首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Surface hydrophobic and hydrophilic protein alterations in Candida albicans   总被引:2,自引:0,他引:2  
Abstract Cell surface hydrophobicity influences pathogenesis of Candida albicans . Previous studies suggested that stationary-phase hydrophilic and hydrophobic cells, obtained by growth at 37 and 23°C, respectively, may have similar hydrophobic proteins. However, whether hydrophilic and hydrophobic surface proteins differ during the growth cycle at 37°C is unknown. Freeze-fracture analysis revealed surface fibrillar layer differences between hydrophobic late-lag and hydrophilic stationary-phase yeast cells grown at 37°C. Hydrophilic protein differences were also observed between these populations. However, similar hydrophobic proteins were detected among the late-lag and stationary phase cells grown at 37°C and hydrophobic stationary-phase cells grown at 23°C. These results suggest that hydrophobic proteins remain constant but hydrophilic proteins vary during growth. Thus, conversion from surface hydrophilicity to hydrophobicity by C. albicans may only require alterations in the hydrophilic fibrillar protein components.  相似文献   

2.
Albicans ID (bioMérieux, Marcy l'Etoile, France) is a ready-to-use medium that contains a chromogenic substrate that allows rapid detection and specific identification of Candida albicans. We have evaluated its clinical performance by culturing 846 clinical specimens from pregnant women and neonates. A 99.2% sensitivity and a 100% specificity were observed in the identification of C. albicans isolates from primary culture.  相似文献   

3.
We have previously described the presence of an enzymatically active form of glyceraldehyde 3-phosphate-dehydrogenase (GAPDH) in the cell surface of Candida albicans ATCC 26555 which is also a fibronectin and laminin binding protein. Immunohistochemical analysis of tissue sections from patients with disseminated candidiasis with a polyclonal antiserum to GAPDH from C. albicans (PAb anti-CA-GAPDH) revealed that the enzyme is expressed at the surface of fungal cells in infected tissues. The same PAb detected the presence of GAPDH species, with a molecular mass of approximately 33 kDa, in cell wall extracts obtained from clinical isolates of the fungus. These cell surface-bound GAPDH moieties exhibited a dose-dependent dehydrogenase activity. These results indicate that this cell surface-bound GAPDH plays a role during infection probably contributing to the attachment of fungal cells to host tissues.  相似文献   

4.
5.
6.
Mice harbouring a null deletion mutation in the IFNgamma receptor gene were used to study the role of IFNgamma responsiveness during experimental systemic candidiasis of mucosal or haematogenous origin. After intravenous (i.v.) or intranasal (i.n.) challenge with Candida albicans the progression of infection and concomitant cellular and antibody anti-C. albicans immune responses were analysed. During the week following i.v. challenge, the rate of C. albicans multiplication in kidneys, liver and spleen was faster in IFNgammaR (-/-) than IFNgammaR (+/+) mice. As a result, IFNgammaR (-/-) mice perished earlier than IFNgammaR (+/+) mice when challenged with equal numbers of live yeast cells. However, the overall susceptibility of the two mouse strains, in terms of survival against different C. albicans challenge doses over a 60-day period, was similar. No differences were found in the cellular anti-C. albicans response generated by i.v. challenge in both mouse strains. In contrast the kinetics and strength of the serum anti-C. albicans antibody responses were markedly different. Significantly stronger, predominantly IgG2a antibody responses accompanied the eventual control of C. albicans infection in IFNgammaR (-/-) mice. Following intranasal challenge, there was no difference in the rate of C. albicans clearance from the lungs of IFNgammaR (-/-) and IFNgammaR (+/+) mice. However, 48 h after challenge, large, conspicuous abscesses appeared in the lungs, liver, kidneys and spleen of IFNgammaR (-/-) mice. These abscesses were characterised by the presence of C. albicans and abundant neutrophilic infiltrates, but very few macrophages. No such abscesses developed in i.n. challenged IFNgammaR (+/+) mice. In both mouse strains, i.n. challenge induced strong systemic anti-C. albicans cellular responses, but relatively low titre systemic antibody responses. Mucosal anti-C. albicans antibody responses were detected in IFNgammaR (+/+), but not IFNgammaR (-/-) mice. Splenic adherent macrophages obtained from IFNgammaR (-/-) mice exhibited a significantly lower candidacidal activity than those of IFNgammaR (+/+) mice, and as expected, were not responsive to IFNgamma. In summary, these data suggest that IFNgamma has a role in limiting C. albicans multiplication during the early stages of infection, as well as in preventing the development of C. albicans-associated abscesses. Activation of macrophages by IFNgamma might be pivotal in mediating this role.  相似文献   

7.
Abstract We have previously reported a 37 kDa laminin-binding protein (p37) and a 58 kDa fibrinogen-binding mannoprotein (mp58) on the surface of Candida albicans . A few yeast cells expressed both functional receptors at the surface while germ tubes expressed a functional mp58 fibrinogen but not a functional p37 laminin receptor. These receptors were heterogeneously dispersed at the surface as shown by binding of rabbit antiserum to mp58 (PAb anti-mp58) and antiserum to the human high affinity laminin receptor. In this report we have used a dual fluorescence technique to determine if the two receptors colocalize, perhaps as part of a receptor complex. Fibrinogen was used as a probe for mp58 and polyclonal antiserum generated to the p37 (PAb anti-p37) was used as a probe for the 37 kDa laminin-binding protein. Both receptors were heterogeneously distributed, but the receptors were not colocalized as the areas of concentration of each receptor were different. Immunohistochemical analysis of tissue sections from patients with disseminated and superficial candidiasis with PAb anti-p37 and PAb anti-mp58 revealed that both receptors were also expressed in infected tissues. The patterns of morphological expression were similar to the in vitro patterns detected by immunofluorescence.  相似文献   

8.
Systemic candidiasis remains a major cause of disease and death, particularly among immunocompromised patients. The cell wall of Candida albicans defines the interface between host and pathogen and surface proteins are major elicitors of host immune responses during candidiasis. The C. albicans ecm33 mutant (RML2U) presents an altered cell wall, which entails an increase in the outermost protein layer. Vaccination of BALB/c mice with RML2U mutant protected them from a subsequent lethal infection with virulent strain SC5314 in a systemic candidiasis model. Using immunoproteomics (2-DE followed by Immunoblotting) we detected 29 immunoreactive proteins specifically recognized by antibodies from vaccinated mice sera, six of which are described as immunogenic for the first time (Gnd1p, Cit1p, Rpl10Ep, Yst1p, Cys4p, Efb1p). Furthermore, identification of wild type and mutant cell surface proteome (surfome), confirmed us that the mutant surfome presented a larger number of proteins than the wild type. Interestingly, proteins exclusively identified in the mutant surfome (Met6p, Eft2p, Tkl1p, Rpl10Ep, Atp1p, Atp2p) were also detected as immunogenic, supporting the idea that their surface location enhances their immunoprotective capacity.  相似文献   

9.
A low virulent Candida albicans mutant, CNC13, deleted in the Mitogen Activated Protein (MAP) kynase HOG1 was used to immunize BALB/c mice. Hog1p is essential for the oxidative stress and hyperosmolarity responses. Several doses and immunization procedures were employed. The protection capacity of the different sera generated was analyzed in a murine model of systemic candidiasis. Using a proteomic approach (two-dimensional gel electrophoresis followed by Western blotting), we were able to distinguish two categories of serum: protective and nonprotective, which showed different titres of total Immunoglobulins (Igs) and IgG2a (analyzed by enzyme-linked immunosorbent assay). The levels of Igs and IgG2a in protective sera were significantly higher compared to nonprotective sera. The pattern of a "nonprotective" profile was composed of enolase (Eno1p), transketolase, heat shock protein and methionine synthase. Only antibodies against enolase are the IgG2a isotype. The pattern of a "protective" sera, on the other hand, was composed of antibodies against the following antigens: several isoforms of Eno1p, pyruvate decarboxylase, pyruvate kynase, a protein of the 40S ribosomal subunit, triosephosphate isomerase, DL-glycerol phosphatase and fructose-bisphosphate aldolase. All these antibodies are the IgG2a isotype. The proteins described in the protective sera might be useful for future vaccine development.  相似文献   

10.
This study isolated Lactobacillus strains from caries-free subjects and evaluated the inhibitory effects directly on three strains of C. albicans, two clinical strains and one reference strain. Thirty Lactobacillus strains were isolated and evaluated for antimicrobial activity against in vitro C. albicans biofilms. L. paracasei 28.4, L. rhamnosus 5.2 and L. fermentum 20.4 isolates exhibited the most significant inhibitory activity against C. albicans. Co-incubation between these microorganisms resulted in deterrence of biofilm development and retardation of hyphal formation. The hindrance of biofilm development was characterized by the downregulated expression of C. albicans biofilm-specific genes (ALS3, HWP1, EFG1 and CPH1). L. paracasei 28.4, L. rhamnosus 5.2 and L. fermentum 20.4 demonstrated the ability to exert antifungal activity through the inhibition of C. albicans biofilms.  相似文献   

11.
Abstract Germ tube specific fractions of the dimorphic pathogenic fungus Candida albicans were fractionated according to their ability to link fibrinogen. These fibrinogen binding factors were used as immunogens to prepare monoclonal antibodies (mAbs) with BALB/c mice. Among the resulting mAbs, one (mAb 3D9.3) was shown by indirect immunofluorescence to be specific to the surface of the mycelial phase of the C. albicans species. No labelling of the cell wall of any other Candida species was observed. This morphological shape specificity was confirmed by immunoblotting where a polydispersed high molecular mass component was identified. The molecular mass varied with the extraction procedure used; over 210 kDa with EDTA-2ME treatment, and ranging from 110 to 220 kDa after Zymolyase digestion. This phase-specific epitope was sensitive to proteolysis with pronase E, proteinase K and trypsin, but not to periodate treatment. Further purification of this material would allow further development of new serodiagnostic assays that might be more specific for invasive disease than currently available tests.  相似文献   

12.
Candida albicans RHO1 is required for cell viability in vitro and in vivo   总被引:2,自引:0,他引:2  
In Saccharomyces cerevisiae, Rho1p plays an important role in cell wall integrity by regulating beta-1,3-glucan synthase, Pkc1p and the actin cytoskeleton. To determine the physiological role of Rho1p in the dimorphic fungus Candida albicans, the major human fungal pathogen, we constructed mutants that conditionally express Rho1p from the glucose-repressible phosphoenolpyruvate carboxykinase promoter (pPCK1). We examined the growth of these cells in a range of conditions. Depletion of Rho1p from yeast cells resulted in cell death, lysis, and aggregation. The Rho1p conditional mutant was inviable on 10% serum indicating that Rho1p was also required for hyphal viability. Furthermore, in a mouse model of systemic candidiasis, strains dependent on pPCK1-driven RHO1 expression failed to colonise the kidneys and establish disease, suggesting that the level of glucose in serum was sufficient to repress the pPCK1 and that Rho1p-depleted strains were inviable within the host. Therefore, Rho1p is essential for the viability of C. albicans in vitro and in vivo.  相似文献   

13.
Neutrophils (PMNs) constitute the main mechanism of host defense against acute invasive and disseminated candidiasis. Recent studies have demonstrated that tumor necrosis factor-alpha (TNFalpha), interleukin-6 (IL-6) and granulocyte colony-stimulating factor (G-CSF) play an important role in the recruitment of PMNs at the site of invasive Candida infection. In the absence of either TNFalpha or IL-6, the course of experimental disseminated candidiasis is more severe, due to defective PMN recruitment. Treatment of mice with recombinant G-CSF (rG-CSF) leads to a significantly reduced mortality during disseminated candidiasis. The outgrowth of Candida albicans from the organs of rG-CSF-treated mice is significantly decreased. Treatment with the combination of rG-CSF and fluconazole has an additive effect on the reduction of fungal load in the organs. In subacute or chronic disseminated Candida infection, rG-CSF is less effective, indicating that neutrophil recruitment and activation are crucial in acute, life-threatening candidiasis, whereas other host defense mechanisms control the outcome of less overwhelming invasive Candida infection.  相似文献   

14.
Germ-free transgenic epsilon 26 (Tgepsilon26) mice, deficient in both natural killer (NK)- and T-cells, were inoculated (orally) with each of two Candida glabrata (BG2 or BG1003) or Candida albicans (CAF2-1 or SC5314) strains. Candida glabrata- or C. albicans-colonized mice exhibited similar numbers of viable Candida in the alimentary tract. Neither C. glabrata nor C. albicans caused systemic candidiasis of endogenous (alimentary tract) origin. Candida albicans invaded oroesophageal (tongue, palate, esophagus) and keratinized gastric tissues, evoked hyperkeratosis and a prominent, chronic, granulocyte-dominated, inflammatory response in all infected tissues, stimulated the production of splenic granulocytes and was lethal for the mice within 3-5 weeks after oral colonization. The two C. glabrata strains colonized the alimentary tract and penetrated into the keratinized (cardia-antrum) gastric tissues, but in contrast to C. albicans, were unable to infect oroesophageal tissues. Furthermore, C. glabrata strains were not lethal for the Tgepsilon26 mice, and did not evoke an inflammatory response in colonized gastric tissues or stimulate the production of splenic granulocytes. This 'stealth-like' behavior could explain the ability of C. glabrata to persist in infected tissues and survive as a commensal in the alimentary tract.  相似文献   

15.
Abstract The virulence of Candida albicans strain SC5413 and two isogenic derivatives have been investigated in a rat model of oropharyngeal candidiasis. The results demonstrate that both mutant strains are avirulent in this animal model while the parental strain readily initiates infection. Avirulence is not related to altered growth characteristics or the inability of the strains to undergo yeast-to-hyphal morphogenesis. The potential importance of nutritional sufficiency as a virulence factor as well as the possibility of utilizing such strains in the development of an in vitro expression technology system for Candida albicans is discussed.  相似文献   

16.
A novel compound (named CF66I) produced by Burkholeria cepacia CF-66 strain was investigated for its antifungal activity against Candida albicans. This compound exhibited excellent antifungal activity in a dose- and time-dependent manner. Uptake analysis revealed that the compound preferentially acted against the fungal cell wall, and was also able to enter the cells. Transmission electron microscopy indicated that this compound caused loosening of the cell wall and a significant increase in the cell wall thickness was noted; however, no alterations were observed in the contents of the cell wall components. CF66I probably affected the normal assembly and integration of fungal cell wall components by interrupting the weak interactions between them, such as hydrogen and hydrophobic bonds. Propidium iodide (PI) staining indicated that on exposure to CF66I C. albicans cells became permeable to PI. Marked alterations in lipid and sterol contents were observed, and the major changes were a depletion of total lipids and ergosterol, concomitant with an increase in lanosterol content. These observations suggested that the novel compound CF66I may have considerable potential for development of a new class of antifungal agents.  相似文献   

17.
Mycopathologia - It was previously shown that the presence of estrogen enhances survival of Candida albicans under heat and oxidative stresses. A 92-kDa protein is inducible by heat shock and...  相似文献   

18.
Candida albicans is an opportunistic pathogenic fungus capable of causing infections in immunocompromised patients. Candidiasis is often associated with the formation of biofilms on the surface of inert or biological materials. Biofilms are structured microbial communities attached to a surface and encased within a matrix of exopolymeric substance (EPS). At present, very little is known about the changes in protein profiles that occur during the transition from the planktonic to the biofilm mode of growth. Here, we report the use of proteomics for the comparative analysis of subcellular fractions obtained from C. albicans biofilm and planktonic cultures, including cell surface-associated proteins and secreted components present in liquid culture supernatants (for planktonic cultures) and EPS (for biofilms). The analysis revealed a high degree of similarity between the protein profiles associated with the planktonic and biofilm extracts, and led to the identification of several differentially expressed protein spots. Among the differentially expressed proteins, there was a preponderance of metabolic enzymes that have been described as cell surface proteins and immunodominant antigens. Proteins found in the biofilm matrix included a few predicted to form part of the secretome, and also many secretion-signal-less proteins. These observations contribute to our understanding of the C. albicans biofilm lifestyle.  相似文献   

19.
Candida albicans , the major human fungal pathogen, undergoes a reversible morphological transition from single yeast cells to pseudohyphae and hyphae filaments. The hyphae form is considered the most invasive form of the fungus. The purpose of this study is to investigate the effect of saliva on hyphae growth of C. albicans. Candida albicans hyphae were inoculated in Roswell Park Memorial Institute medium with whole saliva, parotid saliva or buffer mimicking the saliva ion composition, and cultured for 18 h at 37 °C under aerobic conditions with 5% CO2. Whole saliva and parotid saliva induced transition to yeast growth, whereas the culture with buffer remained in the hyphae form. Parotid saliva was fractionated on a reverse-phase C8 column and each fraction was tested for inducing transition to yeast growth. By immunoblotting, the salivary component in the active fraction was identified as statherin, a phosphoprotein of 43 amino acids that has been implicated in remineralization of the teeth. Synthetically made statherin induced transition of hyphae to yeast. By deletion of five amino acids at the negatively charged N-terminal site (DpSpSEE), yeast-inducing activity and binding to C. albicans were increased. In conclusion, statherin induces transition to yeast of C. albicans hyphae and may thus contribute to the oral defense against candidiasis.  相似文献   

20.

Background

The polymorphic species Candida albicans is the major cause of candidiasis in humans. The secreted aspartyl proteinases (Saps) of C. albicans, encoded by a family of 10 SAP genes, have been investigated as the virulent factors during candidiasis. However, the biological functions of most Sap proteins are still uncertain. In this study, we applied co-culture system of C. albicans and THP-1 human monocytes to explore the pathogenic roles and biological functions of Sap proteinases.

Results

After 1 hr of co-culture of C. albicans strains and THP-1 human monocytes at 37°C, more than 60% of the THP-1-engulfed wild type and Δsap5 Candida cells were developing long hyphae. However, about 50% of THP-1-engulfed Δsap6 Candida cells were generating short hyphae, and more dead Candida cells were found in Δsap6 strain that was ingested by THP-1 cells (about 15% in Δsap6 strain vs. 2 ~ 2.5% in SC5314 and Δsap5 strains). The immunofluorescence staining demonstrated that the Sap6 is the major hyphal tip located Sap protein under THP-1 phagocytosis. The sap6-deleted strains (Δsap6, Δsap4/6, and Δsap5/6) appeared slower growth on Congo red containing solid medium at 25°C, and the growth defect was exacerbated when cultured at 37°C in Congo red or SDS containing medium. In addition, more proteins were secreted from Δsap6 strain and the β-mercaptoethanol (β-ME) extractable surface proteins from Δsap6 mutant were more abundant than that of extracted from wild type strain, which included the plasma membrane protein (Pma1p), the ER-chaperone protein (Kar2p), the protein transport-related protein (Arf1p), the cytoskeleton protein (Act1), and the mitochondrial outer membrane protein (porin 1). Moreover, the cell surface accessibility was increased in sap6-deleted strains.

Conclusion

From these results, we speculated that the cell surface constitution of C. albicans Δsap6 strain was defect. This may cause the more accessible of β-ME to disulfide-bridged cell surface components and may weaken the resistance of Δsap6 strain encountering phagocytosis of THP-1 cells. Sap6 protein displays a significant function involving in maintenance the cell surface integrity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号