首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
A rat hepatic cytosolic [3H]methyltrienolone (R1881) binding protein was studied under various conditions. This protein was also compared with the male-specific high capacity--low affinity estrogen-binding protein derived from the same cytosolic fraction. Analysis of the R1881 binding protein in adult (60-85 days old) male rat liver cytosol indicated the presence of a high affinity--low capacity binding site (Kd = 0.3 nM; Bmax = 5.9 fmol/mg) and a lower affinity--higher capacity component (Kd = 10.4 nM; Bmax = 131 fmol/mg). The latter component was eliminated by addition of triamcinolone or cortisol to the assay mixture. Steroid binding to the high affinity R1881 site was specific for testosterone, dihydrotestosterone, androstenedione, and mibolerone, with a moderate specificity to cyproterone acetate, flutamide hydroxide, and estradiol. Saturation studies indicated that these steroids were binding to the same or a similar high affinity component except for flutamide hydroxide which produced nonsaturable displacement. The high affinity site had no specificity for progesterone, diethylstilbestrol, or cortisol. Like the high capacity--low affinity protein, this protein was not present in the immature, adult, or 10-day ovariectomized adult female. However, unlike the high capacity--low affinity protein, it was present in low quantities in the immature male. In addition, castration of the adult for 18 h, 4 days, or 10 days or hypophysectomy for 10-17 days did not have a significant effect on the high affinity component compared with the controls. Testosterone administration to these animals did not alter this protein binding. These studies indicate that a specific, high affinity--low capacity androgen-binding protein exists in rat hepatic cytosol. Furthermore, this protein shows age and sex dependency, but its presence is not affected by altering gonadal or hypophyseal factors in the adult male.  相似文献   

2.
A constitutive estrogen-binding protein (EBP) has been identified in the cytosol of Pseudomonas aeruginosa, a Gram-negative bacterium. All 14 strains tested contained the EBP. Estradiol binding was rapid and maximal binding occurred by 90 min at 0 degrees C. Dissociation of estradiol from the binding protein occurred at a rate of 4.6 fmol/min with a t1/2 of 42 min. EBP binding was destroyed by protease treatment and at high temperature. Sodium molybdate had no effect on binding. The Kd determined by Scatchard analysis was 3.9 nM and the Bmax was 323 fmol/mg protein. The EBP sedimented at 8.9 S on sucrose density gradients. The presence of 0.4 M KCl increased estradiol binding 6-fold but did not cause a shift in the sedimentation value. Gel filtration of the native protein gave an estimated molecular weight of 215,000 and a Stokes radius of 50.2 A. Steroid binding specificity, in order of decreasing affinity, was estradiol, estrone, dihydrotestosterone, estriol, testosterone, progesterone and promegestone. Other steroid hormones tested did not compete for estradiol binding. Identification of an EBP in a bacterium allows a comparative analysis of other steroid-binding proteins in unicellular microorganisms.  相似文献   

3.
Activation and inhibition of muscarinic cholinoceptors by atropine and carbachol are shown to exert allosteric effects on the binding of specific nonselective α2-adrenoceptor antagonist [3H]RX821002 in rat brain cortex membranes. The ligand-receptor interaction for α2-adrenoceptors corresponded to the model suggesting the presence of one homogeneous pool of receptors with two specific binding sites. The parameters of the [3H]RX821002 binding were as follows: [3H]RX821002 -K d = 1.94 ± 0.08 nM, B max = 13.4 ± 1.8 fmol/mg protein, n = 2. The inhibition of muscarinic cholinoceptors by atropine induced an increase of affinity (K d = 1.36 ± 0.12 nM) and a decrease of the α2-adrenoceptor density (B max = 10.18 ± 0.48 fmol/mg protein). The muscarinic cholinoceptor agonist carbachol induced an increase of the affinity (K d = 1.56 ± 0.05 nM) and quantity of binding sites (B max = 16.61 ± 0.29 fmol/mg protein). As a result, under the influence of atropine and carbachol, the efficiency of binding (E = B max/2K d) increased from 3.50 ± 0.40 to 5.60 ± 0.79 and 6.86 ± 0.20 fmol/mg protein/nM, respectively. The data suggest that α2-adrenoceptors exist in rat brain cortex as homodimers.  相似文献   

4.
We have examined binding of the CREB B-ZIP protein domain to double-stranded DNA containing a consensus CRE sequence (5′-TGACGTCA-3′), the related PAR, C/EBP and AP-1 sequences and the unrelated SP1 sequence. DNA binding was assayed in the presence or absence of MgCl2 and/or KCl using two methods: circular dichroism (CD) spectroscopy and electrophoretic mobility shift assay (EMSA). The CD assay allows us to measure equilibrium binding in solution. Thermal denaturation in 150 mM KCl indicates that the CREB B-ZIP domain binds all the DNA sequences, with highest affinity for the CRE site, followed by the PAR (5′-TAACGTTA-3′), C/EBP (5′-TTGCGCAA-3′) and AP-1 (5′-TGAGTCA-3′) sites. The addition of 10 mM MgCl2 diminished DNA binding to the CRE and PAR DNA sequences and abolished binding to the C/EBP and AP-1 DNA sequences, resulting in more sequence-specific DNA binding. Using ‘standard’ EMSA conditions (0.25× TBE), CREB bound all the DNA sequences examined. The CREB–CRE complex had an apparent Kd of ~300 pM, PAR of ~1 nM, C/EBP and AP-1 of ~3 nM and SP1 of ~30 nM. The addition of 10 mM MgCl2 to the polyacrylamide gel dramatically altered sequence-specific DNA binding. CREB binding affinity for CRE DNA decreased 3-fold, but binding to the other DNA sequences decreased >1000-fold. In the EMSA, addition of 150 mM KCl to the gels had an effect similar to MgCl2. The magnesium concentration needed to prevent non-specific electrostatic interactions between CREB and DNA in solution is in the physiological range and thus changes in magnesium concentration may be a cellular signal that regulates gene expression.  相似文献   

5.
C. Barberis 《FEBS letters》1983,162(2):400-405
Characterization of specific vasopressin binding sites to rat hippocampal membranes has been assayed using tritiated lysine-vasopressin labelled on the tyrosyl residue. At 30°C specific [3H]vasopressin binding was saturable. The estimated equilibrium dissociation constant was 7.1 nM, the mean maximal binding capacity was 78 fmol/mg protein. Arginine-vasopressin has a high affinity (Kd = 2.8 nM) and dDAVP has a low affinity (Kd = 249 nM) for hippocampal synaptic membranes. (OH)AVP and Phe2Orn8VT are at least as active as AVP in inhibiting [3H]vasopressin binding. Adenylate cyclase was activated by VIP and inhibited by PIA, but not affected by lysine-vasopressin.  相似文献   

6.
We present, herein, the evidence for lactoferrin (Lf) binding sites in brain endothelial capillary cells (BCECs) and mouse brain. The results from confocal microscopy showed the presence of Lf receptors on the surface of BCECs and the receptor-mediated endocytosis for Lf to enter the cells. Saturation binding analyses revealed that Lf receptors exhibited two classes of binding sites in BCECs (high affinity: dissociation constant (K (d)) = 6.77 nM, binding site density (B (max)) = 10.3 fmol bound/mug protein; low affinity: K (d) = 4815 nM, B (max) = 1190 fmol bound/mug protein) and membrane preparations of mouse brain (high affinity: K (d) = 10.61 nM, B (max) = 410 fmol bound/mug protein; low affinity: K (d) = 2228 nM, B (max) = 51641 fmol bound/mug protein). The distribution study indicated the effective uptake of (125)I-Lf in brain after intravenous administration. The present study provides experimental evidence for the application of Lf as a novel ligand for brain targeting.  相似文献   

7.
We have used [125I] angiotensin II to investigate the presence of specific angiotensin II receptors in beef heart sarcolemmal membranes. The observed binding is saturable, reversible and specific. The apparent equilibrium dissociation constant is 2.23 ± 0.15 (x ± SEM) and the maximal number of binding sites per mg membrane protein is 32.8 ± 5.4 fmol (x ± SEM). The specific binding is 80–100% of the total [125I] angiotensin II bound and is directly proportional to membrane protein concentration over the range of 33–173 μg protein per ml. Angiotensin II and its antagonists competed for binding in a potency order of (agent, Ki): angiotensin II, 0.9nM > Sar1 Ala3, 7 nM > Sar1-Ile3, 51 nM > Sar1-Leu3, 427nM > angiotensin I, 1709 nM. The ability to characterize and quantify these receptors should now provide a method for investigating the mechanisms underlying the effects of angiotensin II on myocardial tissues.  相似文献   

8.
Specific insulin receptors were measured in isolated mouse pancreatic acini. Scatchard analyses revealed a high affinity binding site with a Kd of 1.67 nM and a lower affinity site with a Kd of 83 nM. Binding of insulin to these receptors was rapid, one-half maximal binding occurring at 2 min and maximal binding at 30 min. Insulin stimulated the uptake of the glucose analogue 2-deoxy-D-glucose; maximum effects were detected at 1.67 μM. Insulin, in contrast, had no direct effects on alpha-aminoisobutyric acid uptake. The finding of high affinity insulin receptors in pancreatic acinar cells supports the hypothesis that insulin may directly regulate specific functions in the exocrine pancreas.  相似文献   

9.
The presence of a putative GRP receptor on rat pancreatic particulate membranes was demonstrated by covalent cross-linking to 125I-gastrin releasing peptide (GRP), which revealed a radioactive band with Mr = 80-90 kDa on reduced SDS-PAGE. Fresh rat pancreatic membranes contained a GRP receptor which was solubilized with Triton X-100 as assessed by its failure to sediment at 100,000 x g for one hour and its ability to pass through a 0.22 mu filter. When 125I-GRP binding was studied using Sephadex G50 gel filtration chromatography to separate bound from unbound ligand, substantial amounts of 125I-GRP binding were observed in rat crude solubilized pancreatic membranes, but essentially no specific binding was observed until the crude solubilized membranes were fractionated by ammonium sulfate precipitation. Specific 125I-GRP binding was 500, 700 and 1400 fmol/mg protein, respectively, in the 0-25%, 25-50% and 50-80% saturated ammonium sulfate fractions (125I-GRP concentration = 1 nM). Specific binding was temperature dependent, saturable and of high affinity, (KD = 2.3 nM). A unique 70 kDa band was visualized by silver staining of the SDS-PAGE of eluates of GRP(14-27) affinity gel compared with eluates of control affinity gels incubated with the 25-50% (NH4)2SO4 fraction. The lower Mr than that observed with covalent cross-linking may represent the binding subunit of a larger receptor protein. This ligand-affinity isolated protein is thus a good candidate for the GRP receptor, or the binding subunit of it, from normal rat pancreas.  相似文献   

10.
The presence of estrogen binding components (EBC) in intestinal mucosa of female rats was investigated by competitive-binding assay using radiolabelled and nonlabelled estradiol 17 beta (E2). EBC were found exclusively in the nuclear fraction and were absent from the cytosolic and from the microsomal fractions. Two types of nuclear EBC with different binding characteristics and capacities were found: Kd1 = 4.8 +/- 0.8 nM, n1 = 18.4 +/- 4.2 fmol/mg protein (n1 = 83.4 +/- 12.5 fmol/mg DNA) and Kd2 = 31.1 +/- 6.8 nM, n2 = 91.1 +/- 18.5 fmol/mg protein (412.7 +/- 80.0 fmol/mg DNA). Type 1 component showed slightly greater affinity for estrogens as compared to progesterone and dexamethasone whereas type 2 component bound other competitors with even greater affinity than E2.  相似文献   

11.
High affinity (KD = 0.2 nM), low capacity (3.6-5.0 fmol/mg protein), androgen-specific binding proteins with characteristics typical of androgen receptors were identified in the lungs of rabbit fetuses between the 26 and 29th day of gestation and in the lungs of adult rabbits. While androgen receptor concentrations increased significantly from late gestation to adulthood (P less than 0.01), no sex-related differences were observed in either the binding affinities or concentrations of the receptors at any age tested. Similarly, no sex-related differences were found in the levels of progesterone, cortisol and cortisone in the fetal circulation, or in the levels of progesterone receptors, glucocorticoid receptors and beta-adrenergic receptors in the fetal lung at 26 days of gestation. It is concluded that the fetal lung interacts directly with circulating androgens via specific androgen receptors and that the suggested male disadvantage with respect to lung maturation in the perinatal period does not appear to be associated with sex-related differences in the levels of pulmonary androgen, glucocorticoid, progesterone or beta-adrenergic receptors.  相似文献   

12.
Current information on pancreatic islet sulfonylurea receptors has been obtained with laboratory animal pancreatic β cells or stable β-cell lines. In the present study, we evaluated the properties of sulfonylurea receptors of human islets of Langherans, prepared by collagenase digestion and density-gradient purification. The binding characterisitics of labeled glibenclamide to pancreatic islet membrane preparations were analyzed, displacement studies with several oral hypoglycemic agents were performed, and these latter compounds were tested as for their insulinotropic action on intact human islets. [3H]glibenclamide saturable binding was shown to be linear at ≤0.25 mg/ml protein; it was both temperature and time dependent. Scatchard analysis of the equilibrium binding data at 25°C indicated the presence of a single class of saturable, high-affinity binding sites with a Kd value of 1.0 ± 0.07 nM and a Bmax value of 657 ± 48 fmol/mg of proteins. The displacement experiments showed the following rank order of potency of the oral hypoglycemic agents we tested: glibenclamide = glimepiride > tolbutamide > chlorpropamide ≫ metformin. This binding potency order was parallel with the insulinotropic potency of the evaluated compounds. J. Cell. Biochem. 71:182–188, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

13.
The homologous Kunitz inhibitor proteins, bovine pancreatic trypsin inhibitor (BPTI) and dendrotoxin I (DTX-I), interact with large conductance Ca2+-activated K+ channels (maxi-KCa) by binding to an intracellular site outside of the pore to produce discrete substate events. In contrast, certain homologues of the Shaker ball peptide produce discrete blocking events by binding within the ion conduction pathway. In this study, we investigated ligand interactions of these positively charged peptide molecules by analysis of single maxi-KCa channels in planar bilayers recorded in the presence of DTX-I and BPTI, or DTX-I and a high-affinity homologue of ball peptide. Both DTX-I (K d, 16.5 nM) and BPTI (K d, 1,490 nM) exhibit one-site binding kinetics when studied alone; however, records in the presence of DTX-I plus BPTI demonstrate simultaneous binding of these two molecules. The affinity of BPTI (net charge, +6) decreases by 11.7-fold (K d, 17,500 nM) when DTX-I (net charge, +10) is bound and, conversely, the affinity of DTX-I decreases by 10.8-fold (K d, 178 nM) when BPTI is bound. The ball peptide homologue (BP; net charge, +6) exhibits high blocking affinity (K d, 7.2 nM) at a single site when studied alone, but has 8.0-fold lower affinity (K d, 57 nM) for blocking the DTX-occupied channel. The affinity of DTX-I likewise decreases by 8.4-fold (K d, 139 nM) when BP is bound. These results identify two types of negatively coupled ligand–ligand interactions at distinct sites on the intracellular surface of maxi-KCa channels. Such antagonistic ligand interactions explain how the binding of BPTI or DTX-I to four potentially available sites on a tetrameric channel protein can exhibit apparent one-site kinetics. We hypothesize that negatively coupled binding equilibria and asymmetric changes in transition state energies for the interaction between DTX-I and BP originate from repulsive electrostatic interactions between positively charged peptide ligands on the channel surface. In contrast, there is no detectable binding interaction between DTX-I on the inside and tetraethylammonium or charybdotoxin on the outside of the maxi-KCa channel.  相似文献   

14.
The aim of the present study was to characterize the pituitary gonadotropin-releasing hormone (GnRH) binding site in the rabbit and investigate its possible role in sexual maturation of the female rabbit. A radioligand binding assay was established, and the presence of specific 125I-labelled D-Ala6-des-Gly10-GnRH ethylamide (125I-DAl6EA) binding sites in the anterior pituitary gland of the rabbit was demonstrated. 125I-DAla6EA binding was saturable, specific, displaceable, reversible, correlated with increasing tissue concentrations, and susceptible to physiological manipulation. 125I-DAla6EA binding indicated the presence of two binding sites in the female adult rabbit pituitary: a high affinity, low capacity site (KD = 0.3-0.4 nM; Bmax = 100-200 fmol/mg protein) and a lower affinity, high capacity site (KD = 30 nM; Bmax = 5-8000 fmol/mg protein). Ontogeny of 125I-DAl6EA binding in the female rabbit (40-120 days of age) did not show a correlation between binding site number and serum luteinizing hormone (LH). In addition, the net serum LH response in female rabbits to a subcutaneous injection of DAla6EA (10 ng, 100 ng, and 1 microgram per kilogram body weight) was not significantly different between animals 40, 75, and 120 days of age. This suggests that a decrease in pituitary responsiveness to GnRH is not associated with sexual maturation in the female rabbit. Results indicate that factors other than and (or) in addition to GnRH binding site number, such as postreceptor events, play a role in gonadotropin secretion in the female rabbit.  相似文献   

15.
Specific β1-adrenoreceptors antagonist [3H]CGP 26505 binding was characterized in rat cerebral cortex and heart sinus atrial node. In both tissues [3H]CGP 26505 binding was maximal at 25°C, it was specific, saturable and protein concentration dependent. Scatchard analysis of saturation isotherms of specific [3H]CGP 26505 binding in cerebral cortex showed that [3H]CGP 26505 binds a single class of high affinity sites with a dissociation constant (KD) of 1±0.3 nM and a maximal number of binding sites (Bmax) of 40±2 fmol/mg of protein. In sinus atrial node, [3H]-CGP 26505 binds a single class of high affinity sites (KD=1.9±0.4 nM, Bmax=28±2 fmol/mg of protein).  相似文献   

16.
《Life sciences》1987,41(17):1989-1997
Radioiodinated butyrophenone compounds are attracting the interest of those working on dopamine receptor studies; structure-activity relationship study has revealed the ortho position of the p-fluorobutyrophenone moiety as a very plausible iodination site. Various synthesized butyrophenones iodinated at the ortho position of p-fluorobutyrophenone moiety, 2′- iodohaloperidol (2′-IHP), 2′-iodotrifluperidol (2′-ITP) and 2′-iodospiperone (2′-ISP) were tested for their abilities to inhibit 3H-spiperone (SP) binding for the dopamine (D-2) receptor, together with reference compounds (SP, haloperidol (HP) and 4-iodospiperone (4- ISP)). The order of binding affinity of the tested compounds was SP > 2′-ISP > HP > 4-ISP > 2′-IHP > 2′- ITP. Whereas, the serotonin (S-2) receptor binding affinity of SP and its iodinated analogues were in the order of SP > > 4-ISP > 2′-ISP. Furthermore, in the saturation binding study using the striatal membrane preparations, the 2′-ISP displayed a KD of 0.25 nM with maximum number of binding site Bmax of 210 fmol/mg protein. These data indicated the 2′-ISP as holding high affinity for dopamine receptors and a low affinity for serotonin receptors. Thus, the 125I-2′-ISP was a very potent radioligand for in vitro dopamine (D-2) receptor studies, and 123I-2′-ISP holds very promising characteristics as for in vivo dopamine receptor studies, as well.  相似文献   

17.
The binding characteristics of the α-component of (?)-[3H]norepinephrine to hamster adipocyte membranes were studied. Binding was rapid, reaching equilibrium in 20 min at 25°C. Dissociation of specific binding by 10 μM phentolamine suggested dissociation from two different sites. The time course of dissociation induced by a 50-fold dilution was unchanged by the addition of norepinephrine, suggesting the absence of cooperative binding sites. [3H]norepinephrine binding was saturable, yielding curvilinear Scatchard plots. Computer modeling of these data further supported the existence of two classes of binding sites, one with high affinity (D = 23 nM) but low binding capacity (96 fmol/mg protein) and one with low affinity (KD = 400 nM) but high binding capacity (1000 fmol/mg protein). Adrenergic ligands of competed with [3H]norepinephrine binding in the following order of potency: (?)-norepinephrine>(?)-epinephrine>>(+)-norepinephrine>(?)-isoproterenol. Displacement by the selective α-adrenergic drugs prazosin, clonidine and yohimbine yielded biphasic curves consistent with binding of [3H]norepinephrine to both α1- (14–22%) and α2- (78–86%) receptor subtypes. Although Gpp(NH)p failed to alter the binding of [3H]dihydroergocryptine, it severely reduced the binding affinity of (?)-epinephrine, (?)-norepinephrine and the selective α2-agonist, clonidine. The inhibitory effects of clonidine and of the α-component of (?)-epinephrine on the adrenocorticotropin-stimulated cyclic AMP production in the intact adipocyte were closely correlated with their effects on the binding of both [3H]norepinephrine and [3H]dihydroergocryptine. Conversely, yohimbine but not prazosin markedly antagonised the α-inhibitory effect of norepinephrine on cyclic AMP production. These data led to concluded that [3H]norepinephrine can be successfully used to study the entire α-adrenergic receptor population of hamster fat cells and that the predominant α2 -receptor subtype exists in two different affinity states for agonists, the proportions of which are modulated by guanine nucleotides.  相似文献   

18.
1. In chicken hepatocytes, α1-adrenoceptor activation increased: (a) phosphatidylinositol labeling; (b) production of inositol trisphosphate; (c) cytosol calcium; and (d) phosphorylase activity.2. Prazosin (Ki ≈ 0.2–0.4 nM) was more potent in inhibiting these actions than 5-methyl-urapidil (Ki ≈ 30–60 nM); these actions were sensitive to chlorethylclonidine suggesting the involvement of α1-adrenoceptors.3. The stimulation of phosphoinositide turnover was insensitive to pertussis toxin.4. In chicken liver membranes, [3H]prazosin binding sites (Bmax 872 fmol/mg protein) with high affinity for prazosin (KD 0.3 nM; Ki 0.4 nM) and lower affinity for 5-methyl-urapidil (Ki 46 nM) were detected, consistent with the presence of α1B-adrenoceptors.  相似文献   

19.
Lactobacillus casei cells grown in the presence of limiting folate contained large amounts of a membrane-associated binding protein which mediates folate transport. Binding to this protein at 4°C was time and concentration dependent and at low levels (1 to 10 nM) of folate required 60 min to reach a steady state. The apparent dissociation constant (Kd) for folate was 1.2 nM at pH 7.5 in 100 mM K-phosphate buffer, and it varied by less than twofold when measured over a range of pH values (5.5 to 7.5) or in buffered salt solutions of differing ionic compositions. Conversely, removal of ions and their replacement with isotonic sucrose (pH 7.5) led to a 200-fold reduction in binding affinity for folate. Restoration of the high-affinity state of the binding protein could be achieved by the readdition of various cations to the sucrose medium. Kd measurements over a range of cation concentrations revealed that a half-maximal restoration of binding affinity was obtained with relatively low levels (10 to 50 μM) of divalent cations (e.g., Ca2+, Mg2+, and ethylenediammonium2+ ions). Monovalent cations (e.g., Na+, K+, and Tris+) were also effective, but only at concentrations in the millimolar range. The Kd for folate reached a minimum of 0.6 nM at pH 7.5 in the presence of excess CaCl2. In cells suspended in sucrose, the affinity of the binding protein for folate increased 20-fold by decreasing the pH from 7.5 to 4.5, indicating that protons can partially fulfill the cation requirement. These results suggest that the folate transport protein of L. casei may contain both a substrate- and cation-binding site and that folate binds with a high affinity only after the cation-binding site has been occupied. The presence of these binding sites would support the hypothesis that folate is transported across the cell membrane via a cation-folate symport mechanism.  相似文献   

20.
The influence of isoprenaline- and propranolole-induced activation and inhibition of β-adrenoreceptors on the specific nonselective α2-antagonist [3H]RX821002 binding was studied on rat cerebral cortex subcellular membrane fractions. It was shown that the ligand-receptor interaction for α2-adrenoreceptors corresponded to the model that assumed the presence of one receptor pool and binding of two ligand molecules to a receptor dimer. The following parameters were determined for [3H]RX821002 binding to α2-adrenoreceptors: K d1 = 1.57 ± 0.27 nM, B max = 7.24 ± 1.63 fmol/mg of protein, n = 2. In the case of isoprenaline-induced activation of β-adrenoreceptors the binding of radiolabeled ligand to α2-adrenoreceptors was described by the same model. The affinity of α2-adrenoreceptors for [3H]RX821002 decreased more than twofold (K d = 3.55 ± 0.02 nM) and the quantity of active receptors increased by 69% (B max = 12.24 ± 0.06 fmol/mg of protein). Propranolole changed the model of ligand binding, and two pools of receptors were detected with the following parameters: K d1 = 0.61 ± 0.02 nM, K d2 = 3.41 ± 0.13 nM, B ml = 1.88 ± 0.028 fmol/mg of protein, B m2 = 9.27 ± 0.08 fmol/mg of protein, n = 2. The data suggest that α2-adrenoreceptors in subcellular membrane fractions from rat cerebral cortex exist in dimeric form. Isoprenaline and propranolole exhibit modulating effect on the specific antagonist binding to α2-adrenoreceptors, which results in the inhibition and alteration of [3H]RX821002 binding parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号