首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
《Genomics》2021,113(4):2122-2133
This study aimed to investigate the function of OCT3/4 on tumor immune escape in bladder cancer. Initially, the expression of OCT3/4, TET1, NRF2 and MDM2 was quantified in tumor tissues and cells, followed by gain- or loss-of-function studies to define their roles in cell migration, invasion and apoptosis and tumorigenicity in nude mice. Bladder cancer presented with abundant expression levels of OCT3/4, TET1, NRF2 and MDM2. We found that OCT3/4 promoted TET1 expression via binding to its promoter and that TET1 recruited MLL protein to NRF2 promoter and upregulated its expression, while NRF2 enhanced MDM2 expression. Upregulated MDM2 accelerated tumor immune escape in bladder cancer in mice. OCT3/4 knockdown suppressed the cell migration and invasion while inducing apoptosis, and consequently prevented tumor growth and immune escape in mice. Collectively, OCT3/4 may promote the progression of tumor immune escape in bladder cancer through acting as a promoter of the TET1/NRF2/MDM2 axis.  相似文献   

3.
Long noncoding RNAs (lncRNAs) have been shown to have critical regulatory roles in tumorigenesis. lncRNA LINC01561 (LINC01561) is a newly identified tumor-related lncRNA and its dysregulation has been demonstrated in several tumors. However, whether LINC01561 is involved in the progression of non-small-cell lung carcinoma (NSCLC) and its underlying mechanisms remain unknown. In this study, we first provided evidence that LINC01561 expressions were distinctly upregulated in NSCLC tissues and cell lines. Combining with bioinformatics assays and mechanism experiments, our group demonstrated that LINC01561 was activated by SOX2 in NSCLC. Clinical research revealed that upregulation of LINC01561 was related to poorer clinicopathologic features and shorter survival time. Functionally, suppression of LINC01561 exhibited tumor-suppressive functions through impairing cell proliferation, migration, and invasion as well as inducing apoptosis. Moreover, we verified that LINC01561 could directly bind to miR-760, isolating miR-760 from its target gene SHC SH2 domain-binding protein 1 (SHCBP1). We also found that SHCBP1 was lowly expressed in NSCLC and served as a tumor promoter. A functional study indicated that LINC01561 regulated SHCBP1 expression by competitively binding to miR-760. In summary, our findings indicated that SOX2-induced overexpression of LINC01561 promoted the proliferation and metastasis by acting as a competing endogenous RNA to modulate SHCBP1 by sponging miR-760.  相似文献   

4.
5.
Epidermal growth factor (EGF) activation of the EGF receptor (EGFR) is an important mediator of cell migration, and aberrant signaling via this system promotes a number of malignancies including ovarian cancer. We have identified the cell surface glycoprotein CDCP1 as a key regulator of EGF/EGFR-induced cell migration. We show that signaling via EGF/EGFR induces migration of ovarian cancer Caov3 and OVCA420 cells with concomitant up-regulation of CDCP1 mRNA and protein. Consistent with a role in cell migration CDCP1 relocates from cell-cell junctions to punctate structures on filopodia after activation of EGFR. Significantly, disruption of CDCP1 either by silencing or the use of a function blocking antibody efficiently reduces EGF/EGFR-induced cell migration of Caov3 and OVCA420 cells. We also show that up-regulation of CDCP1 is inhibited by pharmacological agents blocking ERK but not Src signaling, indicating that the RAS/RAF/MEK/ERK pathway is required downstream of EGF/EGFR to induce increased expression of CDCP1. Our immunohistochemical analysis of benign, primary, and metastatic serous epithelial ovarian tumors demonstrates that CDCP1 is expressed during progression of this cancer. These data highlight a novel role for CDCP1 in EGF/EGFR-induced cell migration and indicate that targeting of CDCP1 may be a rational approach to inhibit progression of cancers driven by EGFR signaling including those resistant to anti-EGFR drugs because of activating mutations in the RAS/RAF/MEK/ERK pathway.  相似文献   

6.
The oncogenic SHC proteins are signaling substrates for most receptor and cytoplasmic tyrosine kinases (TKs) and have been implicated in cellular growth, transformation, and differentiation. In tumor cells overexpressing TKs, the levels of tyrosine phosphorylated SHC are chronically elevated. The significance of amplified SHC signaling in breast tumorigenesis and metastasis remains unknown. Here we demonstrate that seven- to ninefold overexpression of SHC significantly altered interactions of cells with fibronectin (FN). Specifically, in human breast cancer cells overexpressing SHC (MCF-7/SHC) the association of SHC with α5β1 integrin (FN receptor) was increased, spreading on FN was accelerated, and basal growth on FN was reduced. These effects coincided with an early decline of adhesion-dependent MAP kinase activity. Basal motility of MCF-7/SHC cells on FN was inhibited relative to that in several cell lines with normal SHC levels. However, when EGF or IGF-I was used as the chemoattractant, the locomotion of MCF-7/SHC cells was greatly (approx fivefold) stimulated, while it was only minimally altered in the control cells. These data suggest that SHC is a mediator of the dynamic regulation of cell adhesion and motility on FN in breast cancer cells.  相似文献   

7.
Bladder cancer remains a leading cause of cancer-related death because of its distant metastasis and high recurrence rates. Deregulation of circular RNAs (circRNAs) can act either as tumor suppressors or oncogenes to control cell proliferation, migration, and metastasis. The role of circMTO1 in bladder cancer remain unknown. In this study, we investigated whether circMTO1 could use as a biomarker and therapeutic target for bladder cancer treatment. We first demonstrated that circMTO1 was an important circRNA frequently downregulated in bladder cancer tissue, and lower circMTO1 levels were positively correlated with bladder cancer patients' metastasis and poorer survival. Ectopic expression of circMTO1 in bladder cancer cells inhibited cell's epithelial-to-mesenchymal transition (EMT) and metastasis. In addition, we also revealed that circMTO1 was able to sponge miR-221 and overexpression of circMTO1 negatively regulated the E-cadherin/N-cadherin pathway to inhibit bladder cancer cells' EMT by competing for miR-221. In conclusion, our findings provide comprehensive evidences that circMTO1 is a prognostic biomarker in bladder cancer and suggest that circMTO1 may function as a novel therapeutic target in human bladder cancer.  相似文献   

8.
TNF receptor-associated factor 6 (TRAF6)-BECN1 signaling axis plays a pivotal role in autophagy induction through ubiquitination of BECN1, thereby inducing lung cancer migration and invasion in response to toll-like receptor 4 (TLR4) stimulation. Herein, we provide novel molecular and cellular mechanisms involved in the negative effect of ubiquitin-specific peptidase 15 (USP15) on lung cancer progression. Clinical data of the TCGA and primary non-small cell lung cancer (NSCLC) patients (n = 41) revealed that the expression of USP15 was significantly downregulated in lung cancer patients. Importantly, USP15-knockout (USP15KO) A549 and USP15KO H1299 lung cancer cells generated with CRISPR-Cas9 gene-editing technology showed increases in cancer migration and invasion with enhanced autophagy induction in response to TLR4 stimulation. In addition, biochemical studies revealed that USP15 interacted with BECN1, but not with TRAF6, and induced deubiquitination of BECN1, thereby attenuating autophagy induction. Notably, in primary NSCLC patients (n = 4) with low expression of USP15, 10 genes (CCNE1, MMP9, SFN, UBE2C, CCR2, FAM83A, ETV4, MYO7A, MMP11, and GSDMB) known to promote lung cancer progression were significantly upregulated, whereas 10 tumor suppressor genes (FMO2, ZBTB16, FCN3, TCF21, SFTPA1B, HPGD, SOSTDC1, TMEM100, GDF10, and WIF1) were downregulated, providing clinical relevance of the functional role of USP15 in lung cancer progression. Taken together, our data demonstrate that USP15 can negatively regulate the TRAF6-BECN1 signaling axis for autophagy induction. Thus, USP15 is implicated in lung cancer progression.Subject terms: Non-small-cell lung cancer, Cell invasion  相似文献   

9.
10.
Bladder cancer is one of the most common malignant tumors in the urinary system. The development and improvement of treatment efficiency require the deepening of the understanding of its molecular mechanism. This study investigated the role of ALPK2, which is rarely studied in malignant tumors, in the development of bladder cancer. Our results showed the upregulation of ALPK2 in bladder cancer, and data mining of TCGA database showed the association between ALPK2 and pathological parameters of patients with bladder cancer. In vitro and in vivo experiments demonstrated that knockdown of ALPK2 could inhibit bladder cancer development through regulating cell proliferation, cell apoptosis, and cell migration. Additionally, DEPDC1A is identified as a potential downstream of ALPK2 with direct interaction, whose overexpression/downregulation can inhibit/promote the malignant behavioral of bladder cancer cells. Moreover, the overexpression of DEPDC1A can rescue the inhibitory effects of ALPK2 knockdown on bladder cancer. In conclusion, ALPK2 exerts a cancer-promoting role in the development of bladder cancer by regulating DEPDC1A, which may become a promising target to improve the treatment strategy of bladder cancer.Subject terms: Cancer models, Bladder cancer  相似文献   

11.

Background

We aimed to examine the expression level of Nucleophosmin (NPM1) protein in colon cancer tissues and to investigate the potential role of NPM1 in the regulation of cell migration and invasiveness.

Methods

Immunohistochemical assay was performed to examine the expression pattern of NPM1 in 31 groups of colonic carcinoma samples, including colon tumors, adjacent normal tissues, and matched metastatic lymph nodes from the same patients. Small interfering RNA technique and exogenous expression of wild type NPM1 methods were used to further verify the function of NPM1.

Results

High-expression of NPM1 correlates with lymph node metastasis (P = 0.0003) and poor survival rate of human colon cancer patients (P = 0.017). SiRNA-mediated reduction of NPM1 was also shown to inhibit the migration and invasiveness of metastatic colon cancer HCT116 cell line. In addition, the exogenous expression of NPM1 in HT29 cells, a NPM1 low expression and low invasive colon cancer cell line, enhanced cell migration and invasiveness along with increased cell proliferation.

Conclusions

The current study uncovered the critical role of NPM1 in the regulation of colon cancer cells migration and invasion, and NPM1 may serve as a potential marker for the prognosis of colon cancer patients.  相似文献   

12.
MUC1 is a type I transmembrane glycoprotein aberrantly overexpressed in various cancer cells. High expression of MUC1 is closely associated with cancer progression and metastasis, leading to poor prognosis. We previously reported that MUC1 is internalized by the binding of the anti-MUC1 antibody, from the cell surface to the intracellular region via the macropinocytotic pathway. Since MUC1 is closely associated with ErbBs, such as EGF receptor (EGFR) in cancer cells, we examined the effect of the anti-MUC1 antibody on EGFR trafficking. Our results show that: (1) anti-MUC1 antibody GP1.4, but not another anti-MUC1 antibody C595, triggered the internalization of EGFR in pancreatic cancer cells; (2) internalization of EGFR by GP1.4 resulted in the inhibition of ERK phosphorylation by EGF stimulation, in a MUC1 dependent manner; (3) inhibition of ERK phosphorylation by GP1.4 resulted in the suppression of proliferation and migration of pancreatic cancer cells. We conclude that the internalization of EGFR by anti-MUC1 antibody GP1.4 inhibits the progression of cancer cells via the inhibition of EGFR signaling.  相似文献   

13.
Bladder cancer is the most common malignancy with high recurrence. Currently, the long noncoding RNAs (lncRNAs) have been suggested to play vital roles in the pathogenesis of bladder cancer. The present study investigated the role of lncRNA MIR503 host gene (MIR503HG) in the pathogenesis of bladder cancer by using both in vitro and in vivo functional assays. The expression of MIR503HG was downregulated in bladder cancer tissues and cell lines. Low expression of MIR503HG was associated with advanced tumor stage, advanced histological grade, and lymph node metastasis. Ectopic expression of MIR503HG inhibited cell proliferation, cell growth, cell invasion, and migration, and also promoted cell apoptosis and inhibited cell cycle progression in SW780 cells. In parallel, T24 cells were used for loss-of-function studies. Knockdown of MIR503HG promoted the cancer cell proliferation and increased the migration and invasion abilities of T24 cells. In addition, knockdown of MIR503HG reduced the cell apoptotic rate in cancer cells and promoted cell cycle progression. Furthermore, MIR503HG overexpression decreased the epithelial-mesenchymal transition-related mRNA and protein levels of ZEB1, Snail, N-cadherin, and vimentin, with an increase in E-cadherin level. Consistently, knockdown of MIR503HG showed the opposite effects. In vivo xenograft, nude mice results showed that overexpression of MIR503HG suppressed the tumor growth and tumor metastasis. In conclusion, our results identified a novel lncRNA MIR503HG that exhibited significant antiproliferation, antimigration/invasion effects on bladder cancer cells both in vitro and in vivo, which may hold a therapeutic promise to treat bladder cancer.  相似文献   

14.

Background

ErbB receptors, EGFR and HER2, have been implicated in the development and progression of colon cancer. Several intracellular pathways are mediated upon activation of EGFR and/or HER2 by EGF. However, there are limited data regarding the EGF-mediated signaling affecting functional cell properties and the expression of extracellular matrix macromolecules implicated in cancer progression.

Methods

Functional assays, such as cell proliferation, transwell invasion assay and migration were performed to evaluate the impact of EGFR/HER2 in constitutive and EGF-treated Caco-2 cells. Signaling pathways were evaluated using specific intracellular inhibitors. Western blot was also utilized to examine the phosphorylation levels of ERK1/2. Real time PCR was performed to evaluate gene expression of matrix macromolecules.

Results

EGF increases cell proliferation, invasion and migration and importantly, EGF mediates overexpression of EGFR and downregulation of HER2. The EGF–EGFR axis is the main pathway affecting colon cancer's invasive potential, proliferative and migratory ability. Intracellular pathways (PI3K-Akt, MEK1/2-Erk and JAK-STAT) are all implicated in the migratory profile. Notably, MT1- and MT2-MMP as well as TIMP-2 are downregulated, whereas uPA is upregulated via an EGF–EGFR network. The EGF–EGFR axis is also implicated in the expression of syndecan-4 and TIMP-1. However, glypican-1 upregulation by EGF is mainly mediated via HER2.

Conclusions and general significance

The obtained data highlight the crucial importance of EGF on the expression of both receptors and on the EGF–EGFR/HER2 signaling network, reveal the distinct roles of EGFR and HER2 on expression of matrix macromolecules and open a new area in designing novel agents in targeting colon cancer. This article is part of a Special Issue entitled Matrix-mediated cell behaviour and properties.  相似文献   

15.
MicroRNAs (miRNAs) are small, endogenous RNAs that play important gene-regulatory roles by binding to the imperfectly complementary sequences at the 3′-UTR of mRNAs and directing their gene expression. Here, we first discovered that miR-576-3p was down-regulated in human bladder cancer cell lines compared with the non-malignant cell line. To better characterize the role of miR-576-3p in bladder cancer cells, we over-expressed or down-regulated miR-576-3p in bladder cancer cells by transfecting with chemically synthesized mimic or inhibitor. The overexpression of miR-576-3p remarkably inhibited cell proliferation via G1-phase arrest, and decreased both mRNA and protein levels of cyclin D1 which played a key role in G1/S phase transition. The knock-down of miR-576-3p significantly promoted the proliferation of bladder cancer cells by accelerating the progression of cell cycle and increased the expression of cyclin D1. Moreover, the dual-luciferase reporter assays indicated that miR-576-3p could directly target cyclin D1 through binding its 3′-UTR. All the results demonstrated that miR-576-3p might be a novel suppressor of bladder cancer cell proliferation through targeting cyclin D1.  相似文献   

16.
The epidermal growth factor (EGF) receptor has been suggested to have an important role in tumor initiation and progression of human bladder cancers. Grb2 protein, which is the downstream effector of the EGF receptor, acts as an adaptor protein between the EGF receptor and the Ras guanine-nucleotide exchange factor, son of sevenless (Sos) protein. Sos protein regulates the action of Ras protein by promoting the exchange of GDP for GTP. However, the significance of Grb2 and Sos proteins, which is related to EGF-triggered Ras activation, has not been elucidated in human bladder cancer. The aim of the present study is to clarify the significance of these proteins in human bladder cancer cell lines. In the present study, we used four human bladder cancer cell lines (T24, KU-7, UMUC-2, UMUC-6) and two kinds of cultured normal urothelial cells (HMKU-1, HMKU-2) isolated from patients with no malignancy. We examined the expression of EGF receptor, Grb2, and Sos proteins in these cells by Western blot analysis. Furthermore, the bladder cancer cell lines were subjected to sequence analysis to identify a point mutation in the c-H-ras gene at codon 12. There was no marked difference in the expression of the EGF receptor between human bladder cancer cell lines and cultured normal urothelial cells. On the other hand, expression of Grb2 and Sos proteins was substantially increased in all human bladder cancer cell lines examined in comparison with cultured normal urothelial cells, whether codon 12 of H-ras was mutated or not. These results suggest that the amplification of both Grb2 and SOS proteins plays an important role in the carcinogenesis of human bladder cancer.  相似文献   

17.
Epidermal growth factor (EGF) is a well-known growth factor that induces cancer cell migration and invasion. Previous studies have shown that SMAD ubiquitination regulatory factor 1 (SMURF1), an E3 ubiquitin ligase, regulates cell motility by inducing RhoA degradation. Therefore, we examined the role of SMURF1 in EGF-induced cell migration and invasion using MDA-MB-231 cells, a human breast cancer cell line. EGF increased SMURF1 expression at both the mRNA and protein levels. All ErbB family members were expressed in MDA-MB-231 cells and receptor tyrosine kinase inhibitors specific for the EGF receptor (EGFR) or ErbB2 blocked the EGF-mediated induction of SMURF1 expression. Within the signaling pathways examined, ERK1/2 and protein kinase C activity were required for EGF-induced SMURF1 expression. The overexpression of constitutively active MEK1 increased the SMURF1 to levels similar to those induced by EGF. SMURF1 induction by EGF treatment or by the overexpression of MEK1 or SMURF1 resulted in enhanced cell migration and invasion, whereas SMURF1 knockdown suppressed EGF- or MEK1-induced cell migration and invasion. EGF treatment or SMURF1 overexpression decreased the endogenous RhoA protein levels. The overexpression of constitutively active RhoA prevented EGF- or SMURF1-induced cell migration and invasion. These results suggest that EGFinduced SMURF1 plays a role in breast cancer cell migration and invasion through the downregulation of RhoA.  相似文献   

18.
Prostate cancer (PCa) is one of the most common malignancies in men. Ribosomal protein L22‐like1 (RPL22L1), a component of the ribosomal 60 S subunit, is associated with cancer progression, but the role and potential mechanism of RPL22L1 in PCa remain unclear. The aim of this study was to investigate the role of RPL22L1 in PCa progression and the mechanisms involved. Bioinformatics and immunohistochemistry analysis showed that the expression of RPL22L1 was significantly higher in PCa tissues than in normal prostate tissues. The cell function analysis revealed that RPL22L1 significantly promoted the proliferation, migration and invasion of PCa cells. The data of xenograft tumour assay suggested that the low expression of RPL22L1 inhibited the growth and invasion of PCa cells in vivo. Mechanistically, the results of Western blot proved that RPL22L1 activated PI3K/Akt/mTOR pathway in PCa cells. Additionally, LY294002, an inhibitor of PI3K/Akt pathway, was used to block this pathway. The results showed that LY294002 remarkably abrogated the oncogenic effect of RPL22L1 on PCa cell proliferation and invasion. Taken together, our study demonstrated that RPL22L1 is a key gene in PCa progression and promotes PCa cell proliferation and invasion via PI3K/Akt/mTOR pathway, thus potentially providing a new target for PCa therapy.  相似文献   

19.
Multifarious biological functions of long noncoding RNAs (lncRNAs) have been reported in various cancers including bladder cancer (BCa). This study aims to determine the biological role of a certain lncRNA in BCa. Consistent with the data of The Cancer Genome Atlas database, it was validated that lncRNA HLA complex group 22 (HCG22) was weakly expressed in BCa samples and lowly expressed HCG22 was closely correlated with low overall survival of the BCa patient. To verify the role of HCG22 in BCa progression, functional experiments were carried out in two representative BCa cells (J82 and T24) and the negative effects of HCG22 expression on the cell proliferation, migration, and epithelial–mesenchymal transition were identified. Mechanistically, polypyrimidine tract-binding protein 1 (PTBP1), which was highly expressed in BCa tissues and cell lines, was negatively regulated by HCG22 and the PTBP1-mediated Warburg effect was also obstructed by HCG22. Furthermore, HCG22 modulated the expression of PTBP1 through destabilizing human antigen R (HuR). And functional rescue assays confirmed that HCG22 functioned in bladder cancer through downregulating PTBP1. In conclusion, the present study revealed that HCG22 inhibited BCa progression via the HuR/PTBP1 axis, opening new prospects for potent therapeutic regimens for BCa patients.  相似文献   

20.
YAP1, a key mediator of the Hippo pathway, plays an important role in tumorigenesis. Alternative splicing of human YAP1 mRNA results in two major isoforms: YAP1‐1, which contains a single WW domain, and YAP1‐2, which contains two WW domains, respectively. We here investigated the functions and the underlying regulatory mechanisms of the two YAP1 isoforms in the context of EGF‐induced epithelial‐mesenchymal transition (EMT) in non‐small cell lung cancer (NSCLC). Human NSCLC cell lines express both YAP1‐1 and YAP1‐2 isoforms—although when compared to YAP1‐1, YAP1‐2 mRNA levels are higher while its protein expression levels are lower. EGF treatment significantly promoted YAP1 expression as well as EMT process in NSCLCs, whereas EGF‐induced EMT phenotype was significantly alleviated upon YAP1 knockdown. Under normal culture condition, YAP1‐1 stable expression cells exhibited a stronger migration ability than YAP1‐2 expressing cells. However, upon EGF treatment, YAP1‐2 stable cells showed more robust migration than YAP1‐1 expressing cells. The protein stability and nuclear localization of YAP1‐2 were preferentially enhanced with EGF treatment. Moreover, EGF‐induced EMT and YAP1‐2 activity were suppressed by inhibitor of AKT. Our results suggest that YAP1‐2 is the main isoform that is functionally relevant in promoting EGF‐induced EMT and ultimately NSCLC progression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号