首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transferrin-binding protein B (TbpB) from Neisseria meningitidis binds human transferrin (hTf) at the surface of the bacterial cell as part of the iron uptake process. To identify hTf binding sites within the meningococcal TbpB, defined regions of the molecule were produced in Escherichia coli by a translational fusion expression system and the ability of the recombinant proteins (rTbpB) to bind peroxidase-conjugated hTf was characterized by Western blot and dot blot assays. Both the N-terminal domain (amino acids [aa] 2 to 351) and the C-terminal domain (aa 352 to 691) were able to bind hTf, and by a peptide spot synthesis approach, two and five hTf binding sites were identified in the N- and C-terminal domains, respectively. The hTf binding activity of three rTbpB deletion variants constructed within the central region (aa 346 to 543) highlighted the importance of a specific peptide (aa 377 to 394) in the ligand interaction. Taken together, the results indicated that the N- and C-terminal domains bound hTf approximately 10 and 1000 times less, respectively, than the full-length rTbpB (aa 2 to 691), while the central region (aa 346 to 543) had a binding avidity in the same order of magnitude as the C-terminal domain. In contrast with the hTf binding in the N-terminal domain, which was mediated by conformational epitopes, linear determinants seemed to be involved in the hTf binding in the C-terminal domain. The host specificity for transferrin appeared to be mediated by the N-terminal domain of the meningococcal rTbpB rather than the C-terminal domain, since we report that murine Tf binds to the C-terminal domain. Antisera raised to both N- and C-terminal domains were bactericidal for the parent strain, indicating that both domains are accessible at the bacterial surface. We have thus identified hTf binding sites within each domain of the TbpB from N. meningitidis and propose that the N- and C-terminal domains together contribute to the efficient binding of TbpB to hTf with their respective affinities and specificities for determinants of their ligand.  相似文献   

2.
Human transferrin (Tf) is responsible for the binding and transport of iron in the bloodstream of vertebrates. Delivery of this bound iron to cells occurs by a process of receptor-mediated endocytosis during which Tf releases its iron at the reduced endosomal pH of approximately 5.6. Iron release from Tf involves a large conformational change in which the two domains that enclose the binding site in each lobe move apart. We have examined the role of two lysines, Lys206 and Lys296, that form a hydrogen-bonded pair close to the N-lobe binding site of human Tf and have been proposed to form a pH-sensitive trigger for iron release. We report high-resolution crystal structures for the K206A and K296A mutants of the N-lobe half-molecule of Tf, hTf/2N, and quantitative iron release data on these mutants and the double mutant K206A/K296A. The refined crystal structures (for K206A, R = 19.6% and R(free) = 23.7%; for K296A, R= 21.2% and R(free) = 29.5%) reveal a highly conserved hydrogen bonding network in the dilysine pair region that appears to be maintained even when individual hydrogen bonding groups change. The iron release data show that the mutants retain iron to a pH 1 unit lower than the pH limit of wild type hTf/2N, and release iron much more slowly as a result of the loss of the dilysine interaction. Added chloride ions are shown to accelerate iron release close to the pH at which iron is naturally lost and the closed structure becomes destabilized, and to retard it at higher pH.  相似文献   

3.
Aluminium (Al) in the blood is bound to transferrin (Tf), a glycoprotein of about 80kDa that is characterized by its need for a synergistic anion. In this focused review, the binding affinity of Al to Tf is surveyed in the context of our recent studies using on-line high-performance liquid chromatography/high-resolution inductively coupled plasma mass spectrometry (HPLC/HR-ICP-MS). Al in human serum without any in vitro Al-spikes was present in a form bound to the N-lobe site of Tf. The influences of sialic acid in the carbohydrate chain of human serum Tf (hTf) were studied using asialo-hTf, obtained by treatment with sialidase. The binding affinity of Fe was similar between asialo-hTf and native-hTf, while that of Al for asialo-hTf was larger than that for native-hTf, especially in the presence of oxalate, a synergistic anion. The above findings are discussed in relation to diseases in which the serum concentrations of carbohydrate-deficient Tf and oxalate are augmented.  相似文献   

4.
Vanadium-binding proteins, or Vanabins, have recently been isolated from the vanadium-rich ascidian, Ascidia sydneiensis samea. Recent reports indicate that Vanabin2 binds twenty V(IV) ions at pH 7.5, and that it has a novel bow-shaped conformation. However, the role of Vanabin2 in vanadium accumulation by the ascidian has not yet been determined. In the present study, the effects of acidic pH on selective metal binding to Vanabin2 and on the secondary structure of Vanabin2 were examined. Vanabin2 selectively bound to V(IV), Fe(III), and Cu(II) ions under acidic conditions. In contrast, Co(II), Ni(II), and Zn(II) ions were bound at pH 6.5 but not at pH 4.5. Changes in pH had no detectable effect on the secondary structure of Vanabin2 under acidic conditions, as determined by circular dichroism spectroscopy, and little variation in the dissociation constant for V(IV) ions was observed in the pH range 4.5-7.5, suggesting that the binding state of the ligands is not affected by acidification. Taken together, these results suggest that the reason for metal ion dissociation upon acidification is attributable not to a change in secondary structure but, rather, that it is caused by protonation of the amino acid ligands that complex with V(IV) ions.  相似文献   

5.
The binding of iron (Fe) to human serum transferrin (Tf) was analyzed with an HPLC system equipped with an anion exchange column and directly connected with a high-resolution inductively coupled plasma mass spectrometer for metal detection. The (56)Fe level in the eluate was monitored at resolution m/Deltam=3000. Two monoferric Tfs were assigned based on the results of urea-PAGE and desferrioxamine experiments. When Fe was added as Fe-citrate stepwise to an apo-Tf solution in the presence of bicarbonate, the N-lobe site was the preferential Fe-binding site, while the C-lobe site was preferred in the absence of bicarbonate. In both cases, the Fe-peak areas of the preferential site and Fe(2)-Tf increased up to an Fe/Tf molar ratio of 1, and then the peak area of the monoferric Tf decreased while the peak area of Fe(2)-Tf increased. When the Fe/Tf molar ratio was below 1, the amount of Fe bound to the lobe with a weaker affinity was higher in Fe(2)-Tf than in the monoferric Tf in each case. Namely, Fe(2)-Tf was the preferential binding state of Fe to human serum Tf. The preference is reasonable for transferring Fe ions effectively to Tf-receptors.  相似文献   

6.
Vanadium-binding proteins, or Vanabins, have recently been isolated from the vanadium-rich ascidian, Ascidia sydneiensis samea. Recent reports indicate that Vanabin2 binds twenty V(IV) ions at pH 7.5, and that it has a novel bow-shaped conformation. However, the role of Vanabin2 in vanadium accumulation by the ascidian has not yet been determined. In the present study, the effects of acidic pH on selective metal binding to Vanabin2 and on the secondary structure of Vanabin2 were examined. Vanabin2 selectively bound to V(IV), Fe(III), and Cu(II) ions under acidic conditions. In contrast, Co(II), Ni(II), and Zn(II) ions were bound at pH 6.5 but not at pH 4.5. Changes in pH had no detectable effect on the secondary structure of Vanabin2 under acidic conditions, as determined by circular dichroism spectroscopy, and little variation in the dissociation constant for V(IV) ions was observed in the pH range 4.5–7.5, suggesting that the binding state of the ligands is not affected by acidification. Taken together, these results suggest that the reason for metal ion dissociation upon acidification is attributable not to a change in secondary structure but, rather, that it is caused by protonation of the amino acid ligands that complex with V(IV) ions.  相似文献   

7.
We have used a systems biology approach to address the hitherto insoluble problem of the quantitative analysis of non-equilibrium binding of aqueous metal ions by competitive ligands in heterogeneous media. To-date, the relative proportions of different metal complexes in aqueous media has only been modelled at chemical equilibrium and there are no quantitative analyses of the approach to equilibrium. While these models have improved our understanding of how metals are used in biological systems they cannot account for the influence of kinetic factors in metal binding, transport and fate. Here we have modelled the binding of aluminium, Al(III), in blood serum by the iron transport protein transferrin (Tf) as it is widely accepted that the biological fate of this non-essential metal is not adequately described by experiments, invitro and insilico, which have consistently demonstrated that at equilibrium 90% of serum Al(III) is bound by Tf. We have coined this paradox ‘the blood-aluminium problem’ and herein applied a systems biology approach which utilised well-found assumptions to pare away the complexities of the problem such that it was defined by a comparatively simple set of computational rules and, importantly, its solution assumed significant predictive capabilities. Here we show that our novel computational model successfully described the binding of Al(III) by Tf both at equilibrium and as equilibrium for AlTf was approached. The model predicted significant non-equilibrium binding of Al by ligands in competition with Tf and, thereby, provided an explanation of why the distribution of Al(III) in the body cannot be adequately described by its binding and transport by Tf alone. Generically the model highlighted the significance of kinetic in addition to thermodynamic constraints in defining the fate of metal ions in biological systems.  相似文献   

8.
A simple method was described for the purification of serum transferrin (Tf) from human plasma and porcine serum with relative high yield and purity. The properties including purity, integrity, immunoreactivity and the receptor-binding ability of the proteins were studied by several assays, comprising spectrometry, SDS-PAGE, HPLC, Western blotting, urea electrophoresis, mass spectrometry and cytometry. Analysis from all the different aspects manifested that the proteins were of high purity. The two kinds of Tfs appeared to be iron-saturated as confirmed by their absorbance spectra and urea-PAGE mobility. The specific spectra of absorption of the two Tfs were both at around 465 nm. The relative molecular weights of human Tf (hTf) and porcine Tf (pTf) were determined by SDS-PAGE and further identified by MAIDI-TOF mass spectrometry with a result of 79,707 and 79,258, respectively. Immunoblotting assay showed that pTf could react with the anti-human Tf monoclonal antibody with a less level compared to hTf. FACS assays of their binding activities to Tf receptor-positive cell (K562 cell line) indicated that pTf could be recognized by the hTf receptor and internalized into cells, with a slightly less efficacy than hTf. All special property studies demonstrated that pTf was similar to hTf in physical and chemical characteristics, which gave a hint that pTf could substitute for hTf in some kinds of researches, such as using hTf as a carrier in drug targeting system.  相似文献   

9.
In an evolutionarily conserved signaling pathway, 'soluble' adenylyl cyclases (sACs) synthesize the ubiquitous second messenger cyclic adenosine 3',5'-monophosphate (cAMP) in response to bicarbonate and calcium signals. Here, we present crystal structures of a cyanobacterial sAC enzyme in complex with ATP analogs, calcium and bicarbonate, which represent distinct catalytic states of the enzyme. The structures reveal that calcium occupies the first ion-binding site and directly mediates nucleotide binding. The single ion-occupied, nucleotide-bound state defines a novel, open adenylyl cyclase state. In contrast, bicarbonate increases the catalytic rate by inducing marked active site closure and recruiting a second, catalytic ion. The phosphates of the bound substrate analogs are rearranged, which would facilitate product formation and release. The mechanisms of calcium and bicarbonate sensing define a reaction pathway involving active site closure and metal recruitment that may be universal for class III cyclases.  相似文献   

10.
Iron and manganese hemes are "high-valent" when the valence state of the metal exceeds III. Redox chemistry of the high valent metal complexes involves redistribution of holes and electrons over the metal ion and the porphyrin and axial ligands, defined as valence tautomerism. Thus, catalytic pathways of heme-containing biomolecules such as peroxidases, catalases and cytochromes P450 involve valence tautomerism, as do pathways of biomimetic oxygen transfer catalysis by manganese porphyrins, robust catalysts with potential commercial value. Determinants of the site of electron abstraction are key to understanding valence tautomerism. In model systems, metal-centered oxidation is supported by hard anionic axial ligands that are also strongly pi-donating, such as oxo, aryl, bix-methoxy and bis-fluoro groups. Manganese(IV) is more stable than iron(IV) and metal-centered one-electron oxidations occur with weaker pi-donating axial ligands such as bisazido, -isocyanato, -hypochlorito and bis chloro groups. Virtually all known high-valent iron porphyrin complexes oxidized by two-electrons above the ferric state are coordinated by the strongly pi-donating oxo or nitrido ligands. In all well-characterized oxo complexes, iron is in the ferryl state and the second oxidizing equivalent resides on the porphyrin. Complexes with iron(V) have not been definitively characterized. One-electron oxidation of oxomanganese(IV) porphyrin complexes gives the oxomanganese(IV) porphyrin pi-cation redicals. In aqueous solution, oxidation of Mn(III) complexes of tetra cationic N-methylpyridiniumylporphyrin isomers by monooxygen donors yields a transient oxomanganese(V) species.  相似文献   

11.
Three cobalt complexes containing the salen type ligand, bis(salicylidene)-meso-1,2-diphenylethylenediaminato (mdpSal2−), are reported. The complexes differ in nuclearity and include the mononuclear, Co(mdpSal) (1), which contains a Co(II) metal center bound to one mdpSal−2 ligand frame in a square planar geometry. The second complex is the dinuclear [Co(mdpSal)Cl]2 (2) in which both cobalt ions have been oxidized to the +3 oxidation state. The overall geometry of complex 2 is an edge-sharing bioctahedron with the coordination sphere around each cobalt metal center consisting of one mdpSal−2 ligand and one Cl ion. The shared edge between the Co(III) ions contains two bridging phenolate groups, one from each ligand frame. Complex 3 is a linear, mixed valence, trinuclear species, [Co(mdpSal)(OAc)(μ-OAc)]2Co, with the oxidation states of the metal centers assigned as Co(III)-Co(II)-Co(III). The terminal Co(III) centers are equivalent with the central Co(II) lying on the inversion center of the molecule. Each cobalt ion in 3 adopts an octahedral geometry with the terminal Co(III) ions being bound to one mdpSal2− ligand each. All phenolate groups bridge to the central Co(II). The coordination sphere about each metal center in the trinuclear complex is completed by four acetate groups, two of which bind in a μ-fashion bridging from the terminal Co(III) metal centers to the central Co(II). The complexes have been characterized by X-ray crystallography as well as UV-Vis and IR spectroscopy.  相似文献   

12.
Serum transferrin (Tf) is an iron binding glycoprotein that plays a central role in the metabolism of this essential metal but it also binds other metal ions. Four main transferrin forms containing different iron binding states can be distinguished in human serum samples: monoferric (C-site or N-site), holotransferrin (with two Fe atoms) and apotransferrin (with no metal). Recently, it has been reported that Tf binds also Ti even more tightly than does Fe, in artificially Ti(iv) spiked solutions. However, very limited work has been done on the Ti binding to Tf at physiological concentrations in patients carrying intramedullary Ti nails. Here we report the chemical association of Ti to Tf "in vivo" under different chromatographic conditions by elemental mass spectrometry using double focusing inductively coupled plasma (DF-ICP-MS) as detector. For the separation of the Ti/Fe-Tf forms different gradient conditions have been explored. The observed results reveal that human serum Ti (from patients carrying intramedullary Ti nails) is uniquely associated to the N-lobe of Tf. The investigation of the influence of sialic acid in the carbohydrate chain of human serum Tf, studied by incubating the protein with neuraminidase (sialidase) to obtain the monosialilated species, revealed that the binding affinity of Ti was similar for monosialo-Tf and for native-Tf and occurs in the N-lobe. These results suggest that the species Fe(C)Ti(N)-TF might provide a route for Ti entry into cells via the transferrin receptors after the release of the metal from its implants.  相似文献   

13.
Iron is indispensible for life and essential for such processes as oxygen transport, electron transfer and DNA synthesis. Transferrin (Tf) is a ubiquitous protein with a central role in iron transport and metabolism. There is evidence, however, that Tf has many other biological roles in addition to its primary function of facilitating iron transport and metabolism, such as its profound effect on mammalian cell growth and productivity. The multiple functions of Tf can be exploited to develop many novel applications. Indeed, over the past several years, considerable efforts have been directed towards exploring human serum Tf (hTf), especially the use of recombinant native hTf and recombinant Tf fusion proteins, for various applications within biotechnology and medicine. Here, we review some of the remarkable progress that has been made towards the application of hTf in these diverse areas and discuss some of the exciting future prospects for hTf.  相似文献   

14.
Lactoferrin (Lf) and transferrin (Tf) are iron-binding proteins that can bind various metal ions. This study demonstrates the heme-binding activity of bovine Lf and Tf using biotinylated hemin. When both proteins were coated on separate plate wells, each directly bound biotinylated hemin. On the other hand, when biotinylated hemin was immobilized on an avidin-coated plate, soluble native Lf bound to the immobilized biotinylated hemin whereas native Tf did not, suggesting that a conformational change triggered by coating on the plate allows the binding of denatured Tf with hemin. Incubation of Lf with hemin-agarose resulted in negligible binding of Lf with biotinylated hemin. Lf in bovine milk also bound to immobilized biotinylated hemin. These results demonstrate that bovine Lf has specific heme-binding activity, which is different from Tf, suggesting that either Tf lost heme-binding activity during its evolution or that Lf evolved heme-binding activity from its Tf ancestral gene. Additionally, Lf in bovine milk may bind heme directly, but may also bind heme indirectly by interaction with other milk iron- and/or heme-binding proteins.  相似文献   

15.
J C Cannon  N D Chasteen 《Biochemistry》1975,14(21):4573-4577
Vanadyl ion, VO(IV), has been used as an electron paramagnetic resonance (EPR) spin label to study the metal-binding properties of human serum transferrin in the presence of bicarbonate. Iron-saturated transferrin does not bind the vanadyl ion. Room temperature titrations of apotransferrin with VO(IV) as monitored by EPR indicate the extent of binding to be pH dependent, with a full 0.2 VO(IV) ions per transferrin molecule bound at pH 7.5 and 9, but only about 1.2 VO(IV) ions bound at pH 6. The EPR spectra of frozen solutions with or without 0.1 M NaCUO4 at 77 K show that there are two spectroscopically nonequivalent binding sites (A and B) with a slight difference in binding constants. One site (A site) exhibits essentially constant binding capacity in the pH range 6-9, but the other (B site) becomes less avialable as the pH is reduced below 7. Results with mixed Fe(III)-VO(IV) transferrin complexes suggest that iron shows a slight tendency to bind at the B site over the A site pH 7.5 and 9.0. Only the B site in both vanadyl and iron transferrins is perturbed by the presence of perchlorate.  相似文献   

16.
A biologically relevant dinuclear manganese mono-mu-oxo complex with a bound phenolate ligand in three oxidation states, (III,III), (III,IV) and (IV,IV), was studied using resonance Raman spectroscopy. Depending upon the excitation frequency, phenolate vibrations or mu-oxo vibrations were enhanced, which allowed us to assign the UV-visible absorption spectra. In the case of the mixed valence species (III,IV), the mu-oxo vibration at 854 cm-1 has been assigned by isotopic substitution (H2(18)O) to nu as(Mn-O-Mn). This preferential enhancement of the asymmetric vibration stresses the asymmetric character of the bridge.  相似文献   

17.
The rates of dissociation of 2 equiv of various metal ions [Ca(II), Cd(II), Pr(III), Nd(III), Sm(III), Eu(III), Gd(III), Tb(III), Dy(III), Ho(III), Er(III), Yb(III), and Lu(III)] from the primary CD and EF metal ion binding sites of parvalbumin (isotype pI = 4.75) from codfish (Gadus callarius L) were measured by stopped-flow techniques. The removal or replacement of metal ions was monitored by changes in sensitized Tb(III) luminescence or in intrinsic protein tryptophan fluorescence as quenching ions [Eu(III) or Yb(III)] were bound or removed or as the apoprotein was formed. In experiments wherein the bound metal ions were removed by mixing the parvalbumin with an excess of 1,2-diaminocyclohexanetetraacetic acid (DCTA), the kinetic traces were best fit by a double exponential with koff rate constants of 1.07 and 5.91 s-1 for Ca(II), 1.54 and 10.5 s-1 for Cd(II), and approximately 0.05 and approximately 0.5 s-1 for all of the trivalent lanthanide ions. In experiments wherein the bound metal ions were exchanged with an excess of a different metal ion, pseudo-first-order rate constants were proportional to the concentration of excess attacking metal ion for both the fast and slow processes in most experiments. In these cases, extrapolation of the rate constants to zero concentration of attacking metal ion gave values which agree well with the DCTA scavenging results. This finding demonstrates that the off rate constants do not depend on the occupancy of the neighboring site and therefore implies that there is no significant cooperativity in metal ion binding between the two sites in parvalbumin.  相似文献   

18.
Human transferrin (Tf) very tightly binds two ferric ions to deliver iron to cells. Fe(III)2Tf (Fe2Tf) binds to the Tf receptor (TfR) at pH 7.4; however, iron-free Tf (apoTf) does not. Iron uptake is facilitated by endocytosis of the Fe2Tf–TfR complex. Tf can also bind aluminum ions, which cause toxic effects and are associated with many diseases. Since Al(III)2Tf (Al2Tf) does not bind to TfR, the uptake of aluminum by the cells does not occur through a TfR-mediated pathway. We have studied the absence of binding between Al2Tf and TfR by investigating the physicochemical characteristics of apoTf, Al2Tf, Fe2Tf, and TfR. The hydrodynamic radius of 38.8 Å for Al2Tf obtained by dynamic light scattering was between that of 42.6 Å for apoTf and 37.2 Å for Fe2Tf. The ζ potential of ?11.3 mV for Al2Tf measured by capillary electrophoresis was close to ?11.2 mV for apoTf as compared to ?11.9 mV for Fe2Tf, indicating that the Al2Tf surface had a relatively scarce negative charge as the apoTf surface had. These results demonstrated that the structure of Al2Tf was a trade-off between the closed and open forms of Fe2Tf and apoTf, respectively. Consequently, it is suggested that Al2Tf cannot form specific ionic interresidual interactions, such as those formed by Fe2Tf, to bind to TfR, resulting in impossible complex formation between Al2Tf and TfR.  相似文献   

19.
1. Human lactoferrin and transferrin are capable of binding several transition metal ions [Fe(III), Cu(II), Mn(III), Co(III)] into specific binding sites in the presence of bicarbonate. 2. Increased conformational stability and increased resistance to protein unfolding is observed for these metal-ion complexes compared to the apoprotein form of these proteins. 3. Mn(III)-lactoferrin and transferrin complexes exhibit steeper denaturation transitions than the Co(III) complexes of these proteins suggesting greater cooperativity in the unfolding process. 4. The incorporation of Fe(III) into the specific metal binding sites offers the greatest resistance to thermal unfolding when compared to the other transition metal ions studied. 5. Non-coincidence of unfolding transitions is observed, with fluorescence transition midpoints being lower than those determined by absorbance measurements. 6. Fully denatured proteins in the presence of urea and alkyl ureas exhibit fluorescence wavelength maxima at 355-356 nm indicative of tryptophan exposure upon protein unfolding.  相似文献   

20.
Evaluation of stability of vanadium(IV) and (V) complexes under similar conditions is critical for the interpretation and assessment of bioactivity of various vanadium species. Detailed understanding of the chemical properties of these complexes is necessary to explain differences observed their activity in biological systems. These studies are carried out to link the chemistry of both vanadium(IV) and (V) complexes of two ligands, 2,6-pyridinedicarboxylic acid (dipicolinic acid, H(2)dipic) and 4-hydroxy-2,6-pyridinedicarboxylic acid (H(2)dipic-OH). Solution speciation of the two 2,6-pyridinedicarboxylic acids with vanadium(IV) and vanadium(V) ions was determined by pH-potentiometry at I=0.2 M (KCl) ionic strength and at T=298 K. The stability and the metal affinities of the ligands were compared. Vanadium(V) complexes were found to form only tridentate coordinated 1:1 complexes, while vanadium(IV) formed complexes with both 1:1 and 1:2 stoichiometries. The formation constant reflects hindered coordination of a second ligand molecule, presumably because of the relatively small size of the metal ion. The most probable binding mode of the complexes was further explored using ambient and low temperature EPR spectroscopy for vanadium(IV) and 51V NMR spectroscopy for vanadium(V) systems. Upon complex formation the pyridinol-OH in position 4 deprotonates with pK approximately 3.7-4.1, which is approximately 6 orders of magnitude lower than that of the free ligand. The deprotonation enhances the ligand metal ion affinity compared to the parent ligand dipicolinic acid. In the light of the speciation and stability data of the metal complexes, the efficiency of the two ligands in transporting the metal ion in the two different oxidation states are assessed and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号