首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
R Koren  S Mildvan 《Biochemistry》1977,16(2):241-249
The interaction of Mn2+, substrates and initiators with RNA polymerase have been studied by kinetic and magnetic resonance methods. As determined by electron paramagnetic resonance, Mn2+ binds to RNA polymerase at one tight binding site with a dissociation constant less than 10 muM and at 6 +/- 1 weak binding sites with dissociation constants 100-fold greater. The binding of Mn2+ to RNA polymerase at both types of sites causes an order of magnitude enhancement of the paramagnetic effect of Mn2+ on the longitudinal relaxation rate of water protons, indicating the presence of residual water ligands on the enzyme-bound Mn2+. A kinetic analysis of the Mn2+-activated enzyme with poly(dT) as template indicates the substrate to be MnATP under steady-state conditions in the presence or absence of the initiator ApA. ATP and UTP interact with the tightly bound Mn2+ to form ternary complexes with approximately 50% greater enhancement factors. The dissociation constant of MnATP from the tight Mn2+ site as determined by longitudinal proton relaxation rate (PRR) titration (4.7 muM) is similar to the KM of MnATP in the ApA-initiated RNA polymerase reaction (10 +/- 3 muM) but not in the ATP-initiated reaction (160 +/- 30 muM). Similarly, the dissociation constant of the substrate MnUTP from the tight Mn2+ site (90 muM) is in agreement with the KM of MnUTP (101 +/- 13 muM) when poly[d(A-T)]-poly[d(A-T)] is used as template, indicating the tight Mn2+ site to be the catalytic site for RNA chain elongation. Manganese adenylyl imidodiphosphate (MnAMP-PNP) has been found to be a substrate for RNA polymerase. It has the same affinity as MnATP for the tight site but, unlike the results obtained with MnATP, the enhancement is decreased by 43% in the enzyme Mn-AMP-PNP complex. These results suggest that the enzyme-bound Mn2+ interacts with the leaving pyrophosphate group. The initiators ApA and ApU and the inhibitor rifamycin interact with the enzyme-Mn2+ complex producing small (15-20%) decreases in the enhancement. The dissociation constant of ApA estimated from PRR data (less than or equal to 1.5 muM) agrees with that determined kinetically (1.0 +/- 0.5 muM) as the concentration of ApA required to produce half-maximal change in the KM of MnATP. In the presence of the initiation specific reagents ApA, ApU, or rifamycin, the affinity of the enzyme-Mn complex for ATP or UTP shows little change. However, ATP and UTP no longer increase the enhancement factor of the tightly bound Mn2+ but decrease it by 30-55%, indicating a change in the environment of the Mn2+-substrate complex on the enzyme when the initiation site is either occupied or blocked. Although the role of the six weak Mn2+ binding sites is not clear, the presence of a single tightly bound Mn2+ at the catalytic site for chain elongation which interacts with the substrate reinforces the number of active sites as one per molecule of holoenzyme and provides a paramagnetic reference point for further structural studies.  相似文献   

2.
Rat liver carbamoyl-phosphate synthetase I is shown to have synthetase and ATPase activity in the absence of acetylglutamate. Km values for ATP, Mg2+ and K+ are greatly increased, the Km for HCO-3 is not changed much, and the Km for NH+4 is markedly reduced. Vmax for the synthetase reaction is less than 20% of that of the acetylglutamate-activated enzyme whereas Vmax for the ATPase activity is greater than 40% of that with acetylglutamate. Pulse-chase experiments with H14CO-3 show formation of less "active CO2" (the central intermediate) than with acetylglutamate; ATPase activity is reduced in proportion, but the synthetase activity is much smaller. Binding of one ATP molecule with high affinity (Kd = 20-30 microM) is shown in the absence of acetylglutamate. This appears to be the molecule of ATPB (ATPB provides the phosphoryl group of carbamoyl phosphate). In contrast, the affinity for ATPA (ATPA yields Pi) is much reduced. Initial velocity measurements without acetylglutamate show a time lag before reaching a constant velocity. At 50 microM acetylglutamate the lag is much longer, but at 10 mM acetylglutamate it is shorter. Activation by acetylglutamate requires ATP at concentrations sufficient to occupy the ATPA and the ATPB binding sites. Preincubation with 10 mM acetylglutamate alone shortens the activation time. From these findings we propose an allosteric model for activation of carbamoyl-phosphate synthetase in which there are two active states, R and R . AcGlu. Binding of ATPA is associated with the conversion of T to R. R . AcGlu differs from R in that transfer to carbamate of the gamma-phosphoryl group of ATPB appears to be facilitated.  相似文献   

3.
The activation of the Fe protein of nitrogenase (Rr2) from glutamate-grown Rhodospirillum rubrum by activating enzyme (AE) was investigated. AE is confirmed to have Mr about 20 000 and is shown to operate catalytically. There is a role in activation for metal-ion-ATP, which can be met by either MnATP or MgATP. There is also a site of action for free metal ions. This site prefers Mn2+ (apparent Kd approx. 20 microM) over Mg2+ (apparent Kd approx. 20 mM) by a factor of 1000-fold. Non-activated Rr2 does not contain this binding site. MnATP is an inhibitor of C2H2 reduction, and excess Mg2+ inhibits both AE activity and C2H2 reduction, when each is studied independently under otherwise optimal conditions. The activity of AE is increased in normal reaction mixtures (in which AE activity and nitrogenase activity occur simultaneously) by Mg2+ concentrations in excess of ATP concentrations; this occurs because the excess Mg2+ prevents ATP from chelating the free Mn2+ necessary for optimal AE activity.  相似文献   

4.
Basal and trypsin-stimulated adenosine triphosphatase activities of Escherichia coli K 12 have been characterized at pH 7.5 in the membrane-bound state and in a soluble form of the enzyme. The saturation curve for Mg2+/ATP = 1/2 was hyperbolic with the membrane-bound enzyme and sigmoidal with the soluble enzyme. Trypsin did not modify the shape of the curves. The kinetic parameters were for the membrane-bound ATPase: apparent Km = 2.5 mM, Vmax (minus trypsin) = 1.6 mumol-min-1-mg protein-1, Vmax (plus trypsin) = 2.44 mumol-min-1-mg protein-1; for the soluble ATPase: [S0.5] = 1.2 mM, Vmax (-trypsin) = 4 mumol-min-1-mg protein-1; Vmax (+ trypsin) = 6.6 mumol-min-1-mg protein-1. Hill plot analysis showed a single slope for the membrane-bound ATPase (n = 0.92) but two slopes were obtained for the soluble enzyme (n = 0.98 and 1.87). It may suggest the existence of an initial positive cooperativity at low substrate concentrations followed by a lack of cooperativity at high ATP concentrations. Excess of free ATP and Mg2+ inhibited the ATPase but excess of Mg/ATP (1/2) did not. Saturation for ATP at constant Mg2+ concentration (4 mM) showed two sites (groups) with different Kms: at low ATP the values were 0.38 and 1.4 mM for the membrane-bound and soluble enzyme; at high ATP concentrations they were 17 and 20 mM, respectively. Mg2+ saturation at constant ATP (8 mM) revealed michealian kinetics for the membrane-bound ATPase and sigmoid one for the protein in soluble state. When the ATPase was assayed in presence of trypsin we obtained higher Km values for Mg2+. These results might suggest that trypsin stimulates E. coli ATPase by acting on some site(s) involved in Mg2+ binding. Adenosine diphosphate and inorganic phosphate (Pi) act as competitive inhibitors of Escherichia coli ATPase. The Ki values for Pi were 1.6 +/- 0.1 mM for the membrane-bound ATPase and 1.3 +/- 0.1 mM for the enzyme in soluble form, the Ki values for ADP being 1.7 mM and 0.75 mM for the membrane-bound and soluble ATPase, respectively. Hill plots of the activity of the soluble enzyme in presence of ADP showed that ADP decreased the interaction coefficient at ATP concentrations below its Km value. Trypsin did not modify the mechanism of inhibition or the inhibition constants. Dicyclohexylcarbodiimide (0.4 mM) inhibited the membrane-bound enzyme by 60-70% but concentrations 100 times higher did not affect the residual activity nor the soluble ATPase. This inhibition was independent of trypsin. Sodium azide (20 muM) inhibited both states of E. coli ATPase by 50%. Concentrations 25-fold higher were required for complete inhibition. Ouabain, atebrin and oligomycin did not affect the bacterial ATPase.  相似文献   

5.
ATP regulation of the human red cell sugar transporter   总被引:4,自引:0,他引:4  
Purified human red blood cell sugar transport protein intrinsic tryptophan fluorescence is quenched by D-glucose and 4,6-ethylidene glucose (sugars that bind to the transport), phloretin and cytochalasin B (transport inhibitors), and ATP. Cytochalasin B-induced quenching is a simple saturable phenomenon with Kd app of 0.15 microM and maximum capacity of 0.85 cytochalasin B binding sites per transporter. Sugar-induced quenching consists of two saturable components characterized by low and high Kd app binding parameters. These binding sites appear to correspond to influx and efflux transport sites, respectively, and coexist within the transporter molecule. ATP-induced quenching is also a simple saturable process with Kd app of 50 microM. Indirect estimates suggest that the ratio of ATP-binding sites per transporter is 0.87:1. ATP reduces the low Kd app and increases the high Kd app for sugar-induced fluorescence quenching. This effect is half-maximal at 45 microM ATP. ATP produces a 4-fold reduction in Km and 2.4-fold reduction in Vmax for cytochalasin B-inhibitable D-glucose efflux from inside-out red cell membrane vesicles (IOVs). This effect on transport is half-maximal at 45 microM ATP. AMP, ADP, alpha, beta-methyleneadenosine 5'-triphosphate, and beta, gamma-methyleneadenosine 5'-triphosphate at 1 mM are without effect on efflux of D-glucose from IOVs. ATP modulation of Km for D-glucose efflux from IOVs is immediate in onset and recovery. ATP inhibition of Vmax for D-glucose exit is complete within 5-15 min and is only partly reversed following 30-min incubation in ATP-free medium. These findings suggest that the human red cell sugar transport protein contains a nucleotide-binding site(s) through which ATP modifies the catalytic properties of the transporter.  相似文献   

6.
When Mg2+ ions were replaced by Mn2+ in the assay of Trypanosoma (Schizotrypanum) cruzi phosphofructokinase (ATP:D-fructose-6-phosphate 1-phosphotransferase, EC 2.7.1.11) the Km for D-fructose 6-phosphate (F6P) was reduced threefold while the corresponding constant for ATP was essentially unaffected. A detailed kinetic investigation showed that the apparent Km for F6P decreased monotonically with increasing free Mn2+ concentrations, from a limiting value of 5.7 mM in its absence to a limiting value of 1.1 mM in the presence of saturating concentrations of the ion; the Vmax of the enzyme was, on the other hand, not affected by the concentration of Mn2+. Conversely, it was shown that the apparent Km for Mn2+ at fixed MnATP concentrations decreased with increasing F6P concentrations, from a limiting value of 30 microM in the absence of the sugar phosphate to 9 microM at saturating concentrations of the substrate, while the apparent Vmax increased monotonically from zero to its limiting value. Both electron paramagnetic resonance and water proton longitudinal relaxation studies showed binding of one Mn2+ ion per 18,000 Da catalytic subunit of enzyme in the absence of F6P, with a dissociation constant of 57 +/- 4 microM, comparable to the apparent Km for the ion in the absence of F6P. The presence of saturating level of F6P decreases the value of the dissociation constant of Mn2+ to a limiting value of 7.9 microM in agreement with the results of the kinetic analysis. The substrate F6P decreases the enhancement of the water proton longitudinal relaxation rate in a saturable fashion, suggesting displacement of water molecules coordinated to the enzyme-bound Mn2+ ion by the sugar phosphate. Computer fitting of the several dissociation constants and relaxation enhancements for binary and ternary complexes gives a value of 7.9 mM for the dissociation constant of the enzyme-F6P complex in the absence of Mn2+ and 1.1 mM in the presence of saturating concentrations of the ion, in excellent agreement with the respective Km values of F6P extrapolated to zero and saturating Mn2+, respectively. Studies of the frequency dependence of the water proton longitudinal relaxation rate enhancements in the presence of both binary (enzyme-Mn2+) and ternary (enzyme-Mn2(+)-F6P) complexes, are most simply explained by assuming two exchangeable water molecules in the coordination sphere of the enzyme-bound Mn2+ in the binary complex, while in the ternary complex the data are consistent with the displacement of one of the water molecule from the coordination sphere with no significant alteration of the correlation time. Overall, the kinetic and binding data are consistent with the formation of an enzyme-metal-F6P bridge complex at the active site of T. cruzi phosphofructokinase, a coordination scheme which is unique among the phosphofructokinases.  相似文献   

7.
The influence of the epsilon-subunit on the nucleotide binding affinities of the three catalytic sites of Escherichia coli F1-ATPase was investigated, using a genetically engineered Trp probe in the adenine-binding subdomain (beta-Trp-331). The interaction between epsilon and F1 was not affected by the mutation. Kd for binding of epsilon to betaY331W mutant F1 was approximately 1 nM, and epsilon inhibited ATPase activity by 90%. The only nucleotide binding affinities that showed significant differences in the epsilon-depleted and epsilon-replete forms of the enzyme were those for MgATP and MgADP at the high-affinity catalytic site 1. Kd1(MgATP) and Kd1(MgADP) were an order of magnitude higher in the absence of epsilon than in its presence. In contrast, the binding affinities for MgATP and MgADP at sites 2 and 3 were similar in the epsilon-depleted and epsilon-replete enzymes, as were the affinities at all three sites for free ATP and ADP. Comparison of MgATP binding and hydrolysis parameters showed that in the presence as well as the absence of epsilon, Km equals Kd3. Thus, in both cases, all three catalytic binding sites have to be occupied to obtain rapid (Vmax) MgATP hydrolysis rates.  相似文献   

8.
1. Tightly bound ATP and ADP, found on the isolated mitochondrial ATPase, exchange only slowly at pH 8, but the exchange is increased as the pH is reduced. At pH 5.5, more than 60% of the bound nucleotide exchanges within 2.5 min. 2. Preincubation of the isolated ATPase with ADP leads to about 50% inhibition of ATP hydrolysis when the enzyme is subsequently assayed in the absence of free ADP. This effect, which is reversed by preincubation with ATP, is absent on the membrane-bound ATPase. This inhibition seems to involve the replacement of tightly bound ATP by ADP. 3. Using these two findings, the binding specificity of the tight nucleotide binding sites was determined. iso-Guanosine, 2'-deoxyadenosine and formycin nucleotides displaced ATP from the tight binding sites, while all other nucleotides tested did not. The specificities of the tight sites of the isolated and membrane-bound ATPase were similar, and higher than that of the hydrolytic site. 4. The nucleotide specificities of 'coupled processes' nucleoside triphosphate-driven reversal of electron transfer, nucleoside triphosphate-32Pi exchange and phosphorylation were higher than that of the hydrolytic site of the ATPase and similar to that of the tight nucleotide binding sites.  相似文献   

9.
The pH dependence of the Ca2(+)-transporting ATPase of bovine cardiac sarcolemma was determined in a membrane vesicle preparation. The maximal velocity (Vmax) at saturating external Ca2+ showed a sigmoidal pH dependence with maximal values in the 6.0-6.5 range, a half-maximal value at 7.2 and minimal (less than or equal to 15%) values at pH greater than or equal to 8.0. The apparent affinity for Ca2+ (1/Km) varied over 10(4)-fold for 6.0 less than or equal to pH less than or equal to 8.5, increasing with increasing pH. Plots of log(1/Km) vs. pH were biphasic. In the acid range (6.0 less than or equal to pH less than or equal to 7.2), a slope of 2.6 was observed for the calmodulin-activated form of the pump. For 7.2 less than or equal to pH less than or equal to 8.5, a slope of 0.5 was observed. At pH 7.4, the Km is approx. 48 +/- 19 nM. The Ca2+ pump of cardiac sarcoplasmic reticulum in the same preparation had a Km of 304 +/- 115 nM and showed a similar pH dependence except that the slope in the acid range was 1.7. When calmodulin was removed from the sarcolemmal pump, its Km was raised to approx. 1.0 microM, the slope in the acid range was reduced to 1.7 and the Vmax was markedly reduced. The results are explicable in terms of a model in which each of the two Ca2+ binding sites on the pump contains two buried COO- groups responsible for high affinity. The Km effect is explained by 2 H+ vs. 1 Ca2+ competition for occupation of each of the two cytoplasmically-oriented translocators (4 H+ vs. 2 Ca2+). The Vmax effect is explained by counter-transport of H+. The findings are considered in terms of the published amino acid sequence of the cardiac sarcolemmal pump and recent site-directed mutagenesis vs. function studies identifying the Ca2+ binding site in the skeletal sarcoplasmic reticulum pump. The kinetic data are also applied to pump behavior under conditions of ischemia and acidosis.  相似文献   

10.
P Bhargava  D Chatterji 《FEBS letters》1988,241(1-2):33-37
The binding affinity between the substrates ATP and UTP with the purified yeast RNA polymerase II have been studied here in the presence and absence of Mn2+. In the absence of template DNA, both ATP and UTP showed tight binding with the enzyme without preference for any specific nucleotide, unlike Escherichia coli RNA polymerase. Fluorescence titration of the tryptophan emission of the enzyme by nucleoside triphosphate substrates gave an estimated Kd value around 65 microM in the absence of Mn2+ whereas in the presence of Mn2+, the Kd was 20 microM. The effect of substrates on the longitudinal relaxation of the HDO proton in enzyme-substrate complex also yielded a similar Kd value.  相似文献   

11.
The recent finding that the presence of ATP at non-catalytic sites of chloroplast F1-ATPase (CF1) is necessary for ATPase activity (Milgrom, Y. M., Ehler, L. L., and Boyer, P. D. (1990) J. Biol. Chem. 265,18725-18728) prompted more detailed studies of the effect of noncatalytic site nucleotides on catalysis. CF1 containing at noncatalytic sites less than one ADP or about two ATP was prepared by heat activation in the absence of Mg2+ and in the presence of ADP or ATP, respectively. After removal of medium nucleotides, the CF1 preparations were used for measurement of the time course of nucleotide binding from 10 to 100 microM concentrations of 3H-labeled ADP, ATP, or GTP. The presence of Mg2+ strongly promotes the tight binding of ADP and ATP at noncatalytic sites. For example, the ADP-heat-activated enzyme in presence of 1 mM Mg2+ binds ADP with a rate constant of 0.5 x 10(6) M-1 min-1 to give an enzyme with two ADP at noncatalytic sites with a Kd of about 0.1 microM. Upon exposure to Mg2+ and ATP the vacant noncatalytic site binds an ATP rapidly and, as an ADP slowly dissociates, a second ATP binds. The binding correlates with an increase in the ATPase activity. In contrast the tight binding of [3H]GTP to noncatalytic sites gives an enzyme with no ATPase activity. The three noncatalytic sites differ in their binding properties. The noncatalytic site that remains vacant after the ADP-heat-activated CF1 is exposed to Mg2+ and ADP and that can bind ATP rapidly is designated as site A; the site that fills with ATP as ADP dissociates when this enzyme is exposed to Mg2+ and ATP is called site B, and the site to which ADP remains bound is called site C. Procedures are given for attaining CF1 with ADP at sites B and C, with GTP at sites A and/or B, and with ATP at sites A, B, and/or C, and catalytic activities of such preparations are measured. For example, little or no ATPase activity is found unless ATP is at site A, but ADP can remain at site C with no effect on ATPase. Maximal GTPase activity requires ATP at site A but about one-fifth of maximal GTPase is attained when GTP is at sites A and B and ATP at site C. Noncatalytic site occupancy can thus have profound effects on the ATPase and GTPase activities of CF1.  相似文献   

12.
1. Pyruvate carboxylase from baker's yeast acts with either MgATP(2-) or MnATP(2-) as substrate. The optimum pH for the enzyme reaction is 8.0 with MgATP(2-) and 7.0 with MnATP(2-). 2. When the reaction velocity is plotted against MgATP(2-) (or MnATP(2-)) concentration slightly sigmoid curves are obtained, either in the presence or in the absence of acetyl-CoA (an allosteric activator). In the presence of excess of free Mg(2+) (or Mn(2+)) the curves turn into hyperbolae, whereas in the presence of excess of free ATP(4-) the apparent sigmoidicity of the curves increases. 3. The sigmoidicity of the plots of v against MgATP(2-) (or MnATP(2-)) concentration can be explained by the inhibitory effect of free ATP(4-), the concentration of which, in the experimental conditions employed, is significant and varies according to the total concentration of the ATP-magnesium chloride (or ATP-manganese chloride) mixture. Free ATP(4-) behaves as a negative modifier of yeast pyruvate carboxylase. 4. The effect of high concentrations of Mg(2+) (or Mn(2+)) on the kinetics of yeast pyruvate carboxylase can be explained as a deinhibition with respect to ATP(4-), instead of a direct enzyme activation. 5. At pH6.5 manganese chloride is more effective than magnesium chloride as enzyme activator even in the presence of a great excess (16-fold) of the latter. This is consistent with a significant contribution of the MnATP(2-) complex to the activity of yeast pyruvate carboxylase, in medium conditions resembling those existing inside the yeast cell (pH6.25-6.75; 12mm-magnesium chloride and 0.75mm-manganese chloride). 6. The physiological significance of the enzyme inhibition by free ATP(4-) is doubtful since the Mg(2+) and Mn(2+) concentrations reported to exist inside the yeast cell are sufficient to decrease ATP(4-) concentrations to ineffective values.  相似文献   

13.
The primary structure of a region of the erythrocyte plasma membrane calcium pump which is phosphorylated by the cAMP-dependent protein kinase has been determined. The sequence is A-P-T-K-R-N-S-S(P)-P-P-P-S-P-D. The site is located between the calmodulin binding domain and the C-terminus of the ATPase. The ATPase is phosphorylated only at this site by the cAMP-dependent protein kinase, and the phosphorylation is inhibited by calmodulin. The effect of the phosphorylation is to decrease the Km for Ca2+ of the purified ATPase from about 10 microM to about 1.4 microM and to increase the Vmax of ATP hydrolysis about 2-fold.  相似文献   

14.
The Michaelis constants of soya-bean ribulose bisphosphate carboxylase for CO2 in the carboxylation reaction and for O2 in the oxygenation reaction depend on the nature of the bivalent cation present. In the presence of Mg2+ the Km for bicarbonate is 2.48 mM, and the Km for O2 is 37% (gas-phase concentration). With Mn2+ the values decrease to 0.85 mM and 1.7% respectively. For the carboxylation reaction Vmax. was 1.7 mumol/min per mg of protein with Mg2+ but only 0.29 mumol/min per mg of protein with Mn2+. For the oxygenation reaction, Vmax. values were 0.61 and 0.29 mumol/min per mg of protein respectively with Mg2+ and Mn2+.  相似文献   

15.
C Klevickis  C M Grisham 《Biochemistry》1982,21(26):6979-6984
It has previously been shown that there are two sites for divalent metals at the active site of kidney (Na+ + K+)-ATPase, one bound directly to the enzyme and one coordinated to the ATP substrate [Grisham, C. (1981) J. Inorg. Biochem. 14, 45; O'Connor, S., & Grisham, C. (1980) FEBS Lett. 118, 303]. The conformation of the metal-nucleotide complex has been studied by using beta, gamma-bidentate Co-(NH3)4ATP, a substitution-inert analogue of MgATP. Kinetic studies show that Co(NH3)4ATP is a competitive inhibitor with respect to MnATP for the (Na+ + K+)-ATPase. The Ki values under both high- and low-affinity conditions (Ki = 10 microM and Ki = 1.6 mM, respectively) are similar to the Km values for MnATP under the same conditions (2.88 microM and 0.902 mM). From the paramagnetic effect of Mn2+ bound to the ATPase on the longitudinal relaxation rates of the phosphorus nuclei of Co(NH3)4ATP at the substrate site (at 40.5 and 145.75 MHz), Mn-P distances to all three phosphates are determined. The distances are consistent with the formation of a second sphere coordination complex on the enzyme between Mn2+ and the phosphates of Co(NH3)4ATP. In this respect, kidney (Na+ + K+)-ATPase appears to be similar to pyruvate kinase [Sloan, D., & Mildvan, A. (1976) J. Biol. Chem. 251, 2412] and phosphoribosylpyrophosphate synthetase [Granot, J., Gibson, K., Switzer, R., & Mildvan, A. (1980) J. Biol. Chem. 255, 10931]. Roles for both of the active site divalent cations are discussed.  相似文献   

16.
The rate of phosphorylation of the Ca2+-dependent ATPase of sarcoplasmic reticulum vesicles by ITP and ATP was studied using a millisecond mixing and quenching device. The rate of phosphorylation was slower when the vesicles were preincubated in a Ca2+-free medium than when preincubated with Ca2+, regardless of the substrate used and of the pH of the medium. When the vesicles were preincubated with Ca2+ at pH 7.4 an overshoot of phosphorylation was observed in the presence of ITP. The overshoot was abolished when the pH of the medium was decreased to 6.0 or when the vesicles were preincubated in a Ca2+-free medium. Using vesicles preincubated with Ca2+ the apparent Km for ITP found was 2.5 mM at pH 6.0 and 1.0 mM at pH 7.4. The Vmax observed (77 mumol g-1 s-1) did not change with the pH of the medium. Both at pH 6.0 and 7.4 the apparent Km for ATP was 3 microM when preincubated in a Ca2+-free medium. At pH 6.0 the Vmax for ATP varied from 96 to 33 mumol g-1 s-1 depending on whether the vesicles were preincubated in the presence or absence of Ca2+. At pH 7.4 the Vmax for ATP was 90 mumol g-1 s-1 in both conditions. The rate of phosphorylation of the vesicles was dependent on the relative Ca2+ and Mg2+ concentrations of the reaction medium regardless of the substrate used.  相似文献   

17.
The manganese dependence of arginase was reinvestigated with extracts of mouse liver to see whether more physiological properties were displayed than have been reported for the purified enzyme. In a preincubation with Mn(II) ions at 37 degrees C the enzyme underwent a slow and reversible activation. At least 90-95% of the activation achieved was dependent on Mn2+. However, no Mn2+ was required for catalytic activity in the assay. The activation showed little dependence upon pH over the range 6.5-9.5, whereas the catalytic activity increased 12-fold in apparent accord with the titration curve of an ionizable group of pKa 7.9. The Mn2+ dependence of arginase activation obeyed Michaelis-Menten kinetics, with Kd varying from 0.3 microM at pH 6.8 to 0.08 microns at pH 7.7. Free Mn2+ concentrations were established in these assays with a trimethylenediaminetetraacetate-Mn buffer. Vmax increased about three-fold over this range. The calculated arginase activity at 0.05 microM Mn2+ increases about nine-fold over this physiological pH range. An enzyme model is proposed to explain these findings. The activity of arginase at "physiological" [Mn2+] and the pronounced pH dependence conferred upon it are consistent with a recently revised role for the urea cycle in the control of bicarbonate and pH in the body. It appears possible that arginase loses Mn2+ sensitivity during the usual purification.  相似文献   

18.
The effects of K+, Na+ and ATP on the gastric (H+ + K+)-ATPase were investigated at various pH. The enzyme was phosphorylated by ATP with a pseudo-first-order rate constant of 3650 min-1 at pH 7.4. This rate constant increased to a maximal value of about 7900 min-1 when pH was decreased to 6.0. Alkalinization decreased the rate constant. At pH 8.0 it was 1290 min-1. Additions of 5 mM K+ or Na+, did not change the rate constant at acidic pH, while at neutral or alkaline pH a decrease was observed. Dephosphorylation of phosphoenzyme in lyophilized vesicles was dependent on K+, but not on Na+. Alkaline pH increased the rate of dephosphorylation. K+ stimulated the ATPase and p-nitrophenylphosphatase activities. At high concentrations K+ was inhibitory. Below pH 7.0 Na+ had little or no effect on the ATPase and p-nitrophenylphosphatase, while at alkaline pH, Na+ inhibited both activities. The effect of extravesicular pH on transport of H+ was investigated. At pH 6.5 the apparent Km for ATP was 2.7 microM and increased little when K+ was added extravesicularly. At pH 7.5, millimolar concentrations of K+ increased the apparent Km for ATP. Extravesicular K+ and Na+ inhibited the transport of H+. The inhibition was strongest at alkaline pH and only slight at neutral or acidic pH, suggesting a competition between the alkali metal ions and hydrogen ions at a common binding site on the cytoplasmic side of the membrane. Two H+-producing reactions as possible candidates as physiological regulators of (H+ + K+)-ATPase were investigated. Firstly, the hydrolysis of ATP per se, and secondly, the hydration of CO2 and the subsequent formation of H+ and HCO3-. The amount of hydrogen ions formed in the ATPase reaction was highest at alkaline pH. The H+/ATP ratio was about 1 at pH 8.0. When CO2 was added to the reaction medium there was no change in the rate of hydrogen ion transport at pH 7.0, but at pH 8.0 the rate increased 4-times upon the addition of 0.4 mM CO2. The results indicate a possible co-operation in the production of acid between the H+ + K+-ATPase and a carbonic anhydrase associated with the vesicular membrane.  相似文献   

19.
Three ATP-dependent reactions catalyzed by the inner membrane of rat liver mitochondria and the ATPase reaction catalyzed by purified mitochondrial ATPase (F1), were studied with respect to kinetic properties, substrates specificity, and sensitivity to bicarbonate. The ATP-dependent transhydrogenase reaction (reduction of NADP+ by NADH) catalyzed by inner membrane vesicles displays typical Michaelis-Menten kinetics in both Tris-Cl and Tris-bicarbonate buffers, with Km (ATP) values of 0.035 mM and 0.054 mM respectively. The Vmax of transhydrogenase activity (25 nmol min-1 mg-1) is the same in Tris-bicarbonate or Tris-Cl buffer. ITP and GTP readily substitute for ATP in the transhydrogenase reaction. The ATP-P1 exchange reaction catalyzed by inner membrane vesicles displays typical Michaelis-Menten kinetics in both Tris-Cl and Tris-bicarbonate buffers with Km (ATP) values of 1.0 mM and 1.4 mM respectively. The Vmax of exchange (200 nmol min-1 mg-1) is the same in either buffer. ITP and GTP do not effectively replace ATP in the exchange reaction.  相似文献   

20.
Using the activated cGMP-dependent protein kinase in the presence of the phosphorylatable peptide [[Ala34]histone H2B-(29-35)], we found that lin-benzoadenosine 5'-diphosphate (lin-benzo-ADP) was a competitive inhibitor of the enzyme with respect to ATP with a Ki (22 microM) similar to the Kd (20 microM) determined by fluorescence polarization titrations. The Kd for lin-benzo-ADP determined in the absence of the phosphorylatable peptide, however, was only 12 microM. ADP bound with lower affinity (Ki = 169 microM; Kd = 114 microM). With [Ala34]histone H2B-(29-35) as phosphoryl acceptor, the Km for lin-benzo-ATP was 29 microM, and that for ATP was 32 microM. The Vmax with lin-benzo-ATP, however, was only 0.06% of that with ATP as substrate [0.00623 +/- 0.00035 vs. 11.1 +/- 0.17 mumol (min.mg)-1]. Binding of lin-benzo-ADP to the kinase was dependent upon a divalent cation. Fluorescence polarization revealed that Mg2+, Mn2+, Co2+, Ni2+, Ca2+, Sr2+, and Ba2+ supported nucleotide binding to the enzyme; Ca2+, Sr2+, and Ba2+, however, did not support any measurable phosphotransferase activity. The rank order of metal ion effectiveness in mediating phosphotransferase activity was Mg2+ greater than Ni2+ greater than Co2+ greater than Mn2+. Although these results were similar to those observed with the cAMP-dependent protein kinase [Hartl, F. T., Roskoski, R., Jr., Rosendahl, M. S., & Leonard, N. J. (1983) Biochemistry 22, 2347], major differences in the Vmax with lin-benzo-ATP as substrate and the effect of peptide substrates on nucleotide (both lin-benzo-ADP and ADP) binding were observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号