共查询到20条相似文献,搜索用时 0 毫秒
1.
F D Veronese B Joseph T D Copeland S Oroszlan R C Gallo M G Sarngadharan 《Journal of virology》1989,63(3):1416-1419
A monoclonal antibody recognizing an antigenic determinant on the env transmembrane protein, gp32 of simian immunodeficiency virus SIVMAC has been developed and designated SF8/5E11. The reactivity of this antibody was found to be type specific, since it did not cross-react with either SIVSMM or SIVMNe transmembrane proteins. The availability of both this antibody and the complete nucleotide sequence of SIVMAC allowed us to define the organization of the env gene products of this virus. Radiolabel sequencing of the amino termini of both gp160 and gp32 confirmed the positions of both cleavage sites predicted by alignment of the inferred amino acid sequences of the SIVMAC and human immunodeficiency virus type 1 env genes. The cleavage site between the signal peptide and the external env glycoprotein resides between the cysteine residue at position 21 and the threonine residue at position 22, starting from the first residue after the env gene initiator methionine. The env precursor polyprotein gp160 is cleaved between arginine 526 and glycine 527 to give rise to the external glycoprotein and the transmembrane of SIVMAC. 相似文献
2.
Human immunodeficiency virus types 1 and 2 and simian immunodeficiency virus Nef use distinct but overlapping target sites for downregulation of cell surface CD4. 总被引:3,自引:0,他引:3 下载免费PDF全文
Although the Nef proteins encoded by human immunodeficiency virus type 1 (HIV-1) and simian immuno-deficiency virus (SIV) are known to induce the efficient internalization and degradation of cell surface CD4, it remains unclear whether this process involves a direct interaction between Nef and CD4. Here, we report that CD4 downregulation by HIV-1 and SIV Nef requires distinct but overlapping target sites within the CD4 intracytoplasmic domain. In particular, mutation of a glutamic acid residue located at CD4 residue 405 or of arginine and methionine residues located, respectively, at residue 406 and 407 results in a mutant CD4 protein that is efficiently downregulated by HIV-1 Nef but refractory to downregulation by SIV Nef. However, both HIV-1 and SIV Nef require an isoleucine located at residue 410 and the dileucine motif found at CD4 residues 413 and 414. CD4 downregulation induced by the Nef protein encoded by HIV-2 is shown to require a CD4 target sequence that is similar to, but distinct from, that observed with SIV Nef. These data explain the previous finding that the murine CD4 protein, which has an alanine at residue 405, is refractory to downregulation by SIV, but not HIV-1, Nef (J. L. Foster, S.J. Anderson, A. L. B. Frazier, and J. V. Garcia, Virology 201:373-379, 1994). In addition, these observations provide strong genetic support for the hypothesis that the Nef-mediated downregulation of cell surface CD4 requires a direct Nef-CD4 interaction. 相似文献
3.
Significance of premature stop codons in env of simian immunodeficiency virus. 总被引:5,自引:37,他引:5 下载免费PDF全文
T Kodama D P Wooley Y M Naidu H W Kestler rd M D Daniel Y Li R C Desrosiers 《Journal of virology》1989,63(11):4709-4714
The location of the translational termination codon for the transmembrane protein (TMP) varies in three infectious molecular clones of simian immunodeficiency virus from macaques (SIVmac). The SIVmac251 and SIVmac142 infectious clones have premature stop signals that differ in location by one codon; transfection of these DNAs into human HUT-78 cells yielded virus with a truncated TMP (28 to 30 kilodaltons [kDa]). The SIVmac239 infectious clone does not have a premature stop codon in its TMP-coding region. Transfection of HUT-78 cells with this clone initially yielded virus with a full-length TMP (41 kDa). At 20 to 30 days posttransfection, SIVmac239 virus with a 41-kDa TMP gradually disappeared coincident with the emergence of a virus with a 28-kDa TMP. Virus production dramatically increased in parallel with the emergence of a virus with a 28-kDa TMP. Sequence analysis of viral DNAs from these cultures showed that premature stop codons arising by point mutation were responsible for the change in size of the TMP with time. A similar selective pressure for truncated forms of TMP was observed when the SIVmac239 clone was transfected into human peripheral blood lymphocytes (PBL). In contrast, no such selective pressure was observed in macaque PBL. When the SIVmac239 clone was transfected into macaque PBL and the resultant virus was serially passaged in macaque PBL, the virus replicated very well and maintained a 41-kDa TMP for 80 days in culture. Macaque monkeys were infected with SIVmac239 having a 28-kDa TMP; virus subsequently recovered from T4-enriched lymphocytes of peripheral blood showed only the 41-kDa form of TMP. These results indicate that the natural form of TMP in SIVmac is the full-length 41-kDa TMP, just as in human immunodeficiency virus type 1. Viruses with truncated forms of TMP appear to result from mutation and selection during propagation in unnatural human cells. 相似文献
4.
Complex determinants of macrophage tropism in env of simian immunodeficiency virus. 总被引:5,自引:19,他引:5 下载免费PDF全文
Macrophage-tropic virus variants evolved during the course of infection of individual rhesus monkeys with cloned, non-macrophagetropic simian immunodeficiency virus. Specific changes in the envelope gene (env) were found to be primarily responsible for the dramatic increase in the ability of the virus to replicate in macrophages. Cloned viruses differing at nine amino acid positions in env exhibited a more than 100-fold difference in replicative capacity for primary cultures of rhesus monkey alveolar macrophages. At least five of the nine amino acid changes contributed to macrophage tropism. These determinants were distributed across the full length of env, including both the gp120 and gp41 products of the env gene. Furthermore, the emergence of macrophagetropic variants in vivo was associated with specific pathologic manifestations in which the macrophage is the major infected cell type. Thus, major determinants of macrophage tropism reside in env, they can be complex in nature, and the presence of macrophage-tropic virus variants in vivo can influence the disease course and disease manifestations. 相似文献
5.
Variation in simian immunodeficiency virus env is confined to V1 and V4 during progression to simian AIDS. 总被引:3,自引:35,他引:3 下载免费PDF全文
J Overbaugh L M Rudensey M D Papenhausen R E Benveniste W R Morton 《Journal of virology》1991,65(12):7025-7031
We have monitored changes in the simian immunodeficiency virus (SIV) envelope (env) gene in two macaques which developed AIDS after inoculation with a molecular clone of SIV. As the animals progressed to AIDS, selection occurred for viruses with variation in two discrete regions (V1 and V4) but not for viruses with changes in the region of SIV env that corresponds to the immunodominant, V3 loop of human immunodeficiency virus. Within the highly variable domains, the vast majority of nucleotide changes encoded an amino acid change (98%), suggesting that these envelope variants had evolved as a result of phenotypic selection. Analysis of the biological properties of these variants, which have been selected for in the host, may be useful in defining the mechanisms underlying viral persistence and progression to simian AIDS. 相似文献
6.
Human immunodeficiency virus type 1 and 2 envelope glycoproteins oligomerize through conserved sequences. 下载免费PDF全文
Hetero-oligomerization between human immunodeficiency virus type 2 (HIV-2) envelope glycoprotein (Env) truncation mutants and epitope-tagged gp160 is dependent on the presence of gp41 transmembrane protein (TM) amino acids 552 to 589, a putative amphipathic alpha-helical sequence. HIV-2 Env truncation mutants containing this sequence were also able to form cross-type hetero-oligomers with HIV-1 Env. HIV-2/HIV-1 hetero-oligomerization was, however, more sensitive to disruption by mutagenesis or increased temperature. The conservation of the Env oligomerization function of the HIV-1 and HIV-2 alpha-helical sequences suggests that retroviral TM alpha-helical motifs may have a universal role in oligomerization. 相似文献
7.
Cross-neutralization of human immunodeficiency virus type 1 and 2 and simian immunodeficiency virus isolates. 总被引:1,自引:3,他引:1 下载免费PDF全文
M Robert-Guroff K Aldrich R Muldoon T L Stern G P Bansal T J Matthews P D Markham R C Gallo G Franchini 《Journal of virology》1992,66(6):3602-3608
In contrast to infrequent and low-titer cross-neutralization of human immunodeficiency virus type 1 (HIV-1) isolates by HIV-2- and simian immunodeficiency virus (SIV)-positive sera, extensive cross-neutralization of HIV-2NIH-Z, SIVMAC251, and SIVAGM208K occurs with high titer, suggesting conservation of epitopes and mechanism(s) of neutralization. The V3 regions of HIV-2 and SIV isolates, minimally related to the HIV-1 homolog, share significant sequence homology and are immunogenic in monkeys as well as in humans. Whereas the crown of the V3 loop is cross-reactive among HIV-1 isolates and elicits neutralizing antibodies of broad specificity, the SIV and especially HIV-2 crown peptides were not well recognized by cross-neutralizing antisera. V3 loop peptides of HIV-2 isolates did not elicit neutralizing antibodies in mice, guinea pigs, or a goat and together with SIV V3 peptides did not inhibit serum neutralization of HIV-2 and SIV. Thus, the V3 loops of HIV-2 and SIV do not appear to constitute simple linear neutralizing epitopes. In view of the immunogenicity of V3 peptides, the failure of conserved crown peptides to react with natural sera implies a significant role of loop conformation in antibody recognition. Our studies suggest that in addition to their grouping by envelope genetic relatedness, HIV-2 and SIV are neutralized similarly to each other but differently from HIV-1. The use of linear peptides of HIV-2 and SIV as immunogens may require greater attention to microconformation, and alternate subunit approaches may be needed in exploiting these viruses as vaccine models. Such approaches may also be applicable to the HIV-1 system in which conformational epitopes, in addition to the V3 loop, participate in virus neutralization. 相似文献
8.
Human immunodeficiency virus Gag protein self-assembles into spherical particles, and recent reports suggest the formation of assembly intermediates during the process. To understand the nature of such assembly intermediates along with the mechanism of Gag assembly, we employed expression in Escherichia coli and an in vitro assembly reaction. When E. coli expression was performed at 37 degrees C, Gag predominantly assembled to a high order of multimer, apparently equivalent to the virus-like particles obtained following Gag expression in eukaryotic cells, through the formation of low orders of multimer characterized with a discreet sedimentation value of 60 S. Electron microscopy confirmed the presence of spherical particles in the E. coli cells. In contrast, expression at 30 degrees C resulted in the production of only the 60 S form of Gag multimer, and crescent-shaped structures or small patches with double electron-dense layers were accumulated, but no complete particles. In vitro assembly reactions using purified Gag protein, when performed at 37 degrees C, also produced the high order of Gag multimers with some 60 S multimers, whereas the 30 degrees C reaction produced only the 60 S multimers. However, when the 60 S multimers were cross-linked so as not to allow conformational changes, in vitro assembly reactions at 37 degrees C did not produce any higher order of multimers. ATP depletion did not halt Gag assembly in the E. coli cells, and the addition of GroEL-GroES to in vitro reactions did not facilitate Gag assembly, indicating that conformational changes rather than protein refolding by chaperonins, induced at 37 degrees C, were solely responsible for the Gag assembly observed here. We suggest that Gag assembles to a capsid through the formation of the 60 S multimer, possibly a key intermediate of the assembly process, accompanied with conformational changes in Gag. 相似文献
9.
Antibody-dependent cellular cytotoxicity detects type- and strain-specific antigens among human immunodeficiency virus types 1 and 2 and simian immunodeficiency virus SIVmac isolates. 总被引:1,自引:0,他引:1 下载免费PDF全文
Human cell lines were infected with different strains of human immunodeficiency virus types 1 and 2 (HIV-1 and HIV-2) as well as with a simian immunodeficiency virus SIVmac isolate and used as targets in an antibody-dependent cellular cytotoxicity (ADCC) assay. Sera from HIV-1- or HIV-2-infected subjects provided the antibody, and lymphocytes from normal donors provided the effector cells. About 60% of HIV-1 antibody-positive sera mediated ADCC when tested against any given HIV-1 isolate-infected target cell (human T-cell lymphotropic virus type IIIB, B40, A2587), and about 75% of HIV-2 antibody-positive sera mediated ADCC when tested against target cells infected with HIV-2 isolates (lymphadenopathy-associated virus type 2 and SBL-6669) or simian immunodeficiency virus from macaques. Within each type, individual sera showed different reactivity patterns, and the probability that a serum was ADCC positive was higher when it was tested against several strains. When the ADCC reactivity of sera against different strains was compared, diversity as detected by ADCC appeared to be greater among HIV-1 strains than among HIV-2 strains. For HIV-1, 54 to 67% of the sera gave concordant ADCC reactions, whereas for HIV-2 and SIVmac, 91% of the sera gave concordant results. Almost no strain-specific differences were seen between SBL-6669 and lymphadenopathy-associated virus type 2. As we determined previously, HIV-1 and HIV-2 did not cross-react in ADCC. The results indicated that HIV-1 and HIV-2 antibody-positive sera mediate both strain- and type-specific ADCC. HIV-2 antibody-positive sera seem to mediate ADCC with broader reactivity and to a higher frequency compared with HIV-1 antibody-positive sera. 相似文献
10.
DC-SIGN interactions with human immunodeficiency virus type 1 and 2 and simian immunodeficiency virus 总被引:11,自引:0,他引:11 下载免费PDF全文
Pöhlmann S Baribaud F Lee B Leslie GJ Sanchez MD Hiebenthal-Millow K Münch J Kirchhoff F Doms RW 《Journal of virology》2001,75(10):4664-4672
Dendritic cells (DCs) efficiently bind and transmit human immunodeficiency virus (HIV) to cocultured T cells and so may play an important role in HIV transmission. DC-SIGN, a novel C-type lectin that is expressed in DCs, has recently been shown to bind R5 HIV type 1 (HIV-1) strains and a laboratory-adapted X4 strain. To characterize the interaction of DC-SIGN with primate lentiviruses, we investigated the structural determinants of DC-SIGN required for virus binding and transmission to permissive cells. We constructed a panel of DC-SIGN mutants and established conditions which allowed comparable cell surface expression of all mutants. We found that R5, X4, and R5X4 HIV-1 isolates as well as simian immunodeficiency and HIV-2 strains bound to DC-SIGN and could be transmitted to CD4/coreceptor-positive cell types. DC-SIGN contains a single N-linked carbohydrate chain that is important for efficient cell surface expression but is not required for DC-SIGN-mediated virus binding and transmission. In contrast, C-terminal deletions removing either the lectin binding domain or the repeat region abrogated DC-SIGN function. Trypsin-EDTA treatment inhibited DC-SIGN mediated infection, indicating that virus was maintained at the surface of the DC-SIGN-expressing cells used in this study. Finally, quantitative fluorescence-activated cell sorting analysis of AU1-tagged DC-SIGN revealed that the efficiency of virus transmission was strongly affected by variations in DC-SIGN expression levels. Thus, variations in DC-SIGN expression levels on DCs could greatly affect the susceptibility of human individuals to HIV infection. 相似文献
11.
Truncation of the cytoplasmic domain of the simian immunodeficiency virus envelope glycoprotein increases env incorporation into particles and fusogenicity and infectivity. 总被引:2,自引:24,他引:2 下载免费PDF全文
Growth of macaque simian immunodeficiency virus (SIVmac) in certain cloned human T-cell lines, such as HUT.78, selects for isolates containing a premature stop codon within the cytoplasmic domain of the transmembrane envelope glycoprotein. In contrast, propagation of virus in macaques or in their cultured T cells favors replication of virus containing the full-length envelope glycoprotein. To elucidate the causes of this phenomenon, we used a human immunodeficiency virus pseudotyping system to assess the effects on infectivity of the cytoplasmic domains of envelope glycoproteins obtained from SIVmac1A11 and SIVmac239. These envelopes contain truncated and full-length cytoplasmic domains, respectively. By analyzing human immunodeficiency virus particles containing selectable genes pseudotyped with each glycoprotein or with chimeric derivatives, we found that truncation of the cytoplasmic domain resulted in a significant advantage in viral entry into HUT.78 T cells and CD4+ U87.MG glial cells. Truncation of the cytoplasmic domain significantly enhanced both envelope density on particles and envelope-mediated cell-to-cell fusion. It is likely that one or both of these effects contribute to the observed differences in infectivity and to the selection of virions with short cytoplasmic tails in human T cells. 相似文献
12.
Human ADP-ribosylation factors. A functionally conserved family of GTP-binding proteins 总被引:23,自引:0,他引:23
R A Kahn F G Kern J Clark E P Gelmann C Rulka 《The Journal of biological chemistry》1991,266(4):2606-2614
A new member, hARF4, of the ADP-ribosylation factor (ARF) family, a subset of the superfamily of regulatory GTP-binding proteins, has been cloned from a cDNA expression library. Two other human ARF cDNA sequences, designated human ARF1 and ARF3, have been reported previously and are 96% identical in amino acid sequence. A human ARF1 cDNA, significantly longer than previously described clones, was obtained, by cross-species hybridization using a bovine ARF1 cDNA probe. Bovine ARF1p and human ARF1p are 100% identical while each is only 80% identical to hARF4p. Thus, hARF4p is the most divergent of the mammalian ARF proteins identified. Northern blot analysis revealed the expression of at least three different ARF messages in human placenta and adrenal carcinoma cells. Both hARF1 and hARF4 encode GTP-binding proteins with predicted molecular masses of 20,000-21,000 Da. Biochemical analysis of the purified recombinant proteins revealed a high degree of conservation of nucleotide binding properties and in vitro ARF activities. ARF is an essential gene in the yeast, Saccharomyces cerevisiae, and is encoded by two genes. Expression of either hARF1p or hARF4p in yeast was found to rescue the lethal double mutant, arf1-arf2-, thus demonstrating the functional conservation of ARF functions between yeast and man. The combination of in vivo and in vitro assays for ARF function provides a specific and unambiguous means of determining bona fide ARF proteins from divergent species from among the rapidly increasing number of structurally related, small molecular weight GTP-binding proteins. 相似文献
13.
Function of the human immunodeficiency virus types 1 and 2 Rev proteins is dependent on their ability to interact with a structured region present in env gene mRNA. 总被引:5,自引:10,他引:5 下载免费PDF全文
The interaction of the human immunodeficiency virus type 1 (HIV-1) Rev protein with a structured region in env mRNA (the Rev-responsive element [RRE]) mediates the export of structural mRNAs from the nucleus to the cytoplasm. We demonstrated that unlike HIV-1 Rev, which functions with both the HIV-1 and HIV-2 RREs, HIV-2 Rev functions only with the HIV-2 RRE. Rev-RRE binding studies suggested that the lack of nonreciprocal complementation stems from the inability of HIV-2 Rev to interact with HIV-1 RRE RNA. Maintenance of RNA secondary structure, rather than the primary nucleotide sequence, appeared to be the major determinant for interaction of both HIV-1 and HIV-2 Rev with the HIV-2 RRE. Moreover, the binding domain of the HIV-2 RRE recognized by HIV-1 Rev was dissimilar to the binding domain of the HIV-1 RRE, in terms of both secondary structure and primary nucleotide sequence. Our results support the hypothesis that function of HIV Rev proteins and possibly the functionally similar Rex proteins encoded by the human T-cell leukemia viruses (HTLVs) HTLV-I and HTLV-II is controlled by the presence of RNA secondary structure generated within the RRE RNA. 相似文献
14.
Human immunodeficiency virus type 1 and type 2 protease monomers are functionally interchangeable in the dimeric enzymes. 下载免费PDF全文
Human immunodeficiency virus type 1 (HIV-1) and HIV-2 proteases are dimers of identical subunits. We made a construct for the expression of recombinant one-chain HIV-2 protease dimer, which, like the previously described one-chain HIV-1 protease dimer, is fully active. The constructs for the one-chain dimers of HIV-1 and HIV-2 proteases were modified to produce hybrid one-chain dimers consisting of both HIV-1 and HIV-2 protease monomers. Although the monomers share only 47.5% sequence identity, the hybrid one-chain dimers are fully active, suggesting that the folding of both HIV-1 and HIV-2 protease monomers is functionally similar. 相似文献
15.
16.
The cytoplasmic domain of simian immunodeficiency virus transmembrane protein modulates infectivity. 总被引:31,自引:28,他引:3
A striking characteristic of the simian immunodeficiency virus (SIV) and of the human immunodeficiency virus type 2 (HIV-2) is the presence of a nonsense mutation in the env gene resulting in the synthesis of a truncated transmembrane protein lacking the cytoplasmic domain. By mutagenesis of an infectious molecular clone of SIVmac142, we investigated the function of the cytoplasmic domain and the significance of the env nonsense mutation. When the nonsense codon (TAG) was replaced by a glutamine codon (CAG), the virus infected HUT78 cells with markedly delayed kinetics. This negative effect was counterselected in vitro as reversion of the slow phenotype frequently occurred. The sequencing of one revertant revealed the presence of a new stop codon three nucleotides 5' to the original mutation. Deletions or an additional nonsense mutation introduced 3' to the original stop codon did not modify SIV infectivity. In contrast, the same deletions or nonsense mutation introduced in the clone in which the stop codon was replaced by CAG abolished infectivity. These results indicated that the envelope domain located 3' to the stop codon is not necessary for in vitro replication. However, the presence of this domain in SIV transmembrane protein leads to a reduced infectivity. This negative effect might correspond to a function controlling the rate of spread of the virus during in vivo infection. 相似文献
17.
Human immunodeficiency virus type 1 env evolves toward ancestral states upon transmission to a new host 总被引:5,自引:0,他引:5 下载免费PDF全文
Herbeck JT Nickle DC Learn GH Gottlieb GS Curlin ME Heath L Mullins JI 《Journal of virology》2006,80(4):1637-1644
Selecting human immunodeficiency virus (HIV) sequences for inclusion within vaccines has been a difficult problem, as circulating HIV strains evolve relentlessly and become increasingly divergent over time. We report an assessment of this divergence from three perspectives: (i) across different hosts as a function of time of infection, (ii) between donors and recipients in known transmission pairs, and (iii) within individual hosts over time in relation to the initially replicating virus and to the deduced ancestral sequence of the intrahost viral population. Surprisingly, we consistently found less divergence between viruses from different individuals sampled in primary infection than in individuals sampled at more advanced stages of illness. Furthermore, longitudinal analysis of intrahost divergence revealed a 2- to 3-year period of evolution toward a common ancestral sequence at the start of infection, indicating that HIV recovers certain ancestral features when infecting a new host. These results have important implications for the study of HIV population genetics and rational vaccine design, including favoring the inclusion of viral gene sequences taken early in infection. 相似文献
18.
An env gene derived from a primary human immunodeficiency virus type 1 isolate confers high in vivo replicative capacity to a chimeric simian/human immunodeficiency virus in rhesus monkeys. 总被引:1,自引:6,他引:1 下载免费PDF全文
K A Reimann J T Li G Voss C Lekutis K Tenner-Racz P Racz W Lin D C Montefiori D E Lee-Parritz Y Lu R G Collman J Sodroski N L Letvin 《Journal of virology》1996,70(5):3198-3206
To explore the roles played by specific human immunodeficiency virus type 1 (HIV-1) genes in determining the in vivo replicative capacity of AIDS viruses, we have examined the replication kinetics and virus-specific immune responses in rhesus monkeys following infection with two chimeric simian/human immunodeficiency viruses (SHIVs). These viruses were composed of simian immunodeficiency virus SIVmac239 expressing HIV-1 env and the associated auxiliary HIV-1 genes tat, vpu, and rep. Virus replication was assessed during primary infection of rhesus monkeys by measuring plasma SIVmac p27 levels and by quantifying virus replication in lymph nodes using in situ hybridization. SHIV-HXBc2, which expresses the HIV-1 env of a T-cell-tropic, laboratory-adapted strain of HIV-1 (HXBc2), replicated well in rhesus monkey peripheral blood leukocytes (PBL) in vitro but replicated only to low levels when inoculated in rhesus monkeys. In contrast, SHIV-89.6 was constructed with the HIV-1 env gene of a T-cell- and macrophage-tropic clone of a patient isolate of HIV-1 (89.6). This virus replicated to a lower level in monkey PBL in vitro but replicated to a higher degree in monkeys during primary infection. Moreover, monkeys infected with SHIV-89.6 developed an inversion in the PBL CD4/CD8 ratio coincident with the clearance of primary viremia. The differences in the in vivo consequences of infection by these two SHIVs could not be explained by differences in the immune responses elicited by these viruses, since infected animals had comparable type-specific neutralizing antibody titers, proliferative responses to recombinant HIV-1 gp120, and virus-specific cytolytic effector T-cell responses. With the demonstration that a chimeric SHIV can replicate to high levels during primary infection in rhesus monkeys, this model can now be used to define genetic determinants of HIV-1 pathogenicity. 相似文献
19.
Relationship of the env genes and the endonuclease domain of the pol genes of simian foamy virus type 1 and human foamy virus. 总被引:2,自引:7,他引:2 下载免费PDF全文
We have molecularly cloned and sequenced a portion of the simian foamy virus type 1 (SFV-1); open reading frames representing the endonuclease domain of the polymerase (pol) and the envelope (env) genes were identified by comparison with the human foamy virus (HFV). Unlike the HFV genomic organization, the SFV-1 pol gene overlaps the env gene; thus, the open reading frames reported for HFV between pol and env is not present in SFV-1. Comparisons of predicted amino acid sequences of HFV and SFV-1 reveal that the endonuclease domains of the pol genes are about 84% related. The region predicted to encode the SFV-1 extracellular env domain is 569 codons; SFV-1 and HFV have 64% amino acid similarity in this env domain. The predicted hydrophobic transmembrane env proteins of both HFV and SFV-1 show about 73% similarity. A total of 16 potential glycosylation sites are found in SFV-1 env, and 15 are found in HFV; 11 are shared. SFV-1 has 25 cysteine residues, and HFV has 23 residues; all 23 cysteine residues of HFV are conserved in SFV-1. This sequence analysis reveals that the human and simian foamy viruses are highly related. 相似文献
20.
A chimeric simian/human immunodeficiency virus expressing a primary patient human immunodeficiency virus type 1 isolate env causes an AIDS-like disease after in vivo passage in rhesus monkeys. 总被引:8,自引:8,他引:8 下载免费PDF全文
K A Reimann J T Li R Veazey M Halloran I W Park G B Karlsson J Sodroski N L Letvin 《Journal of virology》1996,70(10):6922-6928
The utility of the simian immunodeficiency virus of macaques (SIVmac) model of AIDS has been limited by the genetic divergence of the envelope glycoproteins of human immunodeficiency virus type 1 (HIV-1) and the SIVs. To develop a better AIDS animal model, we have been exploring the infection of rhesus monkeys with chimeric simian/human immunodeficiency viruses (SHIVs) composed of SIVmac239 expressing HIV-1 env and the associated auxiliary HIV-1 genes tat, vpu, and rev. SHIV-89.6, constructed with the HIV-1 env of a cytopathic, macrophage-tropic clone of a patient isolate of HIV-1 (89.6), was previously shown to replicate to a high degree in monkeys during primary infection. However, pathogenic consequences of chronic infection were not evident. We now show that after two serial in vivo passages by intravenous blood inoculation of naive rhesus monkeys, this SHIV (SHIV-89.6P) induced CD4 lymphopenia and an AIDS-like disease with wasting and opportunistic infections. Genetic and serologic evaluation indicated that the reisolated SHIV-89.6P expressed envelope glycoproteins that resembled those of HIV-1. When inoculated into naive rhesus monkeys, SHIV-89.6P caused persistent infection and CD4 lymphopenia. This chimeric virus expressing patient isolate HIV-1 envelope glycoproteins will be valuable as a challenge virus for evaluating HIV-1 envelope-based vaccines and for exploring the genetic determinants of HIV-1 pathogenicity. 相似文献