首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
BACKGROUND: Meiosis produces haploid gametes from diploid progenitor cells. This reduction is achieved by two successive nuclear divisions after one round of DNA replication. Correct chromosome segregation during the first division depends on sister kinetochores being oriented toward the same spindle pole while homologous kinetochores must face opposite poles. Segregation during the second division depends on retention of sister chromatid cohesion between centromeres until the onset of anaphase II, which in Drosophila melanogaster depends on a protein called Mei-S332 that binds to centromeres. RESULTS: We report the identification of two homologs of Mei-S332 in fission yeast using a knockout screen. Together with their fly ortholog they define a protein family conserved from fungi to mammals. The two identified genes, sgo1 and sgo2, are required for retention of sister centromere cohesion between meiotic divisions and kinetochore orientation during meiosis I, respectively. The amount of meiotic cohesin's Rec8 subunit retained at centromeres after meiosis I is reduced in Deltasgo1, but not in Deltasgo2, cells, and Sgo1 appears to regulate cleavage of Rec8 by separase. Both Sgo1 and Sgo2 proteins localize to centromere regions. The abundance of Sgo1 protein normally declines after the first meiotic division, but extending its expression by altering its 3'UTR sequences does not greatly affect meiosis II. Its mere presence within the cell might therefore be insufficient to protect centromeric cohesion. CONCLUSIONS: A conserved protein family based on Mei-S332 has been identified. The two fission yeast homologs are implicated in meiosis I kinetochore orientation and retention of centromeric sister chromatid cohesion until meiosis II.  相似文献   

2.
Halving of the chromosome number during meiosis I depends on the segregation of maternal and paternal centromeres. This process relies on the attachment of sister centromeres to microtubules emanating from the same spindle pole. We describe here the identification of a protein complex, Csm1/Lrs4, that is essential for monoorientation of sister kinetochores in Saccharomyces cerevisiae. Both proteins are present in vegetative cells, where they reside in the nucleolus. Only shortly before meiosis I do they leave the nucleolus and form a "monopolin" complex with the meiosis-specific Mam1 protein, which binds to kinetochores. Surprisingly, Csm1's homolog in Schizosaccharomyces pombe, Pcs1, is essential for accurate chromosome segregation during mitosis and meiosis II. Csm1 and Pcs1 might clamp together microtubule binding sites on the same (Pcs1) or sister (Csm1) kinetochores.  相似文献   

3.
Wu C  Singaram V  McKim KS 《Genetics》2008,180(1):61-72
Meiotic chromosome segregation occurs in Drosophila oocytes on an acentrosomal spindle, which raises interesting questions regarding spindle assembly and function. One is how to organize a bipolar spindle without microtubule organizing centers at the poles. Another question is how to orient the chromosomes without kinetochore capture of microtubules that grow from the poles. We have characterized the mei-38 gene in Drosophila and found it may be required for chromosome organization within the karyosome. Nondisjunction of homologous chromosomes occurs in mei-38 mutants primarily at the first meiotic division in females but not in males where centrosomes are present. Most meiotic spindles in mei-38 oocytes are bipolar but poorly organized, and the chromosomes appear disorganized at metaphase. mei-38 encodes a novel protein that is conserved in the Diptera and may be a member of a multigene family. Mei-38 was previously identified (as ssp1) due to a role in mitotic spindle assembly in a Drosophila cell line. MEI-38 protein localizes to a specific population of spindle microtubules, appearing to be excluded from the overlap of interpolar microtubules in the central spindle. We suggest MEI-38 is required for the stability of parallel microtubules, including the kinetochore microtubules.  相似文献   

4.
The orderly reduction in chromosome number that occurs during meiosis depends on two aspects of chromosome behavior specific to the first meiotic division. These are the retention of cohesion between sister centromeres and their attachment to microtubules that extend to the same pole (monopolar attachment). By deleting genes that are upregulated during meiosis, we identified in Saccharomyces cerevisiae a kinetochore associated protein, Mam1 (Monopolin), which is essential for monopolar attachment. We also show that the meiosis-specific cohesin, Rec8, is essential for maintaining cohesion between sister centromeres but not for monopolar attachment. We conclude that monopolar attachment during meiosis I requires at least one meiosis-specific protein and is independent of the process that protects sister centromere cohesion.  相似文献   

5.
The reduction of chromosome number during meiosis is achieved by two successive rounds of chromosome segregation, called meiosis I and meiosis II. While meiosis II is similar to mitosis in that sister kinetochores are bi-oriented and segregate to opposite poles, recombined homologous chromosomes segregate during the first meiotic division. Formation of chiasmata, mono-orientation of sister kinetochores and protection of centromeric cohesion are three major features of meiosis I chromosomes which ensure the reductional nature of chromosome segregation. Here we show that sister chromatids frequently segregate to opposite poles during meiosis I in fission yeast cells that lack both chiasmata and the protector of centromeric cohesion Sgo1. Our data are consistent with the notion that sister kinetochores are frequently bi-oriented in the absence of chiasmata and that Sgo1 prevents equational segregation of sister chromatids during achiasmate meiosis I.Key words: meiosis, chromosome segregation, recombination, kinetochore, Sgo1, fission yeast  相似文献   

6.
The reduction of chromosome number during meiosis is achieved by two successive rounds of chromosome segregation, called meiosis I and meiosis II. While meiosis II is similar to mitosis in that sister kinetochores are bi-oriented and segregate to opposite poles, recombined homologous chromosomes segregate during the first meiotic division. Formation of chiasmata, mono-orientation of sister kinetochores and protection of centromeric cohesion are three major features of meiosis I chromosomes which ensure the reductional nature of chromosome segregation. Here we show that sister chromatids frequently segregate to opposite poles during meiosis I in fission yeast cells that lack both chiasmata and the protector of centromeric cohesion Sgo1. Our data are consistent with the notion that sister kinetochores are frequently bi-oriented in the absence of chiasmata and that Sgo1 prevents equational segregation of sister chromatids during achiasmate meiosis I.  相似文献   

7.
The chromosomal passenger complex (CPC), which is composed of conserved proteins aurora B, inner centromere protein (INCENP), survivin, and Borealin/DASRA, localizes to chromatin, kinetochores, microtubules, and the cell cortex in a cell cycle-dependent manner. The CPC is required for multiple aspects of cell division. Here we find that Drosophila melanogaster encodes two Borealin paralogues, Borealin-related (Borr) and Australin (Aust). Although Borr is a passenger in all mitotic tissues studied, it is specifically replaced by Aust for the two male meiotic divisions. We analyzed aust mutant spermatocytes to assess the effects of fully inactivating the Aust-dependent functions of the CPC. Our results indicate that Aust is required for sister chromatid cohesion, recruitment of the CPC to kinetochores, and chromosome alignment and segregation but not for meiotic histone phosphorylation or spindle formation. Furthermore, we show that the CPC is required earlier in cytokinesis than previously thought; cells lacking Aust do not initiate central spindle formation, accumulate anillin or actin at the cell equator, or undergo equatorial constriction.  相似文献   

8.
There are numerous examples of the regular segregation of achiasmate chromosomes at meiosis I in Drosophila melanogaster females. Classically, the choice of achiasmate segregational partners has been thought to be independent of homology, but rather made on the basis of availability or similarities in size and shape. To the contrary, we show here that heterochromatic homology plays a primary role in ensuring the proper segregation of achiasmate homologs. We observe that the heterochromatin of chromosome 4 functions as, or contains, a meiotic pairing site. We show that free duplications carrying the 4th chromosome pericentric heterochromatin induce high frequencies of 4th chromosome nondisjunction regardless of their size. Moreover, a duplication from which some of the 4th chromosome heterochromatin has been removed is unable to induce 4th chromosome nondisjunction. Similarly, in the absence of either euchromatic homology or a size similarity, duplications bearing the X chromosome heterochromatin also disrupt the segregation of two achiasmate X chromosome centromeres. Although heterochromatic regions are sufficient to conjoin nonexchange homologues, we confirm that the segregation of heterologous chromosomes is determined by size, shape, and availability. The meiotic mutation Axs differentiates between these two processes of achiasmate centromere coorientation by disrupting only the homology-dependent mechanism. Thus there are two different mechanisms by which achiasmate segregational partners are chosen. We propose that the absence of diplotene-diakinesis during female meiosis allows heterochromatic pairings to persist until prometaphase and thus to co-orient homologous centromeres. We also propose that heterologous disjunctions result from a separate and homology-independent process that likely occurs during prometaphase. The latter process, which may not require the physical association of segregational partners, is similar to those observed in many insects, in Saccharomyces cerevisiae and in C. elegans males. We also suggest that the physical basis of this process may reflect known properties of the Drosophila meiotic spindle. © 1993 Wiley-Liss, Inc.  相似文献   

9.
Marsupial sex chromosomes break the rule that recombination during first meiotic prophase is necessary to ensure reductional segregation during first meiotic division. It is widely accepted that in marsupials X and Y chromosomes do not share homologous regions, and during male first meiotic prophase the synaptonemal complex is absent between them. Although these sex chromosomes do not recombine, they segregate reductionally in anaphase I. We have investigated the nature of sex chromosome association in spermatocytes of the marsupial Thylamys elegans, in order to discern the mechanisms involved in ensuring their proper segregation. We focused on the localization of the axial/lateral element protein SCP3 and the cohesin subunit STAG3. Our results show that X and Y chromosomes never appear as univalents in metaphase I, but they remain associated until they orientate and segregate to opposite poles. However, they must not be tied by a chiasma since their separation precedes the release of the sister chromatid cohesion. Instead, we show they are associated by the dense plate, a SCP3-rich structure that is organized during the first meiotic prophase and that is still present at metaphase I. Surprisingly, the dense plate incorporates SCP1, the main protein of the central element of the synaptonemal complex, from diplotene until telophase I. Once sex chromosomes are under spindle tension, they move to opposite poles losing contact with the dense plate and undergoing early segregation. Thus, the segregation of the achiasmatic T. elegans sex chromosomes seems to be ensured by the presence in metaphase I of a synaptonemal complex-derived structure. This feature, unique among vertebrates, indicates that synaptonemal complex elements may play a role in chromosome segregation.  相似文献   

10.
Several meiotic processes ensure faithful chromosome segregation to create haploid gametes. Errors to any one of these processes can lead to zygotic aneuploidy with the potential for developmental abnormalities. During prophase I of Drosophila male meiosis, each bivalent condenses and becomes sequestered into discrete chromosome territories. Here, we demonstrate that two predicted condensin II subunits, Cap-H2 and Cap-D3, are required to promote territory formation. In mutants of either subunit, territory formation fails and chromatin is dispersed throughout the nucleus. Anaphase I is also abnormal in Cap-H2 mutants as chromatin bridges are found between segregating heterologous and homologous chromosomes. Aneuploid sperm may be generated from these defects as they occur at an elevated frequency and are genotypically consistent with anaphase I segregation defects. We propose that condensin II–mediated prophase I territory formation prevents and/or resolves heterologous chromosomal associations to alleviate their potential interference in anaphase I segregation. Furthermore, condensin II–catalyzed prophase I chromosome condensation may be necessary to resolve associations between paired homologous chromosomes of each bivalent. These persistent chromosome associations likely consist of DNA entanglements, but may be more specific as anaphase I bridging was rescued by mutations in the homolog conjunction factor teflon. We propose that the consequence of condensin II mutations is a failure to resolve heterologous and homologous associations mediated by entangled DNA and/or homolog conjunction factors. Furthermore, persistence of homologous and heterologous interchromosomal associations lead to anaphase I chromatin bridging and the generation of aneuploid gametes.  相似文献   

11.
In many organisms, homolog pairing and synapsis at meiotic prophase depend on interactions between chromosomes and the nuclear membrane. Male Drosophila lack synapsis, but nonetheless, their chromosomes closely associate with the nuclear periphery at prophase I. To explore the functional significance of this association, we characterize mutations in nuclear blebber (nbl), a gene required for both spermatocyte nuclear shape and meiotic chromosome transmission. We demonstrate that nbl corresponds to dtopors, the Drosophila homolog of the mammalian dual ubiquitin/small ubiquitin-related modifier (SUMO) ligase Topors. We show that mutations in dtopors cause abnormalities in lamin localizations, centriole separation, and prophase I chromatin condensation and also cause anaphase I bridges that likely result from unresolved homolog connections. Bridge formation does not require mod(mdg4) in meiosis, suggesting that bridges do not result from misregulation of the male homolog conjunction complex. At the ultrastructural level, we observe disruption of nuclear shape, an uneven perinuclear space, and excess membranous structures. We show that dTopors localizes to the nuclear lamina at prophase, and also transiently to intranuclear foci. As a role of dtopors at gypsy insulator has been reported, we also asked whether these new alleles affected expression of the gypsy-induced mutation ct(6) and found that it was unaltered in dtopors homozygotes. Our results indicate that dTopors is required for germline nuclear structure and meiotic chromosome segregation, but in contrast, is not necessary for gypsy insulator function. We suggest that dtopors plays a structural role in spermatocyte lamina that is critical for multiple aspects of meiotic chromosome transmission.  相似文献   

12.
It is important for the proper execution of cell division in both mitosis and meiosis that the chromosome segregation, cytokinesis, and partition of cell organelles progress in smooth coordination. We show here that the mitochondria inheritance is closely linked with microtubules during meiotic divisions in Drosophila males. They are first clustered in a cell equator at metaphase associated with astral microtubules and then distributed along central spindle microtubules after anaphase. The molecular mechanism for the microtubule-dependent inheritance of mitochondria in male meiosis has not been demonstrated yet. We first isolated mutations for a larp gene that is highly conserved among eukaryotes and showed that these mutant males exhibited multiple meiotic phenotypes such as a failure of chromosome segregation, cytokinesis, and mitochondrial partition. Our cytological examination revealed that the mutants showed defects in spindle pole organization and spindle formation. The larp encodes a Drosophila orthologue of a La-related protein containing a domain exhibiting an outstanding homology with a La type RNA-binding protein. Surprisingly, the dLarp protein is localized in the cytoplasm of the male germ line cells, as observed by its distinct co-localization with mitochondria in early spermatocytes and during meiotic divisions. We discuss here the essential role that dLarp plays in multiple processes in Drosophila male meiosis.  相似文献   

13.
There are numerous examples of the regular segregation of achiasmate chromosomes at meiosis I in Drosophila melanogaster females. Classically, the choice of achiasmate segregational partners has been thought to be independent of homology, but rather made on the basis of availability or similarities in size and shape. To the contrary, we show here that heterochromatic homology plays a primary role in ensuring the proper segregation of achiasmate homologs. We observe that the heterochromatin of chromosome 4 functions as, or contains, a meiotic pairing site. We show that free duplications carrying the 4th chromosome pericentric heterochromatin induce high frequencies of 4th chromosome nondisjunction regardless of their size. Moreover, a duplication from which some of the 4th chromosome heterochromatin has been removed is unable to induce 4th chromosome nondisjunction. Similarly, in the absence of either euchromatic homology or a size similarity, duplications bearing the X chromosome heterochromatin also disrupt the segregation of two achiasmate X chromosome centromeres. Although heterochromatic regions are sufficient to conjoin nonexchange homologues, we confirm that the segregation of heterologous chromosomes is determined by size, shape, and availability. The meiotic mutation Axs differentiates between these two processes of achiasmate centromere coorientation by disrupting only the homology-dependent mechanism. Thus there are two different mechanisms by which achiasmate segregational partners are chosen. We propose that the absence of diplotene-diakinesis during female meiosis allows heterochromatic pairings to persist until prometaphase and thus to co-orient homologous centromeres. We also propose that heterologous disjunctions result from a separate and homology-independent process that likely occurs during prometaphase. The latter process, which may not require the physical association of segregational partners, is similar to those observed in many insects, in Saccharomyces cerevisiae and in C. elegans males. We also suggest that the physical basis of this process may reflect known properties of the Drosophila meiotic spindle.  相似文献   

14.
Drosophila melanogaster oocytes heterozygous for mutations in the alpha-tubulin 67C gene (alphatub67C) display defects in centromere positioning during prometaphase of meiosis I. The centromeres do not migrate to the poleward edges of the chromatin mass, and the chromatin fails to stretch during spindle lengthening. These results suggest that the poleward forces acting at the kinetochore are compromised in the alphatub67C mutants. Genetic studies demonstrate that these mutations also strongly and specifically decrease the fidelity of achiasmate chromosome segregation. Proper centromere orientation, chromatin elongation, and faithful segregation can all be restored by a decrease in the amount of the Nod chromokinesin. These results suggest that the accurate segregation of achiasmate chromosomes requires the proper balancing of forces acting on the chromosomes during prometaphase.  相似文献   

15.
The conserved kinase Mps1 is necessary for the proper functioning of the mitotic and meiotic spindle checkpoints (MSCs), which monitor the integrity of the spindle apparatus and prevent cells from progressing into anaphase until chromosomes are properly aligned on the metaphase plate. In Drosophila melanogaster, a null allele of the gene encoding Mps1 was recently shown to be required for the proper functioning of the MSC, but it did not appear to exhibit a defect in female meiosis. We demonstrate here that the meiotic mutant ald1 is a hypomorphic allele of the mps1 gene. Both ald1 and a P-insertion allele of mps1 exhibit defects in female meiotic chromosome segregation. The observed segregational defects are substantially more severe for pairs of achiasmate homologs, which are normally segregated by the achiasmate (or distributive) segregation system, than they are for chiasmate bivalents. Furthermore, cytological analysis of ald1 mutant oocytes reveals both a failure in the coorientation of achiasmate homologs at metaphase I and a defect in the maintenance of the chiasmate homolog associations that are normally observed at metaphase I. We conclude that Mps1 plays an important role in Drosophila female meiosis by regulating processes that are especially critical for ensuring the proper segregation of nonexchange chromosomes.  相似文献   

16.
17.
Phagocytosis is a complex and apparently evolutionarily conserved process that plays a central role in the immune response to infection. By ultrastructural and functional criteria, Drosophila hemocyte (macrophage) phagocytosis resembles mammalian phagocytosis. Using a non-saturated forward genetic screen for larval hemocyte phagocytosis mutants, D-SCAR and profilin were identified as important regulators of phagocytosis in Drosophila. In both hemocytes ex vivo and the macrophage-like S2 cell line, lack of D-SCAR significantly decreased phagocytosis of Escherichia coli and Staphylococcus aureus. In contrast, profilin mutant hemocytes exhibited increased phagocytic activity. Analysis of double mutants suggests that D-SCAR and profilin interact during phagocytosis. Finally, RNA interference studies in S2 cells indicated that the D-SCAR homolog D-WASp also participates in phagocytosis. This study demonstrates that Drosophila provides a viable model system in which to dissect the complex interactions that regulate phagocytosis.  相似文献   

18.
Homologous chromosomes must pair and establish stable connections during prophase I of meiosis to segregate reliably from each other at anaphase I. In most organisms, the stable connections, called chiasmata, arise from crossovers. In Drosophila males, homologs pair and segregate without crossing over. Chiasmata are replaced by a homolog conjunction complex that includes the Stromalin in Meiosis (SNM) and Modifier of Mdg4 in Meiosis (MNM) proteins. MNM is one of 31 alternative splice products of mod(mdg4), all of which share a common 402-amino-acid N terminus and differ at their C termini. Previous data demonstrated that an MNM-specific exon is required for homolog conjunction, but did not address whether the N-terminal common region, which includes a BTB domain that can mediate coalescence of protein-DNA complexes, is also required. Here we describe a mutation in the common region of mod(mdg4), Z3-3401, that causes qualitatively similar phenotypes as the MNM-specific alleles but disrupts X-Y segregation much more drastically than autosomal segregation. The mutant MNM protein in Z3-3401 is expressed throughout prophase I in spermatocytes but the protein is confined to the cytoplasm, suggesting that the Z3-3401 mutation disrupts a signal required for nuclear localization or retention. Z3-3401 fails to complement a large battery of lethal and semilethal alleles in the common region for meiotic nondisjunction, including an allele containing an amino acid substitution at a conserved residue in the BTB/POZ domain, consistent with a general requirement for the mod(mdg4) common region in homolog segregation.  相似文献   

19.
Arya GH  Lodico MJ  Ahmad OI  Amin R  Tomkiel JE 《Genetics》2006,174(1):125-134
Drosophila melanogaster males lack recombination and have evolved a mechanism of meiotic chromosome segregation that is independent of both the chiasmatic and achiasmatic segregation systems of females. The teflon (tef) gene is specifically required in males for proper segregation of autosomes and provides a genetic tool for understanding recombination-independent mechanisms of pairing and segregation as well as differences in sex chromosome vs. autosome segregation. Here we report on the cloning of the tef gene and the molecular characterization of tef mutations. Rescue experiments using a GAL4-driven pUAS transgene demonstrate that tef corresponds to predicted Berkeley Drosophila Genome Project (BDGP) gene CG8961 and that tef expression is required in the male germ line prior to spermatocyte stage S4. Consistent with this early prophase requirement, expression of tef was found to be independent of regulators of meiotic M phase initiation or progression. The predicted Tef protein contains three C2H2 zinc-finger motifs, one at the amino terminus and two in tandem at the carboxyl terminus. In addition to the zinc-finger motifs, a 44- to 45-bp repeat is conserved in three related Drosophila species. On the basis of these findings, we propose a role for Tef as a bridging molecule that holds autosome bivalents together via heterochromatic connections.  相似文献   

20.
M E Zwick  D J Cutler  C H Langley 《Genetics》1999,152(4):1615-1629
A maximum-likelihood method for the estimation of tetrad frequencies from single-spore data is presented. The multilocus exchange with interference and viability (MEIV) model incorporates a clearly defined model of exchange, interference, and viability whose parameters define a multinomial distribution for single-spore data. Maximum-likelihood analysis of the MEIV model (MEIVLA) allows point estimation of tetrad frequencies and determination of confidence intervals. We employ MEIVLA to determine tetrad frequencies among 15 X chromosomes sampled at random from Drosophila melanogaster natural populations in Africa and North America. Significant variation in the frequency of nonexchange, or E(0) tetrads, is observed within both natural populations. Because most nondisjunction arises from E(0) tetrads, this observation is quite unexpected given both the prevalence and the deleterious consequences of nondisjunction in D. melanogaster. Use of MEIVLA is also demonstrated by reanalyzing a recently published human chromosome 21 dataset. Analysis of simulated datasets demonstrates that MEIVLA is superior to previous methods of tetrad frequency estimation and is particularly well suited to analyze samples where the E(0) tetrad frequency is low and sample sizes are small, conditions likely to be met in most samples from human populations. We discuss the implications of our analysis for determining whether an achiasmate system exists in humans to ensure the proper segregation of E(0) tetrads.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号