首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
Neoporphyra haitanensis is an economically important red seaweed that inhabits upper intertidal zones. The thallus tolerates extreme fluctuating environmental stresses (e.g., surviving more than 80% water loss during low tides). To elucidate the global molecular responses relevant to this outstanding desiccation tolerance, a quantitative proteomics analysis of N. haitanensis under different desiccation treatments as well as rehydration was performed. According to the clustering of expression patterns and the functional interpretation of the 483 significantly differentially expressed proteins, a three-stage cellular response to desiccation stress and subsequent rehydration was proposed. Stage I: at the beginning of water loss, multiple signal transduction pathways were triggered including lipid signaling, protein phosphorylation cascades, and histone acetylation controlling acetate biosynthesis to further modulate downstream hormone signaling. Protein protection by peptidyl-prolyl isomerase and ROS scavenging systems were also immediately switched on. Stage II: with the aggravation of stress, increases in antioxidant systems, the accumulation of LEA proteins, and the temporary biosynthesis of branched starch were observed. Multiple enzymes involved in redox homeostasis, including peroxiredoxin, thioredoxin, ascorbate peroxidase, superoxide dismutase, glutathione peroxidase, and glutathione reductase, were hypothesized to function in specific cellular compartments. Stage III: when the desiccated thalli had rehydrated for 30 mins, photosynthesis and carbon fixation were recovered, and antioxidant activities and protein structure protection were maintained at a high level. This work increases the understanding of the molecular responses to environmental stresses via a proteomic approach in red seaweeds and paves the way for further functional studies and genetic engineering.  相似文献   

2.
Duration of emergence increases with tidal height on rocky shores therefore, emergence adaptations in intertidal species such as littorine and other prosobranch gastropods have been considered correlated with zonation patterns; temperature tolerance, desiccation resistance and aerial respiration rate all commonly assumed to increase progressively with increasing zonation level. Such direct correlations are rarely observed in nature. Maximal aerial gas exchange occurs in mid-shore, not high shore species. Temperature tolerance and desiccation resistance do not increase directly with shore height. Thus, hypotheses regarding physiological correlates of zonation require revaluation. A new hypothesis is presented that the high tide mark presents a single major physiological barrier on rocky shores. Above it, snails experience prolonged emergence and extensive desiccation; below it, predictable submergence and rehydration with each tidal cycle. Thus, desiccation stress is minimal below the high tide mark and maximal above it. Therefore, species restricted below high tide (the eulittoral zone) should display markedly different adaptive strategies to emergence than those above it (the eulittoral fringe). A review of the literature indicated that adaptations in eulittoral species are dominated by those allowing maintenance of activity and foraging in air including: evaporative cooling; low thermal tolerance; elevated aerial O2 uptake rates; and high capacity for radiant heat absorption. Such adaptations exacerbate evaporative water loss. In contrast, species restricted to the eulittoral fringe display adaptive strategies that minimize desiccation and prolong survival of emergence including: foot withdrawal, preventing heat conduction from the substratum; aestivation in air; elevated thermal tolerance reducing necessity for evaporative cooling; position maintenance by cementation to the substratum and increased capacity for heat dissipation. In order to test of this hypothesis the upper thermal limits, tissue and substratum temperatures on emergence in direct sunlight and evaporative water loss and tissue temperatures on emergence in 40 °C were evaluated for specimens of six species of eulittoral and eulittoral fringe gastropods from a granite shore on Princess Royal Harbour near Albany, Western Australia. The results were consistant with adaptation to the proposed desiccation barrier at high tide. The eulittoral species, Austrocochlea constricta, Austrocochlea concamerata, Nerita atramentosa and Lepsiella vinosa, displayed adaptations dominated by maintenance of activity and foraging during emergence while the eulittoral fringe littorine species, Bembicium vittatum and Nodilittorina unifasciata displayed adaptations dominated by minization of activity and evaporative water loss during emergence. The evolution of adaptations allowing tolerance of prolonged desiccation have allowed littorine species to dominate high intertidal rocky shore gastropod faunas throughout the world's oceans.  相似文献   

3.
    
Neoporphyra haitanensis, a red alga harvested for food, thrives in the intertidal zone amid dynamic and harsh environments. High irradiance represents a major stressor in this habitat, posing a threat to the alga's photosynthetic apparatus. Interestingly, N. haitanensis has adapted to excessive light despite the absence of a crucial xanthophyll cycle-dependent photoprotection pathway. Thus, it is valuable to investigate the mechanisms by which N. haitanensis copes with excessive light and to understand the photoprotective roles of carotenoids. Under high light intensities and prolonged irradiation time, N. haitanensis displayed reduction in photosynthetic efficiency and phycobiliproteins levels, as well as different responses in carotenoids. The decreased carotene contents suggested their involvement in the synthesis of xanthophylls, as evidenced by the up-regulation of lycopene-β-cyclase (lcyb) and zeaxanthin epoxidase (zep) genes. Downstream xanthophylls such as lutein, zeaxanthin, and antheraxanthin increased proportionally to light stress, potentially participating in scavenging reactive oxygen species (ROS). When accompanied by the enhanced activity of ascorbate peroxidase (APX), these factors resulted in a reduction in ROS production. The responses of intermediates α-cryptoxanthin and β-cryptoxanthin were felt somewhere between carotenes and zeaxanthin/lutein. Furthermore, these changes were ameliorated when the organism was placed in darkness. In summary, down-regulation of the organism's photosynthetic capacity, coupled with heightened xanthophylls and APX activity, activates photoinhibition quenching (qI) and antioxidant activity, helping N. haitanensis to protect the organism from the damaging effects of excessive light exposure. These findings provide insights into how red algae adapt to intertidal lifestyles.  相似文献   

4.
    
The influence of desiccation on the mechanical properties of the intertidal macroalga Iridaea cordata (Turner) Bory (Rhodophyta) was investigated over a range of water losses (0–83%) that bracketed in situ levels (26–67%). The tissue modulus (stiffness) remained constant for water losses up to about 70%, but increased sharply with losses between 70–83%. Tissue strength of desiccated samples did not fall below the range measured for undesiccated samples. There was a significant increase in breaking strain up to water losses of about 50%, after which breaking strain decreased. The relationship between toughness and desiccation resembled that for breaking strain. Overall, the mechanical properties of Iridaea cordata did not deteriorate when desiccated to levels consistent with those observed in the field.  相似文献   

5.
  总被引:2,自引:0,他引:2  
Intertidal seaweeds are periodically exposed during low tide and thus experience extreme levels of desiccation. The physiological activity of seaweeds changes during this water loss process. This study examined how desiccation affects the photosynthesis and respiration of seaweeds from different intertidal levels, and whether the ability to retain photosynthesis and respiration rates during desiccation varies among these species. Photosynthesis and respiration rates of 12 species of seaweeds were measured under various levels of desiccation, using an infrared CO2 gas analyzer. High levels of drought negatively affected photosynthesis, while most species showed initial rises in photosynthetic rates. The ability to retain photosynthesis and respiration activities under desiccation conditions varied among species. These physiological responses were not related to the intertidal level at which these species occur, but to their ability to prevent water loss. The species with lower rates of water loss had slower declines in the rate of photosynthesis and respiration.  相似文献   

6.
         下载免费PDF全文
《植物生态学报》2016,40(12):1328
Vivipary in plants refers to a phenomenon that sexually reproduced offsprings germinate while still attached to the maternal bodies. This is mostly manifested in mangrove plants, which occur in tropical and subtropical intertidal zones and encounter harsh environmental conditions such as high salinity, high temperatures, waterlogging, hypoxia and tidal waves. Vivipary has long been recognized as one of the most important adaptive features under such a complex environment. Here we discuss four aspects of vivipary: morphological anatomy, physiology and biochemistry, molecular biology and ecological adaptation. We also discuss shortcomings in current studies and prospect of future directions. Differing from regular seed development, viviparous seeds in mangroves are evolved with many special structures, indicating a genetically based process. Hormones play an important role in regulating the process, whilst the dynamics of salt ion concentration during embryo and propagule development seems to be an adaptive feature. The ecological significance of vivipary is fully exhibited in the propagules that can effectively establish themselves on muddy tidal zones. Such a success heavily relies on sound functional features developed on the mother plants. However, the molecular mechanism and the regulation of viviparous seed development in mangroves remain elusive. Systematic studies of vivipary in mangroves not only help to understand the nature and evolutionary process of this distinct adaptive phenomenon, but also provide the foundation for mangrove forest restoration and protection in many parts of the world.  相似文献   

7.
Many intertidal fishes, particularly among the Blenniidae and Cottidae, possess amphibious adaptations, including the ability to breathe in air and to avoid desiccation in terrestrial conditions. These traits are absent in subtidal species of blennies and cottids. Hypsoblennius gilberti, the rockpool blenny, is found in shallow rockpools in the mid to high intertidal areas of Southern California, and deeper to 18 m in the subtidal zone. This broad vertical distribution could indicate that this blenny is adapted for tidal air emergence, although H. gilberti has not been observed out of water in its natural habitat. H. gilberti does not emerge voluntarily from hypoxic sea water in the laboratory, but it easily withstands 3 h out of water. The aerial respiratory exchange ratio (CO2 released compared to O2 consumed) is 0.70, similar to that of amphibious intertidal fishes in air, indicating sufficient release of metabolically produced CO2 while emerged. There is no increase in aquatic respiration following emergence. However, unlike other amphibious fishes that maintain aerial oxygen consumption at a level similar to aquatic oxygen consumption, H. gilberti has an aerial oxygen consumption rate one-third that in water. H. gilberti can recover rapidly from terrestrial water loss, and shows no change in evaporative water loss rates at 93% and 77% relative humidities. The amphibious capabilities in H. gilberti, even if rarely used, permit survival in air during tidal emergence. These findings suggest that H. gilberti may demonstrate an intermediate condition between the amphibious species of intertidal fishes that regularly emerge from water, and the subtidal fishes that do not survive air emergence and are completely restricted to an aquatic habitat.  相似文献   

8.
植物胎生是指有性繁殖产生的后代在母体上直接萌发的现象, 在红树植物中最为常见。红树植物生长在热带亚热带海岸潮间带, 耐受高盐、高温、淹水缺氧和海浪冲击等复杂环境。胎生被认为是红树植物对这种特殊生境的重要适应方式。该文从形态发育、生理生化、分子水平、生态适应4个层次讨论红树植物胎生现象对复杂生境的适应性, 并指出现有研究存在的不足, 对将来的研究方向进行了展望。与非胎生胚胎发育相比, 红树植物胎生是一个遗传的程序, 在进化过程中形成了一些特殊的结构。植物激素对胎生发育起关键的调控作用, 繁殖体发育过程中, 其盐离子的种类与浓度的动态变化则是对海岸潮间带生境的重要适应特征。这种胎生繁殖体依靠在母体上完善的一系列功能性特征能更有效地适应落地后的滩涂环境。然而, 红树植物胎生发育过程的分子机理及调控机制还有待研究。理解胎生这一特殊适应性现象的本质及其进化过程将为红树林保护繁育、适应气候变化提供理论依据。  相似文献   

9.
    
  相似文献   

10.
    
Prunus humilis (2n = 2x = 16) is a dwarf shrub fruit tree native to China and distributed widely in the cold and arid northern region. In this study, we obtained the whole genome sequences of P. humilis by combining Illumina, PacBio and HiC sequencing technologies. This genome was 254.38 Mb long and encodes 28,301 putative proteins. Phylogenetic analysis indicated that P. humilis shares the same ancestor with Prunus mume and Prunus armeniaca at ∼ 29.03 Mya. Gene expansion analysis implied that the expansion of WAX-related and LEA genes might be associated with high drought tolerance of P. humilis and LTR maybe one of the driver factors for the drought adaption by increase the copy number of LEAs. Population diversity analysis among 20 P. humilis accessions found that the genetic diversity of P. humilis populations was limited, only 1.40% base pairs were different with each other, and more wild resources need to be collected and utilized in the breeding and improvement. This study provides new insights to the drought adaption and population diversity of P. humilis that could be used as a potential model plant for horticultural research.  相似文献   

11.
    
Abstract We report the composition of terrestrial, intertidal and shallow sublittoral faunal communities at sites around Rothera Research Station, Adelaide Island, Antarctic Peninsula. We examined primary hypotheses that the marine environment will have considerably higher species richness, biomass and abundance than the terrestrial, and that both will be greater than that found in the intertidal. We also compared ages and sizes of individuals of selected marine taxa between intertidal and subtidal zones to test the hypothesis that animals in a more stressed environment (intertidal) would be smaller and shorter lived. Species richness of intertidal and subtidal communities was found to be similar, with considerable overlap in composition. However, terrestrial communities showed no overlap with the intertidal, differing from previous reports, particularly from further north on the Antarctic Peninsula and Scotia Arc. Faunal biomass was variable but highest in the sublittoral. While terrestrial communities were depauperate with low biomass they displayed the highest overall abundance, with a mean of over 3 × 105 individuals per square metre. No significant differences in ages of intertidal and subtidal individuals of the same species were found, with bryozoan colonies of up to 4 years of age being present in the intertidal. In contrast with expectation and the limited existing literature we conclude that, while the Antarctic intertidal zone is clearly a suboptimal and highly stressful habitat, its faunal community can be well established and relatively diverse, and is not limited to short‐term opportunists or waifs and strays.  相似文献   

12.
    
Chl fluorescence during and immediately after low tide under four meteorological conditions was measured in embryos of three fucoid algae [Ascophyllum nodosum (L.) Le Jol., Fucus vesiculosus L., and Fucus distichus subsp. edentatus Bach. (Pyl.) H. T. Powell] vertically distributed in the intertidal zone in Québec, Canada. Artificial substrata with attached embryos of each species were outplanted into each zone and into two different microhabitats: under and outside an adult canopy. Several fluorescence measurements were made using pulse‐amplitude‐modulated (PAM) fluorometry, from which maximum quantum yield (Fv/Fm), effective quantum yield (φPSII), relative electron transport rate (rETR), and nonphotochemical quenching (NPQ) were calculated. Fv/Fm, φPSII, and rETR decreased, and NPQ increased during low tide, most rapidly under the most desiccating meteorological conditions (i.e., sunny‐windy weather). The species occurring lowest in the vertical distribution, F. distichus subsp. edentatus, was the most affected, and the two highest species, A. nodosum and F. vesiculosus, only rarely differed. Tidal height itself also influenced the decline in fluorescence parameters, with more gradual declines in lower zones, except under the least desiccating conditions (i.e., cloudy‐calm weather). Recovery upon reimmersion was rapid in all circumstances. Under a canopy, decreases in maximum and effective quantum yields were more gradual than in exposed locations. Although the young stages of these species were affected by physical conditions experienced during low tide and their exact response depended on the precise meteorological conditions, differences in responses among species were surprisingly small. The abilities of young stages to withstand aerial conditions were, however, consistent with the zonation patterns of adults, and conditions under an adult canopy offered some protection.  相似文献   

13.
On moderately wave-exposed rocky shores in middle Japan, the upper interidal mytilid,Septifer virgatus, and lower intertidal mytilid,Hormomya mutabilis, occur together, forming vertically contiguous mussed beds. Factors limiting the lower distribution limit ofSeptifer and the upper limit ofHormomya were investigated by collections of natural mussel clumps and single- and mixed-species transplantation experiments. Newly settled juvenileSeptifer (<5 mm shell length) were significantly fewer in the natural and artificialHormomya clumps than in theSeptifer clumps. Both natural and artificialHormomya clumps accumulated a much greater amount of sediment than did theSeptifer clumps.Hormomya clumps inhibited the recruitment ofSeptifer, presumably through accumulation of sediment, which resulted in setting the lower limit of theSeptifer zone. Survivorship of small (5–10 mm) and large (>15 mm)Hormomya was much lower inHormomya clumps transplanted upwards into theSeptifer zone than it was inHormomya clumps in theHormomya zone. In mixed-species clumps in theSeptifer zone, however, survivorship of smallHormomya was not significantly different from that in mixed-species clumps in theHormomya zone.Septifer had a positive effect on the survival of smallHormomya and increased the upper limit ofHormomya, presumably by providing shelter and thus protecting them from desiccation. The upper limit ofHormomya zone was thus considered to be set by desiccation exceeding the physiological tolerance of the species.  相似文献   

14.
Rates of photosynthesis for the intertidal saccate alga Halosaccion americanum Lee were determined under submersed and emersed conditions. By fitting the data to a hyperbolic tangent function, P max was 4.08 mmol CO2. m?2. h?1 and Ik was 116.4 μE. m?2. s?1. under submersed conditions. Under emersed conditions, P max was 1.89 mmol CO2. m?2. h?1 and Ik was 22.9 μE. m?2. s?1. Dark fixation represented 3.7% of Pmax in submersed thalli, whereas it equalled 33.3% of Pmax in emersed thalli. Photosynthetic uptake from the thallus cavity represented a significant source of carbon, achieving 68.8% of that from the atmosphere and 29.4% of that from seawater. Retained seawater also greatly reduced drying under emersed conditions. Experimental thalli lost 70.4% of their water after 120 min under desiccating conditions, whereas control thalli lost only 6.3%. Emersed photosynthetic rates were enhanced by desiccation, At times, rates for desiccated thalli were two times those of fully-hydrated ones. Only after water loss exceeded 47% did photosynthetic rates fall below fully-hydrated rates. Utilizing data from this study a model was constructed to determine total photosynthetic production of H. americanum over a single daylight period. These caluclations demonstrate that photosynthetic contributions from emersed photosynthesis and retained seawater are significant. Because production from all sources is almost equal, total photosynthesis over a single day does not change greatly regardless of the time spent in air or in water.  相似文献   

15.
    
Climate change globally perturbs water circulation thereby influencing ecosystems including cultivated land. Both harmful and beneficial species of insects are likely to be vulnerable to such changes in climate. As small animals with a disadvantageous surface area to body mass ratio, they face a risk of desiccation. A number of behavioural, physiological and genetic strategies are deployed to solve these problems during adaptation in various Drosophila species. Over 100 desiccation-related genes have been identified in laboratory and wild populations of the cosmopolitan fruit fly Drosophila melanogaster and its sister species in large-scale and single-gene approaches. These genes are involved in water sensing and homeostasis, and barrier formation and function via the production and composition of surface lipids and via pigmentation. Interestingly, the genetic strategy implemented in a given population appears to be unpredictable. In part, this may be due to different experimental approaches in different studies. The observed variability may also reflect a rich standing genetic variation in Drosophila allowing a quasi-random choice of response strategies through soft-sweep events, although further studies are needed to unravel any underlying principles. These findings underline that D. melanogaster is a robust species well adapted to resist climate change-related desiccation. The rich data obtained in Drosophila research provide a framework to address and understand desiccation resistance in other insects. Through the application of powerful genetic tools in the model organism D. melanogaster, the functions of desiccation-related genes revealed by correlative studies can be tested and the underlying molecular mechanisms of desiccation tolerance understood. The combination of the wealth of available data and its genetic accessibility makes Drosophila an ideal bioindicator. Accumulation of data on desiccation resistance in Drosophila may allow us to create a world map of genetic evolution in response to climate change in an insect genome. Ultimately these efforts may provide guidelines for dealing with the effects of climate-related perturbations on insect population dynamics in the future.  相似文献   

16.
STRESS TOLERANCE IN INTERTIDAL SEAWEEDS   总被引:7,自引:0,他引:7  
  相似文献   

17.
    
Postelsia palmaeformis Ruprecht is an intertidal kelp found only on very wave‐exposed rocky shores of the northeast Pacific. In areas dominated by mussels, Postelsia depends on wave‐induced disturbances to complete its life‐history cycle. Postelsia also recruits where mussels are absent, but not at less wave‐exposed shores. Thus, physical conditions related to wave exposure limit its horizontal distribution. It is not clear what limits the vertical distribution of Postelsia. We investigated factors contributing to Postelsia's limited distribution using transplant experiments, demographic monitoring, and field fluorometry to evaluate growth and performance across gradients of tidal elevation and wave exposure. Survivorship and growth were sharply reduced at upper and wave‐protected edges relative to mid‐level, wave‐exposed sporophytes. Reproductive output was reduced at upper and lower levels, and growth but not survivorship was lower at the lower level. Effects were independent of population of origin and were a manifestation of the environment. Maximum electron transport rates (ETRm), light saturation parameters (Ek), and maximum quantum yields (ΔF/Fm) provided insight into physiological dynamics; all were lowest at the high edge, but increased when desiccation stress was alleviated by a mock sea‐spray treatment. The ETRm and Ek values of low sporophytes were not as high as the values for mid‐sporophytes, despite higher or equivalent nitrogen content, chl a, and absorptance, suggesting a trade‐off between light‐capturing and carbon‐fixation capacity. Physiological limitations at upper and lower levels and deleterious desiccation effects at wave‐protected sites prevent establishment, thus constraining Postelsia to a mid‐zone, wave‐exposed distribution. Physical conditions related to wave exposure may limit the horizontal distribution of Postelsia because this kelp is also found in areas where mussels are lacking but not on less wave‐exposed shores.  相似文献   

18.
The effects on photosynthesis of CO2 and desiccation in Porphyra haitanensis were investigated to establish the effects of increased atmospheric CO2 on this alga during emersion at low tides. With enhanced desiccation, net photosynthesis, dark respiration, photosynthetic efficiency, apparent carboxylating efficiency and light saturation point decreased, while the light compensation point and CO2 compensation point increased. Emersed net photosynthesis was not saturated by the present atmospheric CO2 level (about 350?ml?m?3), and doubling the CO2 concentration (700?ml?m?3) increased photosynthesis by between 31% and 89% at moderate levels of desiccation. The relative enhancement of emersed net photosynthesis at 700?ml?m?3 CO2 was greater at higher temperatures and higher levels of desiccation. The photosynthetic production of Porphyra haitanensis may benefit from increasing atmospheric CO2 concentration during emersion.  相似文献   

19.
Embryos of the fucoid alga Pelvetia fastigiata (J. Ag.) DeToni were outplanted into the intertidal zone to assess survival during the physical stress brought about by emersion during a single low tide. Survival varied among microhabitats. Under the adult Pelvetia canopy, survival of 6-h-, 24-h-, 48-h-, and 1-wk-old embryos was nearly 100%. Almost all embryos of all ages died in exposed habitats on bare rock or within habitats where the Pelvetia canopy was removed experimentally. However, within red algal turfs, where most juvenile Pelvetia occur, survival was unusually age specific: 24- to 48-h-old embryos survived poorly compared to younger (6 h old) or older embryos (1 wk old). Survival patterns reflected microhabitat temperatures during the experiments. The fate of young post-settlement stages must be studied at these fine temporal and spatial scales to understand the organization of intertidal communities.  相似文献   

20.
The importance that frond crowding represents for the survival of fronds of the clonal intertidal alga Mazzaella cornucopiae (Postels et Ruprecht) Hommersand (Rhodophyta, Gigartinaceae) was investigated in Barkley Sound, British Columbia, Canada. Frond density is high for this species, up to 20 fronds·cm?2 in the most crowded stands. Frond crowding imposes a cost in the form of reduced net photosynthetic rates when fronds are fully hydrated as a result of reduced irradiance compared with experimental (not found naturally) low-density stands. However, the interaction between desiccation and irradiance alters this relationship between net photosynthetic rates and frond density. During a typical daytime low tide in spring, irradiance is 10–30 μmol·m?2·s?1 below the canopy of fronds, and frond desiccation (relative to total water content) can reach 43% at the end of the low tide. In contrast to natural stands, fronds from experimentally thinned stands are subjected to irradiances up to 2000 μmol·m?2·s?1 because of the spatial separation among fronds and can desiccate up to 81% at the end of the same low tide. Laboratory experiments showed that negative net photosynthetic rates occur between 40% and 80% desiccation at an irradiance of 515 μmol·m?2·s?1, and the literature suggests that strong bleaching could occur as a result. At 20 μmol·m?2·s?1 of irradiance and desiccation levels up to 40%, simulating understory conditions of natural stands, net photosynthetic rates are never negative. Experimental thinning of stands of M. cornucopiae done during spring effectively resulted in a stronger extent of frond bleaching compared with natural stands. Therefore, the cost of reduced net photosynthetic rates at high frond densities when fronds are fully hydrated is counterbalanced by the protective effects of frond crowding against extensive bleaching, essential for survival at the intertidal zone. Future research will have to demonstrate the possible relationship between the frequency and duration of negative net photosynthetic rates and the extent of frond bleaching.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号