首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
There are many kinds of silks spun by silkworms and spiders, which are suitable to study the structure-property relationship for molecular design of fibers with high strength and high elasticity. In this review, we mainly focus on the structural determination of two well-known silk fibroin proteins that are from the domesticated silkworm, Bombyx mori, and the wild silkworm, Samia cynthia ricini, respectively. The structures of B. mori silk fibroin before and after spinning were determined by using an appropriate model peptide, (AG)(15), with several solid-state NMR methods; (13)C two-dimensional spin-diffusion solid-state NMR and rotational echo double resonance (REDOR) NMR techniques along with the quantitative use of the conformation-dependent (13)C CP/MAS chemical shifts. The structure of S. c. ricini silk fibroin before spinning was also determined by using a model peptide, GGAGGGYGGDGG(A)(12)GGAGDGYGAG, which is a typical repeated sequence of the silk fibroin, with the solid-state NMR methods. The transition from the structure of B. mori silk fibroin before spinning to the structure after spinning was studied with molecular dynamics calculation by taking into account several external forces applied to the silk fibroin in the silkworm.  相似文献   

2.
以蓖麻蚕Philosamia cynthia riciniBoisduval为材料,全面比较了雌雄蓖麻蚕减数分裂前期I染色体的行为变化,从细胞学角度证明了雌蚕减数分裂染色体完全连锁,而雄蚕发生连锁交换;详细观察了雌蚕减数分裂I双线期过程中性染色体的动态变化,发现其存在着自身配对的过程,进而对其起源进化假说进行了探讨,认为其可能来源于一对同源常染色体片段的易位融合。  相似文献   

3.
E Gout  R Bligny  P Genix  M Tissut  R Douce 《Biochimie》1992,74(9-10):875-882
The effect of glyphosate (N-phosphonomethyl glycine; the active ingredient of Roundup herbicide) on plant cells metabolism was analysed by 31P and 13C NMR using suspension-cultured sycamore (Acer pseudoplatanus L) cells. Cells were compressed in the NMR tube and perfused with an original arrangement enabling a tight control of the circulating nutrient medium. Addition of 1 mM glyphosate to the nutrient medium triggered the accumulation of shikimate (20-30 mumol g-1 cell wet weight within 50 h) and shikimate 3-phosphate (1-1.5 mumol g-1 cell wet weight within 50 h). From in vivo spectra it was demonstrated that these two compounds were accumulated in the cytoplasm where their concentrations reached potentially lethal levels. On the other hand, glyphosate present in the cytoplasmic compartment was extensively metabolized to yield aminomethylphosphonic acid which also accumulated in the cytoplasm. Finally, the results presented in this paper indicate that although the cell growth was stopped by glyphosate the cell respiration rates and the level of energy metabolism intermediates remained unchanged.  相似文献   

4.
野桑蚕、蓖麻蚕及家蚕基因组的RFLP分析   总被引:2,自引:0,他引:2  
以家蚕Bombyx mori丝素重链基因、丝胶基因1和胰凝乳蛋白酶抑制因子13基因为探针,对野桑蚕B.mandarina、蓖麻蚕Philosamia cynthia ricini和家蚕B.mori基因组DNA进行限制性片段长度多态性分析。结果发现,在野桑蚕、蓖麻蚕基因组中存在着家蚕丝素重链基因、丝胶基因1的同源序列,而在中日野桑蚕以及蓖麻蚕品种间存在着限制性酶切位点差异;丝胶基因1在中国野桑蚕基因组的EcoRⅠ酶切图谱较日本野桑蚕与家蚕更为一致,表明家蚕与中国野桑蚕亲缘关系更近。此外,在野桑蚕基因组中发现了家蚕胰凝乳蛋白酶抑制因子13基因的同源序列,并且在家蚕品种间以及中日野桑蚕之间也存在着多态性。这些结果表明不同绢丝昆虫在适应生存环境的进化过程中,基因组发生了结构改变。  相似文献   

5.
6.
《Insect Biochemistry》1981,11(1):43-47
A temperature-dependent interconversion between fat body glycogen and haemolymph trehalose was demonstrated in diapausing pupae of the silkworm, Philosamia cynthia pryeri. When pupae at early-diapause stage were placed at 2°C for several weeks, the haemolymph trehalose content increased to about 35–50 mg/ml haemolymph, whereas the trehalose content of insects maintained at 20°C remained at 5–10 mg/ml. Concomitant with this change in haemolymph trehalose level, the glycogen content of the fat body dropped from 29–41 mg to 6.6–8.6 mg/g wet weight. This interconversion could be demonstrated repeatedly if the diapausing pupae were successively exposed to high and low temperatures, although the total amount of carbohydrates decreased slightly during repeated interconversions.Non-diapausing pupae of the silkworm, Philosamia cynthia ricini, did not accumulate trehalose appreciably even when exposed to 2°C for a long period.  相似文献   

7.
Alternate scan 13C and 31P NMR has been used to follow the metabolism of 13C-labeled substrates, in the presence and absence of insulin, in isolated perfused liver from fasted rats. Because both 31P and 13C NMR spectra are recorded almost simultaneously with this method, both phosphate metabolites and 13C-labeled metabolites are measured, noninvasively and repetitively, to give an immediate, broad survey of the hepatic response to a variety of stimuli. During the metabolism of [2-13C]pyruvate, [1,2-13C]ethanol, and NH4+, 13C-labeled glycogen increases synchronously with, and at the same rate as, the synthesis of 13C-labeled glucose; thus, glycogenesis was essentially a gluconeogenic process under our conditions and was unaltered by the presence of insulin. From the position of the 13C-labeled citrate peak observed in liver, the measurement of KD for the citrate-magnesium complex under our conditions, and the expression relating these quantities to the concentration of free Mg2+, the intracellular level of free Mg2+ is estimated to be 0.46 +/- 0.05 mM. Later administration of glucagon led to a rapid decrease in glycogen and citrate and a 44% increase in glycero-3-phosphocholine (GPC); increase in GPC is consistent with stimulation of liver phospholipase activity by glucagon. Simultaneous administration of two different 13C-labeled substrates, or one doubly labeled substrate, introduced multiplet structure arising from spin-spin interaction between labeled adjacent carbons into the peaks of several key metabolites. The 13C NMR intensity distributions within the several multiplets are used, within the context of a first-order model for fluxes into the Krebs cycle, to estimate relative fluxes under the conditions of the experiment.  相似文献   

8.
Silk has a long history of use in medicine as sutures. To address the requirements of a mechanically robust and biocompatible material, basic research to clarify the role of repeated sequences in silk fibroin in its structures and properties seems important as well as the development of a processing technique suitable for the preparation of fibers with excellent mechanical properties. In this study, three silk-like protein analogs were constructed from two regions selected from among the crystalline region of Bombyx mori silk fibroin, (GAGSGA)(2), the crystalline region of Samia cynthia ricini silk fibroin, (Ala)(12), the crystalline region of spider dragline silk fibroin, (Ala)(6), and the Gly-rich region of spider silk fibroin, (GGA)(4). The silk-like protein analog constructed from the crystalline regions of the spider dragline silk and B. mori silk fibroins, (A(6)SCS)(8), that constructed from the crystalline regions of the S. c.ricini and B. mori silk fibroins, (A(12)SGS)(4), that constructed from and the crystalline region of S. c.ricini silk fibroin and the glycine-rich region of spider dragline silk fibroin, (A(12)SGS)(4),were expressed their molecular weights being about 36.0 kDa, 17.0 kDa and 17.5 kDa, respectively in E. coli by means of genetic engineering technologies. (A(12)SCS)(4) and (A(12)SGS)(4 )undergo a structural transition from alpha-helix to beta-sheet on a change in the solvent treatment from trifluoroacetic acid (TFA) to formic acid (FA). However, (A(6)SCS)(8) takes on the beta-sheet structure predominantly on TFA treatment and FA treatment. Structural analysis was performed on model peptides selected from spider dragline and S. c.ricini silks by means of (13)C CP/MAS NMR.  相似文献   

9.
Manipulation of cellular metabolism to maximize the yield and rate of formation of desired products may be achieved through genetic modification. Batch fermentations utilizing glucose as a carbon source were performed for three recombinant strains of Saccharomyces cerevisiae in which the glucose phosphorylation step was altered by mutation and genetic engineering. The host strain (hxk1 hxk2 glk) is unable to grow on glucose or fructose; the three plasmids investigated expressed hexokinase PI, hexokinase PII, or glucokinase, respectively, enabling more rapid glucose and fructose phosphorylation in vivo than that provided by wild-type yeast.Intracellular metabolic state variables were determined by 31P NMR measurements of in vivo fermentations under nongrowth conditions for high cell density suspensions. Glucose consumption, ethanol and glycerol production, and polysaccharide formation were determined by 13C NMR measurements under the same experimental conditions as used in the 31P NMR measurements. The trends observed in ethanol yields for the strains under growth conditions were mimicked in the nongrowth NMR conditions.Only the strain with hexokinase PI had higher rates of glucose consumption and ethanol production in comparison to healthy diploid strains in the literature. The hexokinase PII strain drastically underutilized its glucose-phosphorylating capacity. A regulation difference in the use of magnesium-free ATP for this strain could be a possible explanation. Differences in ATP levels and cytoplasmic pH values among the strains were observed that could not have been foreseen. However, cytoplasmic pH values do not account for the differences observed among in vivo and in vitro glucose phosphorylation activities of the three recombinant strains.  相似文献   

10.
11.
Nakazawa Y  Asakura T 《FEBS letters》2002,529(2-3):188-192
The structure and structural transition of the glycine residue adjacent to the N-terminal alanine residue of the poly(L-alanine), (Ala)(12-13), region in Samia cynthia ricini silk fibroin was studied using (13)C nuclear magnetic resonance (NMR). Most of the glycine carbonyl peaks in the (13)C solution NMR spectrum of [1-(13)C]glycine-silk fibroin could be assigned to the primary structure from the comparison of the (13)C chemical shifts of seven glycine-containing tripeptides. The slow exchange between helix and coil forms in the NMR time scale was observed with increasing temperature exclusively for the underlined glycine residue in the Gly-Gly-(Ala)(12-13) sequence during fast helix-coil transition of the (Ala)(12-13) region.  相似文献   

12.
31P NMR saturation-transfer techniques have been employed in glucose-grown derepressed yeast to determine unidirectional fluxes in the upper part of the Embden-Meyerhof-Parnas pathway. The experiments were performed during anaerobic and aerobic glycolysis by saturating the ATP gamma resonances and monitoring changes in the phosphomonoester signals from glucose 6-phosphate and fructose 1,6-bis-phosphate. These experiments were supplemented with 13C NMR measurements of glucose utilization rates and 13C NMR label distribution studies. Combined with data obtained previously from radioisotope measurements, these 31P and 13C NMR kinetic studies allowed estimation of the net glycolytic flow in addition to relative flows through phosphofructokinase (PFK) and Fru-1,6-P2ase during anaerobic and aerobic glycolysis. The 31P NMR saturation-transfer results are consistent with previous results obtained from measurements of metabolite levels, radioisotope data, and 13C NMR studies [den Hollander, J.A., Ugurbil, K., Brown, T.R., Bednar, M., Redfield, C., & Shulman, R.G. (1986a) Biochemistry 25, 203-211], providing additional support for in vivo measurement of the flows during glycolysis.  相似文献   

13.
The levels of intermediates of aerobic and anaerobic glycolysis were determined in perchloric acid extracts prepared from glycolyzing suspensions of Saccharomyces cerevisiae by 31P and 13C NMR spectroscopy. From 31P NMR measurements a small increase in the level of nucleoside triphosphates was found in derepressed cells upon oxygenation, while the ratio of nucleoside diphosphates to nucleoside triphosphates was a factor of 3 lower aerobically. Combined with the previous observation that the level of intracellular Pi is lower by a factor of 3 aerobically, this leads to the conclusion that the phosphate potential [NTP]/([NDP][Pi]) is lower by an order of magnitude during anaerobic glycolysis than during aerobic glycolysis. There was no correlation between the level of glucose 6-phosphate and the rate of glucose utilization. We used 13C NMR to determine the scrambling of the 13C label from C1 to C6 in fructose 1,6-bisphosphate (Fru-P2). There was more scrambling of the label during aerobic than during anaerobic glycolysis. Since the level of Fru-P2 did not change much upon oxygenation, this suggests that in aerobic glycolysis there is control of at least one enzyme in the lower part of the Embden-Meyerhof-Parnas pathway, below Fru-P2, which gives the 13C level more time to equilibrate between C1 and C6 of Fru-P2. Previous 13C NMR measurements of glucose utilization rates had shown a 2-fold reduction upon oxygenation, reflecting control in the early stages of the pathway.  相似文献   

14.
Silk proteins were isolated from the cocoons of the nonmulberry silkworm, Philosamia ricini. Three polypeptides of 97, 66, and 45 kDa were identified. The 66-kDa molecule represented sericin, whereas the 97-kDa and the 45-kDa polypeptides linked together through a disulfide bond constituted the fibroin protein. Antibodies raised against the 97-kDa P. ricini fibroin heavy chain reacted specifically with this molecule and did not recognize fibroin heavy chain from another nonmulberry silkworm, Antheraea assama or from the mulberry silkworm, Bombyx mori, suggesting the presence of P. ricini species-specific determinants in this heavy chain. Antibodies generated against fibroin light chain of P. ricini also showed similar reactivity pattern. Immunoblot analysis with proteins isolated from the silk glands of P. ricini at different stages of larval development showed that the expression of fibroin heavy chain was developmentally and spatially regulated. The protein was most abundant in the 5th instar larva, and could be detected in the middle and the posterior but not the anterior silk glands. The amino acid composition of the 97-kDa fibroin protein showed abundance of glutamic acid and did not contain (Gly-Ala)(n) motifs, a characteristic feature of B. mori fibroin heavy chain. Our study reveals significant differences between the nonmulberry silkworm P. ricini and the mulberry silkworm B. mori in the biochemical composition and immunochemical characteristics of fibroin heavy chain. These differences might be responsible for the differences seen in the quality of silk produced by these two silkworms.  相似文献   

15.
The energy metabolism of an anaerobic obligate thermophile, Clostridium thermocellum, has been examined as a function of incubation temperature using 31P NMR spectroscopy. Specifically investigated were the generation and availability of ATP as a function of temperature, activation energies for key processes in energy metabolism including formation of a pH gradient across the cell membrane, transport of key nutrients, and initial steps in glycolysis, and the existence of a membrane phase transition in the intact organism. Cells generate ATP via glycolysis at all temperatures examined; hence, limitation of the energy supply is not directly responsible for the lack of growth of this organism at low temperatures. Estimations of activation energies show a distinct hierarchy in the ATP-utilizing reactions examined. Conservation of ATP hydrolysis energy as delta pH has the lowest activation energy (less than or equal to 4 kcal/mol), two transport processes exhibit 10 kcal/mol activation energies, and early phosphorylation steps in glycolysis have significantly higher activation energies (approximately 25 kcal/mol). Neither the membrane-bound ATPase responsible for formation of the pH gradient nor the permease involved in phosphate transport shows evidence of a change in behavior around the phase transition temperature determined for extracted lipids of C. thermocellum. Line widths of inorganic phosphate do show a break in behavior around 35-40 degrees C. Possible explanations for this behavior are discussed.  相似文献   

16.
Sugar metabolism and exopolysaccharide (EPS) production was analysed in Lactococcus lactis by in vivo 31P NMR. Transient production of several sugar phosphates, transient depletion of intracellular phosphate, transient production of ATP and UTP, transient acidification of the medium and alkalinisation of the cytoplasm could be observed in a period of 20 min upon energization by the addition of glucose. EPS and non-EPS producing variants showed similar NMR spectra, the exception being two pH-dependent resonances observed in the former. They were already observed before addition of glucose and their response to glucose incubation reflected exposure to the medium. They are presumably phosphorylated poly- or oligosaccharides being loosely adhered to cell walls. By freezing and perchloric acid extraction of the cell material, different types of phosphorylated compounds could be recognised in the NMR spectra such as fructose-1-6-diphosphate, nucleotides (like ADP, ATP, UTP and TDP) and several nucleotide sugars. The ongoing work is focused on identifying the unknown peaks and quantifying the differences between wild-type cells and the EPS producing variant.  相似文献   

17.
The interaction between the apoprotein of 6-hydroxy-L-nicotine oxidase from Arthrobacter oxidans and the prosthetic group FAD has been investigated by 13C, 15N, and 31P NMR techniques. The FAD prosthetic group was selectively enriched in 13C and 15N isotopes by adding isotopically labeled riboflavin derivatives to the growth medium of riboflavin-requiring mutant cells. In the oxidized state the chemical shift of the C(7) and C(8) atoms indicates that the xylene moiety of the isoalloxazine ring is embedded in a hydrophobic environment. The polarization of the isoalloxazine ring as a whole is, however, much more comparable to that of free flavin in a polar and protic environment than to free flavin in an apolar environment. The polarization of the ring system can be ascribed to strong hydrogen bonds between the apoprotein and the two carbonyl groups. The binding of the competitive inhibitor, 6-hydroxy-D-nicotine, influences the resonances of the C(4a) and the N(5) atoms strongly. It is suggested that these shifts are due to a strong hydrogen-bonding interaction between the N(5) atom and the inhibitor. On reduction all resonances, except those of the C(10a) and the N(1) atoms, shift upfield, indicating the increased electron density in the ring system. In the dithionite-reduced enzyme, the ring system is bent at the N(5) position. Due to the bending of the N(5) atom and the sp2 hybridized N(10) atom, electron density from the N(10) atom is reallocated at the C(4) carbonyl group. In contrast, in the substrate-reduced enzyme the N(5) atom is almost completely sp2 hybridized, yielding a rather planar isoalloxazine ring.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
A number of complex biochemical problems have been solved recently by application of new techniques in which 31P and 13C NMR spectroscopy is used. Oxygen isotope exchange phenomena were studied by these NMR methods and used to analyze individual mechanistic events in enzymatic reactions. The existence of intermediates in the reactions catalyzed by glutamine synthetase (EC 6.3.1.2) and carbamyl-phosphate synthetase (EC 2.7.2.9) has been established as well as the kinetic competence of these intermediates for each enzyme. The NMR theory and kinetic experiments required to conduct such studies are discussed.  相似文献   

19.
31P and 13C nuclear magnetic resonance (NMR) experiments were performed on suspensions of the phototrophic bacterium Chromatium vinosum incubated anaerobically in the dark. 31P NMR spectra revealed that during prolonged dark incubation high ATP levels are maintained. This phenomenon was independent of the presence of the energy reserves polyglucose and polyphosphate. 13C NMR experiments revealed that the amino acids glutamate, aspartate, and alanine are the major products of acetate incorporation in the dark. Apart from these amino acids, poly-beta-hydroxybutyrate was also formed. Acetate metabolism was markedly stimulated by the presence of polyglucose. The specific 13C activity of glutamate C-2 was approximately 50% that of glutamate C-4. The idea is discussed that this difference is the consequence of the maintenance of redox balance during entry of acetate into cell metabolism.  相似文献   

20.
Aims: The strain Rhodococcus rhodochrous OBT18 was isolated from a water treatment plant used to decontaminate industrial effluents containing benzothiazole derivatives. Aims of the work are to study the central metabolism of this strain and more specifically its behaviour during biodegradation of 2‐aminobenzothiazole. Methods and Results: In vivo 13C and 31P NMR experiments showed that this strain contains storage compounds such as polyphosphates, glycogen and trehalose and produces biosurfactants containing trehalose as sugar unit. Trehalose can be synthesized after reversion of the glycolytic pathway. In vivo31P NMR experiments showed that energy metabolism markers such as the intracellular pH and the ATP concentration did not change during biotransformation processes when R. rhodochrous was exposed to potentially toxic compounds including iron complexes and ? OH radicals. Also R. rhodochrous recovers the normal values of ATP and pH after anoxia/reoxygenation cycle very quickly. Conclusions: Rhodococcus rhodochrous carbon and energy metabolism is well adapted to different stresses and consequently to live in the environment where conditions are constantly changing. Significance and Impact of the Study: The results of this study can be used to understand the behaviour of this bacterium in natural environments but also in water treatment plants where iron and UV light are present.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号