首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
铁是血红素、线粒体呼吸链复合体和各种生物酶的重要辅助因子,参与氧气运输、氧化还原反应和代谢物合成等生物过程。铁蛋白(ferritin)是一种铁存储蛋白质,通过储存和释放铁来维持机体内铁平衡。铁自噬(ferritinophagy)作为一种选择性自噬方式,介导铁蛋白降解释放游离铁,参与细胞内铁含量的调控。适度铁自噬维持细胞内铁含量稳定,但铁自噬过度会释放出大量游离铁。通过芬顿 (Fenton)反应催化产生大量的活性氧(reactive oxygen species, ROS),发生脂质过氧化造成细胞受损。因此,铁自噬在维持细胞生理性铁稳态中发挥至关重要的作用。核受体共激活因子4 (nuclear receptor co-activator 4, NCOA4)被认为是铁自噬的关键调节因子,与铁蛋白靶向结合,并传递至溶酶体中降解释放游离铁,其介导的铁自噬构成了铁代谢的重要组成部分。最新研究表明,NCOA4受体内铁含量、自噬、溶酶体和低氧等因素的调控。NCOA4介导的铁蛋白降解与铁死亡(ferroptosis)有关。铁死亡是自噬性细胞死亡过程。铁自噬通过调节细胞铁稳态和细胞ROS生成,成为诱导铁死亡的上游机制,与贫血、神经退行性疾病、癌症、缺血/再灌注损伤与疾病的发生发展密切相关。本文针对NCOA4介导的铁自噬通路在铁死亡中的功能特征,探讨NCOA4在这些疾病中的作用,可能为相关疾病的治疗提供启示。  相似文献   

2.
The autoxidation and monoamine oxidase (MAO)-mediated metabolism of dopamine (3-hydroxytyramine; DA) cause a continuous production of hydroxyl radical (*OH), which is further enhanced by the presence of iron (ferrous iron, Fe(2+) and ferric ion, Fe(3+)). The accumulation of hydrogen peroxide (H2O2) in the presence of Fe(2+) appears to discard the involvement of the Fenton reaction in this process. It has been found that the presence of DA significantly reduces the formation of thiobarbituric acid reagent substances (TBARS), which under physiological conditions takes place in mitochondrial preparations. The presence of DA is also able to reduce TBARS formation in mitochondrial preparations even in the presence of iron (Fe(2+) and Fe(3+)). However, DA boosted the carbonyl content of mitochondrial proteins, which was further increased in the presence of iron (Fe(2+) and Fe(3+)). This latter effect is also accompanied by a significant reduction in thiol content of mitochondrial proteins. It has also been observed how the pre-incubation of mitochondria with pargyline, an acetylenic MAO inhibitor, reduces the production of *OH and increases the formation of TBARS. Although, the MAO-mediated metabolism of DA increases MAO-B activity, the presence of iron inhibits both MAO-A and MAO-B activities. Consequently, DA has been shown to be a double-edged sword, because it displays antioxidant properties in relation to both the Fenton reaction and lipid peroxidation and exhibits pro-oxidant properties by causing both generation *OH and oxidation of mitochondrial proteins. Evidently, these pro-oxidant properties of DA help explain the long-term side effects derived from l-DOPA treatment of Parkinson's disease and its exacerbation by the concomitant use of DA metabolism inhibitors.  相似文献   

3.
Ferroptosis is recognized as a new form of regulated cell death which is initiated by severe lipid peroxidation relying on reactive oxygen species (ROS) generation and iron overload. This iron-dependent cell death manifests evident morphological, biochemical and genetic differences from other forms of regulated cell death, such as apoptosis, autophagy, necrosis and pyroptosis. Ferroptosis was primarily characterized by condensed mitochondrial membrane densities and smaller volume than normal mitochondria, as well as the diminished or vanished of mitochondria crista and outer membrane ruptured. Mitochondria take the center role in iron metabolism, as well as substance and energy metabolism as it’s the major organelle in iron utilization, catabolic and anabolic pathways. Interference of key regulators of mitochondrial lipid metabolism (e.g., ASCF2 and CS), iron homeostasis (e.g., ferritin, mitoferrin1/2 and NEET proteins), glutamine metabolism and other signaling pathways make a difference to ferroptotic sensitivity. Targeted induction of ferroptosis was also considered as a potential therapeutic strategy to some oxidative stress diseases, including neurodegenerative disorders, ischemia-reperfusion injury, traumatic spinal cord injury. However, the pertinence between mitochondria and ferroptosis is still in dispute. Here we systematic elucidate the morphological characteristics and metabolic regulation of mitochondria in the regulation of ferroptosis.  相似文献   

4.
Ferroptosis is an iron-dependent form of non-apoptotic cell death characterized by excessive lipid peroxidation and associated with a plethora of pathological conditions in the liver. Emerging evidence supports the notion that dysregulated metabolic pathways and impaired iron homeostasis play a role in the progression of liver disease via ferroptosis. Although the molecular mechanisms by which ferroptosis causes disease are poorly understood, several ferroptosis-associated genes and pathways have been implicated in liver disease. Here, we review the physiological role of the liver in processing nutrients, our current understanding of iron metabolism, the characteristics of ferroptosis, and the mechanisms that regulate ferroptosis. In addition, we summarize the role of ferroptosis in the pathogenesis of liver disease, including liver injury, non-alcoholic steatohepatitis, liver fibrosis, liver cirrhosis, and hepatocellular carcinoma. Finally, we discuss the therapeutic potential of targeting ferroptosis for managing liver disease.Subject terms: Translational research, Autophagy, Experimental models of disease  相似文献   

5.
Ferroptosis is a newly discovered type of regulated cell death, characterized by the iron-dependent accumulation of lipid reactive oxygen species, which has been implicated in numerous human diseases. However, its role in pulmonary fibrosis, a fatal lung disease with unknown etiology, is largely unknown. Here, we investigated the role of ferroptosis in pulmonary fibrosis. We found a large amount of iron deposition in the lung tissue of patients with pulmonary fibrosis. We observed ferroptosis in alveolar type II (ATII) cells, fibrotic lung tissues of BLM-induced pulmonary fibrosis mice. BLM-induced increase in iron level was accompanied by pathological changes, collagen deposition, and ferroptosis in ATII cells, indicating iron deposition-induced ferroptosis, which promoted the development of pulmonary fibrosis. Moreover, deferoxamine (DFO) completely prevented the pro-fibrosis effects of BLM by reducing iron deposition and ferroptosis in ATII cells. Genes associated with intracellular iron metabolism and homeostasis, such as transferrin receptor 1, divalent metal transporter 1, and ferroportin-1, and showed abnormal expression levels in animal tissues and lung epithelial MLE-12 cells, which responded to BLM stimulation. Overall, we demonstrated that BLM-induced iron deposition in MLE-12 cells is prone to both mitochondrial dysfunction and ferroptosis and that DFO reverses this phenotype. In the future, understanding the role of ferroptosis may shed new light on the etiology of pulmonary fibrosis. Ferroptosis inhibitors or genetic engineering of ferroptosis-related genes might offer potential targets to treat pulmonary fibrosis.  相似文献   

6.
Obesity is widely recognized as a major global health problem caused by a chronic energy imbalance resulting from a combination of excess caloric intake and insufficient energy expenditure. Excessive energy intake and physical inactivity are traditional risk factors for obesity. Obesity is a risk factor for many diseases, including hypertension, diabetes and tumours. Recent studies have found a strong link between ferroptosis and obesity. Ferroptosis is an iron-dependent regulated cell death caused by iron overload and reactive oxygen species-dependent excessive accumulation of lipid peroxidation. Ferroptosis is involved in many biological processes, such as amino acid metabolism, iron metabolism and lipid metabolism. Some potential strategies to reduce the adverse effects of ferroptosis on obesity are suggested and future research priorities are highlighted.  相似文献   

7.
Zhao G  Arosio P  Chasteen ND 《Biochemistry》2006,45(10):3429-3436
Overexpression of human H-chain ferritin (HuHF) is known to impart a degree of protection to cells against oxidative stress and the associated damage to DNA and other cellular components. However, whether this protective activity resides in the protein's ability to inhibit Fenton chemistry as found for Dps proteins has never been established. Such inhibition does not occur with the related mitochondrial ferritin which displays much of the same iron chemistry as HuHF, including an Fe(II)/H(2)O(2) oxidation stoichiometry of approximately 2:1. In the present study, the ability of HuHF to attenuate hydroxyl radical production by the Fenton reaction (Fe(2+) + H(2)O(2) --> Fe(3+) + OH(-) + *OH) was examined by electron paramagnetic resonance (EPR) spin-trapping methods. The data demonstrate that the presence of wild-type HuHF during Fe(2+) oxidation by H(2)O(2) greatly decreases the amount of .OH radical produced from Fenton chemistry whereas the ferroxidase site mutant 222 (H62K + H65G) and human L-chain ferritin (HuLF) lack this activity. HuHF catalyzes the pairwise oxidation of Fe(2+) by the detoxification reaction [2Fe(2+) + H(2)O(2) + 2H(2)O --> 2Fe(O)OH(core) + 4H(+)] that occurs at the ferroxidase site of the protein, thereby preventing the production of hydroxyl radical. The small amount of *OH radical that is produced in the presence of ferritin (相似文献   

8.
MYCN amplification is tightly associated with the poor prognosis of pediatric neuroblastoma (NB). The regulation of NB cell death by MYCN represents an important aspect, as it directly contributes to tumor progression and therapeutic resistance. However, the relationship between MYCN and cell death remains elusive. Ferroptosis is a newly identified cell death mode featured by lipid peroxide accumulation that can be attenuated by GPX4, yet whether and how MYCN regulates ferroptosis are not fully understood. Here, we report that MYCN-amplified NB cells are sensitive to GPX4-targeting ferroptosis inducers. Mechanically, MYCN expression reprograms the cellular iron metabolism by upregulating the expression of TFRC, which encodes transferrin receptor 1 as a key iron transporter on the cell membrane. Further, the increased iron uptake promotes the accumulation of labile iron pool, leading to enhanced lipid peroxide production. Consistently, TFRC overexpression in NB cells also induces selective sensitivity to GPX4 inhibition and ferroptosis. Moreover, we found that MYCN fails to alter the general lipid metabolism and the amount of cystine imported by System Xc(−) for glutathione synthesis, both of which contribute to ferroptosis in alternative contexts. In conclusion, NB cells harboring MYCN amplification are prone to undergo ferroptosis conferred by TFRC upregulation, suggesting that GPX4-targeting ferroptosis inducers or TFRC agonists can be potential strategies in treating MYCN-amplified NB.Subject terms: Cancer metabolism, Cell death  相似文献   

9.
In order to identify an enzyme capable of Fenton reaction in Synechocystis, we purified an enzyme catalyzing one-electron reduction of t-butyl hydroperoxide in the presence of FAD and Fe(III)-EDTA. The enzyme was a 26 kDa protein, and its N-terminal amino acid sequencing revealed it to be DrgA protein previously reported as quinone reductase [Matsuo M, Endo T and Asada K (1998) Plant Cell Physiol39, 751-755]. The DrgA protein exhibited potent quinone reductase activity and, furthermore, we newly found that it contained FMN and highly catalyzed nitroreductase, flavin reductase and ferric reductase activities. This is the first demonstration of nitroreductase activity of DrgA protein previously identified by a drgA mutant phenotype. DrgA protein strongly catalyzed the Fenton reaction in the presence of synthetic chelate compounds, but did so poorly in the presence of natural chelate compounds. Its ferric reductase activity was observed with both natural and synthetic chelate compounds with a better efficiency with the latter. In addition to small molecular-weight chemical chelators, an iron transporter protein, transferrin, and an iron storage protein, ferritin, turned out to be substrates of the DrgA protein, suggesting it might play a role in iron metabolism under physiological conditions and possibly catalyze the Fenton reaction under hyper-reductive conditions in this microorganism.  相似文献   

10.
11.
Tetrahydropapaveroline (THP) is a compound derived from dopamine monoamine oxidase-mediated metabolism, particularly present in the brain of parkinsonian patients receiving L-dopa therapy, and is capable of causing dopaminergic neurodegeneration. The aim of this work was to evaluate the potential of THP to cause oxidative stress on mitochondrial preparations and to gain insight into the molecular mechanisms responsible for its neurotoxicity. Our data show that THP autoxidation occurs with a continuous generation of hydroxyl radicals (*OH) and without the involvement of the Fenton reaction. The presence of ascorbate enhances this process by establishing a redox cycle, which regenerates THP from its quinolic forms. It has been shown that the production of *OH is not affected by the presence of either ferrous or ferric iron. Although THP does not affect lipid peroxidation, it is capable of reducing the high levels of thiobarbituric acid-reactive substances obtained in the presence of ascorbate and/or iron. However, THP autoxidation in the presence of ascorbate causes both an increase in protein carbonyl content and a reduction in protein-free thiol content. THP also increases protein carbonyl content when the autoxidation occurs in the presence of iron. The remarkable role played by ascorbate in the production of oxidative stress by THP autoxidation is of particular interest.  相似文献   

12.
Iron and oxidative stress in bacteria   总被引:21,自引:0,他引:21  
The appearance of oxygen on earth led to two major problems: the production of potentially deleterious reactive oxygen species and a drastic decrease in iron availability. In addition, iron, in its reduced form, potentiates oxygen toxicity by converting, via the Fenton reaction, the less reactive hydrogen peroxide to the more reactive oxygen species, hydroxyl radical and ferryl iron. Conversely superoxide, by releasing iron from iron-containing molecules, favors the Fenton reaction. It has been assumed that the strict regulation of iron assimilation prevents an excess of free intracellular iron that could lead to oxidative stress. Studies in bacteria supporting that view are reviewed. While genetic studies correlate oxidative stress with increase of intracellular free iron, there are only few and sometimes contradictory studies on direct measurements of free intracellular metal. Despite this weakness, the strict regulation of iron metabolism, and its coupling with regulation of defenses against oxidative stress, as well as the role played by iron in regulatory protein in sensing redox change, appear as essential factors for life in the presence of oxygen.  相似文献   

13.
Pancreatic ductal adenocarcinoma (PDAC) is an extremely lethal cancer with limited treatment options. Cisplatin (DDP) is used as a mainstay of chemotherapeutic agents in combination with other drugs or radiotherapy for PDAC therapy. However, DDP exhibits severe side-effects that can lead to discontinuation of therapy, and the acquired drug resistance of tumor cells presents serious clinical obstacles. Therefore, it is imperative to develop a more effective and less toxic therapeutic strategy. We and others have previously discovered that dihydroartemisinin (DHA) represents a safe and promising therapeutic agent to preferentially induce cancer cell ferroptosis. In the present study, we find that DHA could intensively strengthen the cytotoxicity of DDP and significantly reduce its effective concentrations both in vitro and in vivo. Combination of DHA and DDP synergistically inhibits the proliferation and induces DNA damage of PDAC cells. Mechanically, the combinative treatment impairs mitochondrial homeostasis, characterized by destroyed mitochondrial morphology, decreased respiratory capacity, reduced ATP production, and accumulated mitochondria-derived ROS. Further studies show that ferroptosis contributes to the cytotoxic effects in PDAC cells under the challenge of DHA and DDP, together with catastrophic accumulation of free iron and unrestricted lipid peroxidation. Moreover, pharmacologic depleting of the free iron reservoir or reconstituted expression of FTH contributes to the tolerance of DHA/DDP-induced ferroptosis, while iron addition accelerates the ferroptotic cell death. In summary, these results provide experimental evidence that DHA acts synergistically with DDP and renders PDAC cells vulnerable to ferroptosis, which may act as a promising therapeutic strategy.Subject terms: Chemotherapy, Preclinical research  相似文献   

14.
Zeng  Xiaoyan  An  Hedi  Yu  Fei  Wang  Kai  Zheng  Lanlan  Zhou  Wei  Bao  Yiwen  Yang  Jie  Shen  Nan  Huang  Dongya 《Neurochemical research》2021,46(5):1239-1251

As a novel discovered regulated cell death pattern, ferroptosis has been associated with the development of Parkinson’s disease (PD) and has attracted widespread attention. Nevertheless, the relationship between ferroptosis and PD pathogenesis is still unclear. This study aims to investigate the effect of iron overload on dopaminergic (DA) neurons and its correlation with ferroptosis. Here we use nerve growth factor (NGF) induced PC12 cells which are derived from pheochromocytoma of the rat adrenal to establish a classical PD in vitro model. We found significantly decreased cell viability in NGF-PC12 cell under ammonium ferric citrate (FAC) administration. Moreover, excessive intracellular iron ions induced the increase of (reactive oxygen species) ROS release as well as the decrease of mitochondrial membrane potential in PC12-NGF cells. In addition, we also found that overloaded iron can activate cell apoptosis and ferroptosis pathways, which led to cell death. Furthermore, MPP-induced PD cells were characterized by mitochondrial shrinkage, decreased expression of glutathione peroxidase 4 (Gpx4) and ferritin heavy chain (FTH1), and increased divalent metal transporter (DMT1) and transferrin receptor 1 (TfR1) expression level. In contrast, Lip-1 and DFO increased the expression level of GPX4 and FTH1 compared to MPP-induced PD cell. In conclusion, we indicated that overloaded intracellular iron contributes to neurons death via apoptosis and ferroptosis pathways, while DFO, an iron chelator, can inhibit ferroptosis in order to protect the neurons in vitro.

  相似文献   

15.
铁离子是大多数细菌生存所必需的营养物质,但是过多的铁离子通过芬顿反应产生的活性氧(reactive oxygen species, ROS)对细菌造成损伤。因此,细菌必须严格控制体内铁离子浓度。铁摄取调节子(ferric uptake regulator,Fur)是细菌铁离子代谢中最重要的调节子。Fur通过抑制或者激活基因的转录,来调节与铁摄取、利用和储存相关的基因,维持胞内铁离子浓度动态平衡。此外,Fur还参与细菌的氧化应激、抗酸能力、毒力和能量代谢等多种生物过程的调节。本文对Fur参与的生物过程及调节机制进行介绍,以期为进一步研究其他细菌Fur的调节机制,以及Fur在细菌应对环境变化中所起作用提供参考。  相似文献   

16.
Ferroptosis, a newly discovered type of regulated cell death, has been implicated in numerous human diseases. Idiopathic pulmonary fibrosis (IPF) is a progressive and ultimately fatal interstitial lung disease with poor prognosis and limited treatment options. Emerging evidence has linked ferroptosis and glutamate-determined cell fate which is considered a new light on the etiology of pulmonary fibrosis. Here, we observed that N-methyl d-aspartate receptor (NMDAR) activation promoted cell damage and iron deposition in MLE-12 cells in a dose-, time-, and receptor-dependent manner. This mediated substantial Ca2+ influx, upregulated the expression levels of nNOS and IRP1, and affected intracellular iron homeostasis by regulating the expression of iron transport-related proteins (i.e., TFR1, DMT1, and FPN). Excessive iron load promoted the continuous accumulation of total intracellular and mitochondrial reactive oxygen species, which ultimately led to ferroptosis. NMDAR inhibition reduced lung injury and pulmonary fibrosis in bleomycin-induced mice. Bleomycin stimulation upregulated the expression of NMDAR1, nNOS, and IRP1 in mouse lung tissues, which ultimately led to iron deposition via regulation of the expression of various iron metabolism-related genes. NMDAR activation initiated the pulmonary fibrosis process by inducing iron deposition in lung tissues and ferroptosis of alveolar type II cells. Our data suggest that NMDAR activation regulates the expression of iron metabolism-related genes by promoting calcium influx, increasing nNOS and IRP1 expression, and increasing iron deposition by affecting cellular iron homeostasis, ultimately leading to mitochondrial damage, mitochondrial dysfunction, and ferroptosis. NMDAR activation-induced ferroptosis of alveolar type II cells might be a key event to the initiation of pulmonary fibrosis.  相似文献   

17.
The white rot fungus, Ceriporiopsis subvermispora, is able to degrade lignin in wood without intensive damage to cellulose. Since lignin biodegradation by white rot fungi proceeds by radical reactions, accompanied by the production of a large amount of Fe3+-reductant phenols and reductive radical species in the presence of iron ions, molecular oxygen, and H2O2, C. subvermispora has been proposed to possess a biological system which suppresses the production of a cellulolytic active oxygen species, *OH, by the Fenton reaction. In the present paper, we demonstrate that 1-nonadecene-2,3-dicarboxylic acid (ceriporic acid B), an extracellular metabolite of C. subvermispora, strongly inhibited *OH production and the depolymerization of cellulose by the Fenton reaction in the presence of iron ions, cellulose, H2O2, and a reductant for Fe3+, hydroquinone (HQ), at the physiological pH of the fungus.  相似文献   

18.
铁死亡是一种由脂质过氧化驱动的铁依赖性的新的细胞死亡方式,越来越多的证据表明,铁死亡与各种病理状态有关,如神经退行性疾病、糖尿病肾病、癌症等,脂质过氧化驱动的铁死亡可能促进或抑制这些疾病的发生发展,细胞中抗氧化系统通过抑制脂质过氧化在抵抗铁死亡过程中发挥着重要作用。铁死亡的关键通路有以SLC7A11-GPX4为关键分子的氨基酸代谢通路、以铁蛋白或转铁蛋白为主的铁代谢通路,以及脂质代谢通路。铁死亡的发生受到细胞内蛋白质的调节,这些蛋白质会发生各种翻译后修饰,包括泛素化修饰。泛素-蛋白酶体系统(ubiquitin-proteasome system,UPS)是细胞内主要降解系统之一,通过酶促级联反应催化泛素分子标记待降解蛋白,随后由蛋白酶体识别并降解目标蛋白质。UPS根据其降解底物的不同在调节铁死亡的反应中发挥双重作用。UPS通过促进铁死亡关键分子(如SLC7A11、GPX4、GSH)以及抗氧化系统成分(如NRF2)的泛素化降解从而促进铁死亡,也可以通过促进脂质代谢通路中相关分子(如ACSL4、ALOX15)的泛素化降解从而抑制铁死亡。本综述介绍泛素化修饰在调控铁死亡进程中作用的最新研究进展,总结了已发表的关于E3泛素连接酶和去泛素酶调控铁死亡的研究,归纳了泛素连接酶、去泛素酶调控铁死亡的作用靶点,有助于确定人类疾病中新的预后指标,为这些疾病提供潜在的治疗策略。  相似文献   

19.
铁离子是大多数细菌生存所必需的一种营养物质,但过多的铁离子会通过芬顿反应产生的活性氧对细菌造成损伤。因此,细菌通过摄取、调控、螯合、外排等机制维持体内铁离子的稳态。鸭疫里默氏杆菌(Riemerella anatipestifer)是一种最新被归类于威克斯菌科里氏杆菌属的革兰氏阴性菌。该菌主要感染禽类,参与该菌的铁离子代谢基因具有特别之处。本文对鸭疫里默氏杆菌铁离子代谢机制研究进展进行了系统总结和阐述,包括该菌的TonB系统、TonB依赖性受体、Fur蛋白及Dps蛋白等在铁离子转运、调控、螯合中的功能,以及以上蛋白在鸭疫里默氏杆菌致病中的作用,以期更全面地理解鸭疫里默氏杆菌铁代谢机制,并为进一步深入研究该菌铁离子代谢提供理论依据和参考。  相似文献   

20.
Abnormal lipid metabolism including synthesis, uptake, modification, degradation and transport has been considered a hallmark of malignant tumors and contributes to the supply of substances and energy for rapid cell growth. Meanwhile, abnormal lipid metabolism is also associated with lipid peroxidation, which plays an important role in a newly discovered type of regulated cell death termed ferroptosis. Long noncoding RNAs (lncRNAs) have been proven to be associated with the occurrence and progression of cancer. Growing evidence indicates that lncRNAs are key regulators of abnormal lipid metabolism and ferroptosis in cancer. In this review, we mainly summarized the mechanism by which lncRNAs regulate aberrant lipid metabolism in cancer, illustrated that lipid metabolism can also influence the expression of lncRNAs, and discussed the mechanism by which lncRNAs affect ferroptosis. A comprehensive understanding of the interactions between lncRNAs, lipid metabolism and ferroptosis could help us to develop novel strategies for precise cancer treatment in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号