首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Activation of interferon (IFN)-I signaling in B cells contributes to the pathogenesis of systemic lupus erythematosus (SLE). Recent studies have shown that myeloid-derived suppressor cells (MDSCs) significantly expand in SLE patients and lupus-prone MRL/lpr mice and contribute to the pathogenesis of SLE. However, the role of SLE-derived MDSCs in regulating IFN-I signaling activation of B cells remains unknown. Here, we demonstrate that expansions of MDSCs, including granulocyte (G)-MDSCs and monocytic (M)-MDSCs, during the progression of SLE were correlated with the IFN-I signature of B cells. Interestingly, G-MDSCs from MRL/lpr mice, but not M-MDSCs, could significantly promote IFN-I signaling activation of B cells and contribute to the pathogenesis of SLE. Mechanistically, we identified that the long non-coding RNA NEAT1 was over-expressed in G-MDSCs from MRL/lpr mice and could induce the promotion of G-MDSCs on IFN-I signaling activation of B cells through B cell-activating factor (BAFF) secretion. Importantly, NEAT1 deficiency significantly attenuated the lupus symptoms in pristane-induced lupus mice. In addition, there was a positive correlation between NEAT1 and BAFF with the IFN signature in SLE patients. In conclusion, G-MDSCs may contribute to the IFN signature in SLE B cells through the NEAT1-BAFF axis, highlighting G-MDSCs as a potential therapeutic target to treat SLE.  相似文献   

2.
There is a need in autoimmune diseases to uncover the mechanisms involved in the natural resolution of inflammation. In this article, we demonstrate that granulocytic myeloid-derived suppressor cells (G-MDSCs) abundantly accumulate within the peripheral lymphoid compartments and target organs of mice with experimental autoimmune encephalomyelitis prior to disease remission. In vivo transfer of G-MDSCs ameliorated experimental autoimmune encephalomyelitis, significantly decreased demyelination, and delayed disease onset through inhibition of encephalitogenic Th1 and Th17 immune responses. Exposure of G-MDSCs to the autoimmune milieu led to up-regulation of the programmed death 1 ligand that was required for the G-MDSC-mediated suppressive function both in vitro and in vivo. Importantly, myeloid-derived suppressor cells were enriched in the periphery of subjects with active multiple sclerosis and suppressed the activation and proliferation of autologous CD4(+) T cells ex vivo. Collectively, this study revealed a pivotal role for myeloid-derived suppressor cells in the regulation of multiple sclerosis, which could be exploited for therapeutic purposes.  相似文献   

3.
ObjectiveFollicular lymphoma (FL) occurring progression within 24 months (POD24) after initial immunochemotherapy has poor prognosis. GLUT1 affects glycolysis within tumor microenvironment (TME) and promotes tumor progression. However, its specific mediated mechanism remains unclear in FL.MethodsBaseline GLUT1 expression, infiltrations of M2 macrophage, and CD8+ T-cells were assessed by immunohistochemistry in FL with POD24 and long-term remission respectively. The spatial features of TME were assessed by MIBI-TOF and proteomics. Predictive immunophenotypes for POD24 occurrence was analyzed by random forest algorithm. The lactate production and the induction of M2 macrophages were detected when GLUT1 was transfected or knocked down in DOHH2. The activation of PI3K/Akt/mTOR signaling in DOHH2 and WSU-FSCCL cells co-cultured with induced inhibitory immunocytes was tracked by western blotting.ResultsThe FL with POD24 exhibited higher baseline GLUT1 expression and increased infiltration of various inhibitory immunocytes. Spatial signatures of 69 immunophenotypes could predict POD24 occurrence. The activation of PI3K/ Akt /mTOR signaling pathway was not significant in both groups. The supernatant of DOHH2-GLUT1 cells which had more lactate content could induce more M2-type macrophages than that of DOHH2/siRNA GLUT1 cells. When co-cultured with exhausted CD8+ T cells, M2-type macrophages and Tregs, compared with WSU-FSCCL cells, DOHH2 cells with high GLUT1 expression induced more M2-type macrophages and was triggered activation of PI3K/ Akt /mTOR signaling pathway.ConclusionTumor cells overexpressing GLUT1 could domesticate immunocytes to form an immunosuppressive TME, which promotes occurrence of POD24 and gradually activates PI3K/ Akt /mTOR pathway of tumor cells in FL.SignificanceTumor cells overexpressing GLUT1 could domesticate immunocytes to form an immunosuppressive microenvironment, which in turn promoted the growth of tumor cells and was related to the progression of disease within 24 months in FL. Suppressive immunocytes gradually activated PI3K/ Akt /mTOR pathway of tumor cells in later stage. Distinguishing spatial features of immunocytes could well predict POD24 occurrence, hoping to benefit these patients from early anti-metabolism therapy based on GLUT1 in the future.  相似文献   

4.
The tumor suppressor PTEN is a lipid phosphatase that is frequently mutated in various human cancers. PTEN suppresses tumor cell proliferation, survival, and growth mainly by inhibiting the PI3K-Akt signaling pathway through dephosphorylation of phosphatidylinositol 3,4,5-triphosphate. In addition to it role in tumor suppression, the PTEN-PI3K pathway controls many cellular functions, some of which may be important for cellular resistance to infection. Currently, the intersection between tumorigenic signaling pathways and cellular susceptibility to infection is not well defined. In this study we report that PTEN signaling regulates infection of both noncancerous and cancerous cells by multiple intracellular mycobacterial pathogens and that pharmacological modulation of PTEN signaling can affect mycobacterial infection. We found that PTEN deficiency renders multiple types of cells hyper-susceptible to infection by Mycoplasma and Mycobacterium bovis Bacillus Calmette-Guérin (BCG). The lipid phosphatase activity of PTEN is required for attenuating infection. Furthermore, we found mycobacterial infection activates host cell Akt phosphorylation, and pharmacological inhibition of Akt or PI3K activity reduced levels of intracellular infection. Intriguingly, inhibition of mTOR, one of the downstream components of the Akt signaling and a promising cancer therapeutic target, also lowered intracellular Bacillus Calmette-Guérin levels in mammary epithelial cancer MCF-7 cells. These findings demonstrate a critical role of PTEN-regulated pathways in pathogen infection. The relationship of PTEN-PI3K-Akt mTOR status and susceptibility to mycobacterial infection suggests that the interaction of mycobacterial pathogens with cancer cells may be influenced by genetic alterations in the tumor cells.  相似文献   

5.
The reduced efficiency of the mammalian immune system with aging increases host susceptibility to infectious and autoimmune diseases. However, the mechanisms responsible for these pathologic changes are not well understood. In this study, we demonstrate that the bone marrow, blood, and secondary lymphoid organs of healthy aged mice possess increased numbers of immature myeloid cells that are phenotypically similar to myeloid-derived suppressor cells found in lymphoid organs of mice with progressive tumors and other pathologic conditions associated with chronic inflammation. These cells are characterized by the presence of Gr1 and CD11b markers on their surfaces. Gr1(+)CD11b(+) cells isolated from aged mice possess an ability to suppress T cell proliferation/activation and produce heightened levels of proinflammatory cytokines, both constitutively and upon activation, including IL-12, which promotes an excessive production of IFN-γ. IFN-γ priming is essential for excessive proinflammatory cytokine production and the suppressive activities by Gr1(+)CD11b(+) cells from aged mice. These cells suppress T cell proliferation through an NO-dependent mechanism, as depletion of splenic Gr1(+) cells reduces NO levels and restores T cell proliferation. Insights into mechanisms responsible for the proinflammatory and immune suppressive activities of Gr1(+)CD11b(+) cells from aged mice have uncovered a defective PI3K-Akt signaling pathway, leading to a reduced Akt-dependent inactivation of GSK3β. Our data demonstrate that abnormal activities of the Gr1(+)CD11b(+) myeloid cell population from aged mice could play a significant role in the mechanisms responsible for immune senescence.  相似文献   

6.
髓系衍生的抑制性细胞(myeloid-derived suppressor cells,MDSCs),是在肿瘤等病理因素的作用下髓系细胞发生分化障碍所产生的不同阶段髓系祖细胞的集合,具有广谱而强大的免疫抑制功能,是免疫系统的重要负性调节组件之一.研究表明:肿瘤微环境中的多种细胞因子或生长因子可通过激活相应的信号通路促进MDSCs扩增及活化,MDSCs进而通过多种机制抑制包括T细胞在内的多种免疫细胞的功能而促进肿瘤个体免疫耐受的发生.临床研究表明:肿瘤患者体内MDSCs的水平与肿瘤临床病程进展密切相关,基于MDSCs的免疫治疗也有望成为肿瘤免疫治疗的新策略.本文主要介绍了肿瘤中MDSCs的表型鉴定、扩增及活化机制、发挥免疫抑制作用的途径及机制、肿瘤中MDSCs的临床意义以及本领域需要解决的问题,以期对MDSCs在肿瘤免疫耐受中的作用进展提供参考.  相似文献   

7.
8.
In this study, we studied the long-term proliferation trajectory of myeloid-derived suppressor cells (MDSCs) in murine sepsis model and investigated whether swertianolin could modulate the immunosuppressive function of MDSCs. A murine sepsis model was established by cecal ligation and perforation (CLP), according to the Minimum Quality Threshold in Pre-Clinical Sepsis Studies (MQTiPSS) guidelines. The bone marrow and spleen of the mice were collected at 24 h, 72 h, 7 and 15 d after sepsis induction. The proportions of monocytic- MDSCs (M-MDSCs; CD11b+LY6GLY6Chi) and granulocytic-MDSCs (G-MDSC, CD11b+ Ly6G+ Ly6Clow) were analyzed by flow cytometry. Then, we have investigated whether swertianolin could modulate the immunosuppressive function of MDSCs in in vitro experiments. G-MDSCs and M-MDSCs increased acutely after sepsis with high levels sustained over a long period of time. G-MDSCs were the main subtype identified in the murine model of sepsis with polymicrobial peritonitis. Furthermore, it was found that swertianolin reduced significantly interleukin-10 (IL-10), nitric oxide (NO), reactive oxygen species (ROS), and arginase production in MDSCs, while reducing MDSC proliferation and promoting MDSC differentiation into dendritic cells. Swertianolin also improved T-cell activity by blocking the immunosuppressive effect of MDSCs. Both subsets of MDSCs significantly increased in the bone marrow and spleen of the mice with sepsis, with GMDSCs being the main subtype identified. Swertianolin effectively regulated the functions of MDSCs and reduced immune suppression.Key words: Sepsis, myeloid-derived suppressor cells (MDSCs), immunosuppression, swertianolin  相似文献   

9.
Reversing the function of immune suppressor cells may improve the efficacy of cancer therapy. Here, we have isolated a novel polysaccharide MPSSS (577.2 Kd) from Lentinus edodes and examined its effects on differentiation and function of myeloid-derived suppressor cells (MDSCs). MPSSS is composed of glucose (75.0%), galactose (11.7%), mannose (7.8%), and xylose (0.4%). In vivo, it inhibits the growth of McgR32 tumor cells, which is correlated with a reduced percentage of MDSCs in peripheral blood. In vitro, it induces both morphological and biophysical changes in MDSCs. Importantly, MPSSS up-regulates MHC II and F4/80 expression on MDSCs, and reverses their inhibition effect on CD4+ T cells in a dose-dependent manner. The mechanism study shows that MPSSS may stimulate MDSCs through a MyD88 dependent NF-κB signaling pathway. Together, we demonstrated for the first time that MPSSS stimulates the differentiation of MDSCs and reverses its immunosuppressive functions, shedding new light on developing novel anti-cancer strategies by targeting MDSCs.  相似文献   

10.
Programmed cell death-4 (PDCD4) is a recently discovered tumor suppressor protein that inhibits protein synthesis by suppression of translation initiation. We investigated the role and the regulation of PDCD4 in the terminal differentiation of acute myeloid leukemia (AML) cells. Expression of PDCD4 was markedly up-regulated during all-trans retinoic acid (ATRA)-induced granulocytic differentiation in NB4 and HL60 AML cell lines and in primary human promyelocytic leukemia (AML-M3) and CD34(+) hematopoietic progenitor cells but not in differentiation-resistant NB4.R1 and HL60R cells. Induction of PDCD4 expression was associated with nuclear translocation of PDCD4 in NB4 cells undergoing granulocytic differentiation but not in NB4.R1 cells. Other granulocytic differentiation inducers such as DMSO and arsenic trioxide also induced PDCD4 expression in NB4 cells. In contrast, PDCD4 was not up-regulated during monocytic/macrophagic differentiation induced by 1,25-dihydroxyvitamin D3 or 12-O-tetradecanoyl-phorbol-13-acetate in NB4 cells or by ATRA in THP1 myelomonoblastic cells. Knockdown of PDCD4 by RNA interference (siRNA) inhibited ATRA-induced granulocytic differentiation and reduced expression of key proteins known to be regulated by ATRA, including p27(Kip1) and DAP5/p97, and induced c-myc and Wilms' tumor 1, but did not alter expression of c-jun, p21(Waf1/Cip1), and tissue transglutaminase (TG2). Phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) signaling pathway was found to regulate PDCD4 expression because inhibition of PI3K by LY294002 and wortmannin or of mTOR by rapamycin induced PDCD4 protein and mRNA expression. In conclusion, our data suggest that PDCD4 expression contributes to ATRA-induced granulocytic but not monocytic/macrophagic differentiation. The PI3K/Akt/mTOR pathway constitutively represses PDCD4 expression in AML, and ATRA induces PDCD4 through inhibition of this pathway.  相似文献   

11.
The immunomodulatory effects of glucocorticoids (GCs) have been described as bimodal, with high levels of GCs exerting immunosuppressive effects and low doses of GCs being immunopermissive. While the mechanisms used by GCs to achieve immunosuppression have been investigated intensely, the molecular mechanisms underlying the permissive effects of GCs remain uncharacterized. Herein, we demonstrate that GC conditioning during the differentiation of myeloid progenitors into macrophages (Mphis) results in their enhanced LPS responsiveness, demonstrated by an overexpression of the inflammatory cytokines TNF-alpha, IL-6, and IL-12. Inflammatory cytokine overexpression resulted from an increased activation of NF-kappaB and the MAPK signaling cascade and a reduced activation of the PI3K-Akt pathway following LPS stimulation. GC conditioning during Mphi differentiation induced an increase in the expression of SHIP1, a phosphatase that negatively regulates the PI3K signaling pathway. Small interfering RNA-mediated knockdown of SHIP1 expression increased PI3K-dependent Akt activation and subsequently decreased inflammatory cytokine expression, suggesting GC-mediated up-regulation of SHIP1 expression is responsible for the augmentation in inflammatory cytokine production following LPS stimulation. We also show that splenic Mphis purified from normal mice that were implanted with timed-release GC pellets exhibited an enhanced LPS responsiveness and increased SHIP1 expression, indicating that GCs can regulate SHIP1 expression in vivo. Our results suggest that minor fluctuations in physiological levels of endogenous GCs can program endotoxin-responsive hemopoietic cells during their differentiation by regulating their sensitivity to stimulation.  相似文献   

12.
G0/G1 switch gene 2 (G0S2) is a direct retinoic acid target implicated in cancer biology and therapy based on frequent methylation-mediated silencing in diverse solid tumors. We recently reported that low G0S2 expression in breast cancer, particularly estrogen receptor-positive (ER+) breast cancer, correlates with increased rates of recurrence, indicating that G0S2 plays a role in breast cancer progression. However, the function(s) and mechanism(s) of G0S2 tumor suppression remain unclear. In order to determine potential mechanisms of G0S2 anti-oncogenic activity, we performed genome-wide expression analysis that revealed an enrichment of gene signatures related to PI3K/mTOR pathway activation in G0S2 null cells as compared to G0S2 wild-type cells. G0S2 null cells also exhibited a dramatic decreased sensitivity to PI3K/mTOR pathway inhibitors. Conversely, restoring G0S2 expression in human ER+ breast cancer cells decreased basal mTOR signaling and sensitized the cells to pharmacologic mTOR pathway inhibitors. Notably, we provide evidence here that the increase in recurrence seen with low G0S2 expression is especially prominent in patients who have undergone antiestrogen therapy. Further, ER+ breast cancer cells with restored G0S2 expression had a relative increased sensitivity to tamoxifen. These findings reveal that in breast cancer G0S2 functions as a tumor suppressor in part by repressing PI3K/mTOR activity, and that G0S2 enhances therapeutic responses to PI3K/mTOR inhibitors. Recent studies implicate hyperactivation of PI3K/mTOR signaling as promoting resistance to antiestrogen therapies in ER+ breast cancer. Our data establishes G0S2 as opposing this form of antiestrogen resistance. This promotes further investigation of the role of G0S2 as an antineoplastic breast cancer target and a biomarker for recurrence and therapy response.  相似文献   

13.
Activation of the PI3K-Akt pathway by loss of tumor suppressor PTEN (phosphatase and tensin homolog deleted on chromosome 10) function, increased growth factor signaling, or oncogene expression renders cancer cells resistant to apoptotic signals and promotes tumor growth. Although Akt acts as a global survival signal, the molecular circuits of this pathway have not been completely established. We report that Akt physically binds to the pro-apoptotic protein Par-4 via the Par-4 leucine zipper domain and phosphorylates Par-4 to inhibit apoptosis. Suppression of Akt activation by the PI3K-inhibitor PTEN or LY294002, Akt expression by RNA-interference, or Akt function by dominant-negative Akt caused apoptosis in cancer cells. Apoptosis induced by inhibiting Akt was blocked by inhibition of Par-4 expression, but not by inhibition of other apoptosis agonists that are Akt substrates, suggesting that inhibition of the PI3K-Akt pathway leads to Par-4-dependent apoptosis. Thus, Par-4 is essential for PTEN-inducible apoptosis, and inactivation of Par-4 by Akt promotes cancer cell survival.  相似文献   

14.
王霞  孙丹凤  房静远 《遗传》2006,28(12):1585-1590
mTOR(mammalian target of rapamycin)是雷帕霉素在哺乳动物细胞内作用的蛋白激酶, 通过PI3K/Akt信号磷酸化激活而调控细胞分裂、促进转录、信号翻译等, mTOR抑制剂具有抗肿瘤和免疫抑制的潜力, 已进入临床II期试验。DNA甲基化可沉默基因转录, 组蛋白磷酸化的动态变化主要影响信号传导通路中相关基因的转录, DNA甲基化和组蛋白共价修饰以及RNA干扰技术都是表观遗传修饰的方式, 可以调节mTOR信号途径蛋白激酶的表达, 激活或抑制mTOR也可以影响DNA甲基化和组蛋白磷酸化等。本文将对mTOR信号途径与表观遗传关系的研究进展作一综述。  相似文献   

15.
The attendant innate and adaptive immune responses to viral vectors have posed a significant hurdle for clinical application of viral vector-mediated gene therapy. Previous studies have shown that natural killer (NK) cells play a critical role in innate immune elimination of adenoviral vectors in the liver. However, it is not clear how the NK cell response to adenoviral vectors is regulated. In this study, we identified a role for granulocytic myeloid-derived suppressor cells (G-MDSCs) in this process. We show that in vivo administration of adenoviral vectors results in rapid accumulation of G-MDSCs early during adenoviral infection. In vivo depletion of both MDSC populations, but not monocytic MDSCs (M-MDSCs) alone, resulted in accelerated clearance of adenoviral vectors in the liver. This was accompanied by enhanced NK cell proliferation and activation, suggesting a role for MDSCs, probably G-MDSCs, in suppressing NK cell activation and function in vivo. We further demonstrate in vitro that G-MDSCs, but not M-MDSCs, are responsible for the suppression of NK cell activation. In addition, we show that adenoviral infection activated G-MDSCs to produce higher levels of reactive oxygen species (ROS) and that G-MDSC-mediated suppression of NK cells is mediated by ROS, specifically, H2O2. This study demonstrates for the first time that the NK cell response to adenoviral vectors is negatively regulated by G-MDSCs and suggests that G-MDSC-based strategies could potentially improve the outcome of viral vector-mediated gene therapy.  相似文献   

16.
NK cells are critical for the innate immune control of poxviral infections. Previous studies have shown that NK cells are efficiently activated in response to infection with vaccinia virus (VV), the most studied member of the poxvirus family. However, it remains unknown whether the activation of NK cells in response to VV infection is tightly regulated. In this study, we showed that myeloid-derived suppressor cells (MDSCs) rapidly accumulated at the site of VV infection. In vivo depletion of MDSCs led to enhanced NK cell proliferation, activation, and function in response to VV infection. This was accompanied by an increase in mortality and systemic IFN-γ production. We further demonstrated that the granulocytic-MDSC (G-MDSC) subset was responsible for the suppression on NK cells and that this suppression was mediated by reactive oxygen species. These results indicate that G-MDSCs can negatively regulate NK cell activation and function in response to VV infection and suggest that manipulation of G-MDSCs could represent an attractive strategy for regulating NK cell activities for potential therapeutic benefits.  相似文献   

17.
Growing evidence suggests that myeloid-derived suppressor cells (MDSCs), which have been named "immature myeloid cells" or "myeloid suppressor cells" (MSCs), play a critical role during the progression of cancer in tumor-bearing mice and cancer patients. As their name implies, these cells are derived from bone marrow and have a tremendous potential to suppress immune responses. Recent studies indicated that these cells also have a crucial role in tumor progression. MDSCs can directly incorporate into tumor endothelium.They secret many pro-angiogenic factors as well. In addition, they play an essential role in cancer invasion and metastasis through inducing the production of matrix metalloproteinases (MMPs), chemoattractants and creating a pre-metastatic environment. Increasing evidence supports the idea that cancer stem cells (CSCs) are responsible for tumorigenesis, resistance to therapies, invasion and metastasis.Here, we hypothesize that CSCs may "hijack" MDSCs for use as alternative niche cells, leading to the maintenance of stemness and enhanced chemo- and radio-therapy resistance. The countermeasure that directly targets to MDSCs may be useful for against angiogenesis and preventing cancer from invasion and metastasis. Therefore, the study of MDSCs is important to understand tumor progression and to enhance the therapeutic efficacy against cancer.  相似文献   

18.
Tumor-recruited CD11b myeloid cells, including myeloid-derived suppressor cells, play a significant role in tumor progression, as these cells are involved in tumor-induced immune suppression and tumor neovasculogenesis. On the other hand, the tumor-infiltrated CD11b myeloid cells could potentially be a source of immunostimulatory antigen-presenting cells (APCs), since most of these cells represent common precursors of both dendritic cells and macrophages. Here, we investigated the possibility of generating mature APCs from tumor-infiltrated CD11b myeloid cells. We demonstrate that in vitro exposure of freshly excised mouse tumors to DNA methyltransferase inhibitor 5-aza-2′-deoxycytidine (decitabine, AZA) results in selective elimination of tumor cells, but, surprisingly it also enriches CD45+ tumor-infiltrated cells. The majority of “post-AZA” surviving CD45+ tumor-infiltrated cells were represented by CD11b myeloid cells. A culture of isolated tumor-infiltrated CD11b cells in the presence of AZA and GM-CSF promoted their differentiation into mature F4/80/CD11c/MHC class II-positive APCs. These tumor-derived myeloid APCs produced substantially reduced amounts of immunosuppressive (IL-13, IL-10, PGE2), pro-angiogenic (VEGF, MMP-9) and pro-inflammatory (IL-1beta, IL-6, MIP-2) mediators than their precursors, freshly isolated tumor-infiltrated CD11b cells. Vaccinating naïve mice with ex vivo generated tumor-derived APCs resulted in the protection of 70% mice from tumor outgrowth. Importantly, no loading of tumor-derived APC with exogenous antigen was needed to stimulate T cell response and induce the anti-tumor effect. Collectively, our results for the first time demonstrate that tumor-infiltrated CD11b myeloid cells can be enriched and differentiated in the presence of DNA demethylating agent 5-aza-2′-deoxycytidine into mature tumor-derived APCs, which could be used for cancer immunotherapy.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号