5) and Mouse Melanoma Cell line (B16F10) using MTT assay and the results were compared with standard drug 5-Fluorouracil. Se-NHC compounds and azolium salts showed significant anticancer potential. Molecular docking studies of compounds (VI, VII and VIII) showed strong binding energies and ligand affinity toward following angiogenic factors: VEGF-A (vascular endothelial growth factor A), EGF (human epidermal growth factor), HIF (Hypoxia-inducible factor) and COX-1 (Cyclooxygenase-1) suggesting that the anticancer activity of adducts (VI, VII and VIII) may be due to their strong anti-angiogenic effect. In addition, compounds III-VIII were screened for their antibacterial and antifungal potential. Adduct VI was found to be potent anti-fungal agent against A. Niger with zone of inhibition (ZI) value 27.01 ± 0.251 mm which is better than standard drug Clotrimazole tested in parallel.  相似文献   

7.
Nymphs of hemimetabolous insects, such as cockroaches and crickets, possess functional legs with a remarkable capacity for epimorphic regeneration. In this study, we have focused on the role of epidermal growth factor receptor (EGFR) signaling in regeneration of a nymphal leg in the cricket Gryllus bimaculatus. We performed loss-of-function analyses with a Gryllus Egfr homolog (Gb'Egfr) and nymphal RNA interference (RNAi). After injection of double-stranded RNA for Gb'Egfr in the body cavity of the third instar cricket nymph, amputation of the leg at the distal tibia resulted in defects of normal distal regeneration. The regenerated leg lacked the distal tarsus and pretarsus. This result indicates that EGFR signaling is required for distal leg patterning in regeneration during the nymphal stage of the cricket. Furthermore, we demonstrated that EGFR signaling acts downstream of the canonical Wnt/Wg signaling and regulates appendage proximodistal (PD) patterning genes aristaless and dachshund during regeneration. Our results suggest that EGFR signaling influences positional information along the PD axis in distal leg patterning of insects, regardless of the leg formation mode.  相似文献   

8.
Very little is known about the factors that cause variation in regenerative potential within and between species. Here, we used a genetic approach to identify heritable genetic factors that explain variation in tail regenerative outgrowth. A hybrid ambystomatid salamander (Ambystoma mexicanum x A. andersoni) was crossed to an A. mexicanum and 217 offspring were induced to undergo metamorphosis and attain terrestrial adult morphology using thyroid hormone. Following metamorphosis, each salamander’s tail tip was amputated and allowed to regenerate, and then amputated a second time and allowed to regenerate. Also, DNA was isolated from all individuals and genotypes were determined for 187 molecular markers distributed throughout the genome. The area of tissue that regenerated after the first and second amputations was highly positively correlated across males and females. Males presented wider tails and regenerated more tail tissue during both episodes of regeneration. Approximately 66–68% of the variation in regenerative outgrowth was explained by tail width, while tail length and genetic sex did not explain a significant amount of variation. A small effect QTL was identified as having a sex-independent effect on tail regeneration, but this QTL was only identified for the first episode of regeneration. Several molecular markers significantly affected regenerative outgrowth during both episodes of regeneration, but the effect sizes were small (<4%) and correlated with tail width. The results show that ambysex and minor effect QTL explain variation in adult tail morphology and importantly, tail width. In turn, tail width at the amputation plane largely determines the rate of regenerative outgrowth. Because amputations in this study were made at approximately the same position of the tail, our results resolve an outstanding question in regenerative biology: regenerative outgrowth positively co-varies as a function of tail width at the amputation site.  相似文献   

9.
Patterns of mitotic cells’ distribution and activation of the MAP-kinase cascade during the regeneration of Xenopus laevis tadpole tails were studied before and during the refractory period. It is known that the tadpoles of Xenopus laevis are able to fully restore the full structure of the tail after amputation. However, in the refractory period (stage 45–47), the ability to regenerate is significantly reduced, until its complete absence. The mechanisms of this phenomenon are still poorly understood. We conducted a comparative analysis of the average number of mitotic cells on 0–4 days post amputation in normally regenerating tails and in tails amputated during the refractory period. A significant decrease in the number of proliferating cells throughout the surface of the tail in the refractory period compared with their sharp increase in the blastema area in normally regenerating tadpoles was shown. In addition, we detected activation of the MAP-kinase cascade (dpERK1/2) during normal regeneration and demonstrated its full inhibition during the refractory period. At the same time, in the distal part of the tail amputated in the refractory period, activation of the expression of the regenerative marker gene Fgf20 was not detected. Thus, we can conclude that the blocking of the regenerative capacity in tadpoles during the refractory period is accompanied by a sharp suppression of the mitotic activity of the cells and a misregulation of the activation of the Fgf–MAP-kinase cascade in the tail after amputation.  相似文献   

10.
The extent of cellular heterogeneity involved in neuronal regeneration after spinal cord injury (SCI) remains unclear. Therefore, we established stress-responsive transgenic zebrafish embryos with SCI. As a result, we found an SCI-induced cell population, termed SCI stress-responsive regenerating cells (SrRCs), essential for neuronal regeneration post-SCI. SrRCs were mostly composed of subtypes of radial glia (RGs-SrRCs) and neuron stem/progenitor cells (NSPCs-SrRCs) that are able to differentiate into neurons, and they formed a bridge across the lesion and connected with neighbouring undamaged motor neurons post-SCI. Compared to SrRCs at the caudal side of the SCI site (caudal-SrRCs), rostral-SrRCs participated more actively in neuronal regeneration. After RNA-seq analysis, we discovered that caveolin 1 (cav1) was significantly upregulated in rostral-SrRCs and that cav1 was responsible for the axonal regrowth and regenerative capability of rostral-SrRCs. Collectively, we define a specific SCI-induced cell population, SrRCs, involved in neuronal regeneration, demonstrate that rostral-SrRCs exhibit higher neuronal differentiation capability and prove that cav1 is predominantly expressed in rostral-SrRCs, playing a major role in neuronal regeneration after SCI.  相似文献   

11.
Summary

Embryos of the phasmid Carausius morosus Br., deprived of their head at an early stage (V3, 27th day) of development live up to the 147th day when grown on their own vitello-serosal system.

In these embryos, the 2nd embryonic cuticle characteristic of the dorsal closure stage, and the 3rd embryonic cuticle (1st larval cuticle) with its setae and procuticle, both have a typical structure. Thus the cephalic endocrine system of the embryo is clearly not indispensable either for 2nd and 3rd cuticle deposition, or for production of a typical ecdysteroid peak at the dorsal closure, or even for the rise of ecdysteroid level during the 3rd cuticle secretion. But in decapitated embryos this rise is not followed by a decrease as it is in controls.

In both operated eggs and controls, the same free and conjugated 3 hormones were separated by HPLC and quantified by RIA: 20,26-dihydroxyecdysone, 20-hydroxyecdysone (main hormone in the phasmid) and ecdysone.

Very similar quantitative results were obtained for controls and operated eggs at the dorsal closure stage. However, noteworthy differences were found between the two kinds of eggs concerning the respective levels of 20-hydroxyecdysone and of its conjugates during the 3rd cuticle secretion.  相似文献   

12.
13.
Xenopus laevis larvae at stage 53 and 55 (according to Nieuwkoop and Faber 1956) were subjected to amputation of one or both hindlimbs and reared either in thyroxine (T4) 2.5 to 10 g/l or in propyl-thiouracil (PTU) 0.01%. Results have shown that when the limb was amputated through a nearly undifferentiated region (tarsalia level, at stage 53) or through a differentiating region (tarsalia level, at stage 55), T4 accelerated the regenerative process and enhanced the mitotic and labelling indices of blastemal cells, when compared with controls. However, PTU delayed the regenerative process and lowered the mitotic and labelling indices. When the limb was amputated through an almost differentiated region (mid-thigh level, at stage 55), T4 inhibited the conic blastema formation, while PTU did not significatively influence limb regeneration. T4 did not modify the morphogenetic properties of the regenerative blastemata, which are characteristic of the developmental stage and the degree of differentiation of the limb tissues at the amputation level. On the whole, the data show that T4, besides being indirectly responsible for the decline of the limb regenerative capacity in a proximodistal direction by promoting limb differentiation, also exerts a direct effect on the regenerative process. Correspondence to: S. Filoni  相似文献   

14.
Tissue and organ regeneration, unlike development, involves an injury that in postembryonic animals triggers inflammation followed by resolution. How inflammation affects epimorphic regeneration is largely uninvestigated. Here we examine inflammation and its resolution in Xenopus laevis hindlimb regeneration, which declines during larval development. During the first 5 days postamputation, both regeneration-competent stage 53 and regeneration-deficient stage 57 hindlimbs showed very rapid accumulation of leukocytes and cells expressing interleukin-1β and matrix metalloproteinase 9. Expression of genes for factors mediating inflammatory resolution appeared more persistent at stages 55 and 57 than at stage 53, suggesting changes in this process during development. FoxP3, a marker for regulatory T cells, was upregulated by amputation in limbs at all three stages but only persisted at stage 57, when it was also detected before amputation. Expression of genes for cellular reprogramming, such as SALL4, was upregulated in limbs at all 3 stages, but markers of limb patterning, such as Shh, were expressed later and less actively after amputation in regeneration-deficient limbs. Topical application of specific proinflammatory agents to freshly amputated limbs increased interleukin-1β expression locally. With aqueous solutions of the proinflammatory metal beryllium sulfate, this effect persisted through 7 days postamputation and was accompanied by inhibition of regeneration. In BeSO4-treated limbs expression of markers for both inflammation and resolution, including FoxP3, was prolonged, while genes for cellular reprogramming were relatively unaffected and those for limb patterning failed to be expressed normally. These data imply that in Xenopus hindlimbs postamputation inflammation and its resolution change during development, with little effect on cellular dedifferentiation or reprogramming, but potentially interfering with the expression of genes required for blastema patterning. The results suggest that developmental changes in the larval anuran immune system may be involved in the ontogenetic loss of epimorphic regeneration in this system.  相似文献   

15.
Peaks of ecdysteroids were observed during the different phases of embryonic development of intact Carausius eggs or eggs precociously deprived of their exochorion and cultivated under paraffin oil. Several groups of ecdysteroids were separated and analyzed by thin-layer chromatography (TLC) and high performance liquid chromatography (HPLC) combined with radioimmunoassay. Ecdysteroids were similar in the two categories of eggs, including high-polarity products (essentially conjugates hydrolyzable by Helix pomatia digestive juice, or alkaline phosphatase), possible ecdysonoic acids (unhydrolyzable polar substances), free hormones, and nonpolar ecdysteroids. Four ecdysteroids were identified by co-elution during HPLC with reference compounds of 20,26-dihydroxyecdysone, 20-hydroxyecdysone, ecdysone, and 2-deoxy-20-hydroxyecdysone. Concentrations of these substances (free and conjugated forms) were studied during the different stages of embryonic development: 20-hydroxyecdysone and 2-deoxy-20-hydroxyecdysone were the major free ecdysteroids. They showed parallel variations with large peaks at stages VI8 and VII6 whereas ecdysone titers were consistently low. Injected labelled ecdysone was converted efficiently into 20-hydroxyecdysone, and both compounds underwent 26-hydroxylation and/or conjugation to polar or apolar metabolites.  相似文献   

16.
The aim of this study was to isolate and characterize endophytic bacteria from roots, stems and leaves of Zn/Cd hyperaccumulator Sedum alfredii. Endophytic bacteria were observed in roots, stems and leave of S. alfredii, with a significantly higher density in roots, followed by leave and stems. A total of fourteen bacterial endophytes were isolated and are closely related phylogenetically to Pseudomonas, Bacillus, Stenotrophomonas, Acinetobacte by 16S rRNA sequence analysis. Most of the endophytic bacteria were found to exhibit high Zn and Cd resistance characteristics, but difference existed among this isolates. The fourteen endophytic bacteria all had the capacity to produce IAA. Moreover, strains VI8L1, VI8L2, VI8L4, VI8R2, VI8R3 and II2R3 could solubilize Ca3(PO4)2, strains VI8L2, II8L4 and VI8R2 could produce siderophore, and strains VI8L2 and VI8R3 had the capacity of nitrogen fixation. Both plate and broth assay proved that strain VI8L1, VI8L2, II8L4 and VI8R2 were able to effectively solubilize ZnCO3 and Zn3(PO4)2. The filtrate liquid media after growth of strains VI8L1, VI8L2, II8L4 and VI8R2 extracted much higher Zn from artificially ZnCO3 and Zn3(PO4)2 contaminated soils than those extracted by axenic SMS broth, and the filtrates of the culture media supporting growth of strains VI8L2, II8L4 and VI8R2 also extracted significantly greater quantities of Zn from the Dabaoshan contaminated soils. This Zn mobilizing, plant growth promoting and metal resistant endophytic bacteria may offer promise as inoculants to increase soil Zn bioavailability and improve growth and Zn accumulation by S. alfredii.  相似文献   

17.
18.
Regeneration is a vital process to maintain and repair tissues. Despite the importance of regeneration, the genes responsible for regenerative growth remain largely unknown. In Drosophila, imaginal disc regeneration can be induced either by fragmentation and in vivo culture or in situ by ubiquitous expression of wingless (wg/wnt1). Imaginal discs, like appendages in lower vertebrates, initiate regeneration by wound healing and proliferation at the wound site, forming a regeneration blastema. Most blastema cells maintain their disc-specific identity during regeneration; a few cells however, exhibit stem-cell like properties and switch to a different fate, in a phenomenon known as transdetermination. We identified three genes, regeneration (rgn), augmenter of liver regeneration (alr) and Matrix metalloproteinase-1 (Mmp1) expressed specifically in blastema cells during disc regeneration. Mutations in these genes affect both fragmentation- and wg-induced regeneration by either delaying, reducing or positioning the regeneration blastema. In addition to the modifications of blastema homeostasis, mutations in the three genes alter the rate of regeneration-induced transdetermination. We propose that these genes function in regenerative proliferation, growth and regulate cellular plasticity.  相似文献   

19.
The development of the segment pattern in Smittia embryos can be manipulated experimentally. Centrifugation during intravitelline cleavage leads to a mirror image duplication of most of the head in the absence of abdominal segments (“double cephalons”). Conversely, mirror image duplications of abdominal segments in the absence of head and thorax (“double abdomens”) can be generated by UV-irradiation of the anterior pole before blastoderm formation. By subsequent exposure to blue light, UV-irradiated embryos can be reprogrammed for normal development (photoreversal). We have characterized an “anterior indicator” protein (designated AI1; Mr ? 35,000; IEP ? 4.9). Its synthesis was restricted to anterior fragments of embryos during a late blastoderm stage (BlVI). This protein was synthesized, however, in both anterior and posterior fragments of prospective double cephalons. Conversely, this protein was synthesized neither in anterior nor in posterior fragments of UV-induced double abdomens. Upon photoreversal, the protein was synthesized again in anterior fragments. Thus, synthesis of this protein in a given fragment always indicated development of head and thorax there. Likewise, we have characterized a “posterior indicator protein” (designated PI1, Mr ? 50,000, IEP ? 5.5). Its synthesis during early blastoderm stages (BlI and BlII) was restricted to posterior fragments but not to pole cells in normal embryos. In UV-induced double abdomens, PII was synthesized in both anterior and posterior fragments at stage BlII. Photoreversal again led to restriction of PII synthesis to posterior fragments. Thus, the synthesis of PII in a given fragment at stage BlII always foreshadowed the formation of an abdomen several hours before this can be discerned morphologically. The synthesis of two other proteins (designated a1 and p1) was also restricted, during certain blastoderm stages, to anterior or posterior fragments, respectively. However, UV-irradiation or centrifugation had little or no effect on the synthesis of these proteins. Conversely, programming embryos for double abdomen development by UV-irradiation caused a set of reproducible, and mostly photoreversible, changes in the pattern of proteins synthesized in anterior embryonic fragments. However, the synthesis of most of the affected proteins was not region-specific in normal embryos.  相似文献   

20.
Regenerative abilities are found ubiquitously among many metazoan taxa. To compare mechanisms underlying the initial stages of limb regeneration between insects and vertebrates, the roles of matrix metalloproteinases (MMPs) and fibroblast growth factor (FGF) signaling were investigated in the red flour beetle, Tribolium castaneum. RNA interference-mediated knockdown of MMP2 expression delayed wound healing and subsequent leg regeneration. Additionally, pairwise knockdown of MMP1/2 and MMP2/3, but not MMP1/3, resulted in inhibition of wound closure. Wound healing on the dorsal epidermis after injury was also delayed when MMPs were silenced. Our findings show that functionally redundant MMPs play key roles during limb regeneration and wound healing in Tribolium. This MMP-mediated wound healing is necessary for the subsequent formation of a blastema. In contrast, silencing of FGF receptor did not interfere with the initial stages of leg regeneration despite the alterations in tanning of the cuticle. Thus, insects and vertebrates appear to employ similar developmental processes for the initial stages of wound closure during limb regeneration, while the role of FGF in limb regeneration appears to be unique to vertebrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号