首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Most cancer cells express high levels of telomerase and proliferate indefinitely. In addition to its telomere maintenance function, telomerase also has a pro-survival function resulting in an increased resistance against DNA damage and decreased apoptosis induction. However, the molecular mechanisms for this protective function remain elusive and it is unclear whether it is connected to telomere maintenance or is rather a non-telomeric function of the telomerase protein, TERT. It was shown recently that the protein subunit of telomerase can shuttle from the nucleus to the mitochondria upon oxidative stress where it protects mitochondrial function and decreases intracellular oxidative stress. Here we show that endogenous telomerase (TERT protein) shuttles from the nucleus into mitochondria upon oxidative stress in cancer cells and analyzed the nuclear exclusion patterns of endogenous telomerase after treatment with hydrogen peroxide in different cell lines. Cell populations excluded TERT from the nucleus upon oxidative stress in a heterogeneous fashion. We found a significant correlation between nuclear localization of telomerase and high DNA damage, while cells which excluded telomerase from the nucleus displayed no or very low DNA damage. We modeled nuclear and mitochondrial telomerase using organelle specific localization vectors and confirmed that mitochondrial localization of telomerase protects the nucleus from inflicted DNA damage and apoptosis while, in contrast, nuclear localization of telomerase correlated with higher amounts of DNA damage and apoptosis. It is known that nuclear DNA damage can be caused by mitochondrially generated reactive oxygen species (ROS). We demonstrate here that mitochondrial localization of telomerase specifically prevents nuclear DNA damage by decreasing levels of mitochondrial ROS. We suggest that this decrease of oxidative stress might be a possible cause for high stress resistance of cancer cells and could be especially important for cancer stem cells.  相似文献   

2.
Diabetes is a leading cause of microvascular complications, such as nephropathy and retinopathy. Recent studies have proposed that hyperglycemia-induced endothelial cell dysfunction is modulated by mitochondrial stress. Therefore, our experiment was to detect the upstream mediator of mitochondrial stress in hyperglycemia-treated endothelial cells with a focus on macrophage-stimulating 1 (Mst1) and mitochondrial fission. Our data illuminated that hyperglycemia incubation reduced cell viability, as well as increased apoptosis ratio in endothelial cell, and this alteration seemed to be associated with Mst1 upregulation. Inhibition of Mst1 via transfection of Mst1 siRNA into an endothelial cell could sustain cell viability and maintain mitochondrial function. At the molecular levels, endothelial cell death was accompanied with the activation of mitochondrial oxidative stress, mitochondrial apoptosis, and mitochondrial fission. Genetic ablation of Mst1 could reduce mitochondrial oxidative injury, block mitochondrial apoptosis, and repress mitochondrial fission. Besides, we also found Mst1 triggered mitochondrial dysfunction as well as endothelial cell damage through augmenting JNK pathway. Suppression of JNK largely ameliorated the protective actions of Mst1 silencing on hyperglycemia-treated endothelial cells and sustain mitochondrial function. The present study identifies Mst1 as a primary key mediator for hyperglycemia-induced mitochondrial damage and endothelial cell dysfunction. Increased Mst1 impairs mitochondrial function and activates endothelial cell death via opening mitochondrial death pathway through JNK.  相似文献   

3.
An important role in atherogenesis is played by oxidative stress, which may be induced by common risk factors. Mitochondria are both sources and targets of reactive oxygen species, and there is growing evidence that mitochondrial dysfunction may be a relevant intermediate mechanism by which cardiovascular risk factors lead to the formation of vascular lesions. Mitochondrial DNA is probably the most sensitive cellular target of reactive oxygen species. Damage to mitochondrial DNA correlates with the extent of atherosclerosis. Several cardiovascular risk factors are demonstrated causes of mitochondrial damage. Oxidized low density lipoprotein and hyperglycemia may induce the production of reactive oxygen species in mitochondria of macrophages and endothelial cells. Conversely, reactive oxygen species may favor the development of type 2 diabetes mellitus, mainly through the induction of insulin resistance. Similarly - in addition to being a cause of endothelial dysfunction, reactive oxygen species and subsequent mitochondrial dysfunction - hypertension may develop in the presence of mitochondrial DNA mutations. Finally, other risk factors, such as aging, hyperhomocysteinemia and cigarette smoking, are also associated with mitochondrial damage and an increased production of free radicals. So far clinical studies have been unable to demonstrate that antioxidants have any effect on human atherogenesis. Mitochondrial targeted antioxidants might provide more significant results.  相似文献   

4.
A high concentration of glucose has been implicated as a causal factor in initiation and progression of diabetic complications and there is evidence to suggest that hyperglycemia increases the production of free radicals and oxidative stress. Therefore, compounds that scavenge reactive oxygen species (ROS) may confer regulatory effects on high glucose-induced apoptosis. Ursolic acid (UA), a pentacyclic triterpene, is reported to have an antioxidant activity. We investigated the effect of UA on high glucose-induced apoptosis in U937 cells. Upon exposure to 35 mM glucose for two days, there was a distinct difference between untreated cells and cells pre-treated with 50 nM UA for 2 h in regard to cellular redox status and oxidative DNA damage to cells. UA pre-treated cells showed significant suppression of apoptotic features such as DNA fragmentation, damage to mitochondrial function and modulation of apoptotic marker proteins upon exposure to high glucose. This study indicates that UA may play an important role in regulating the apoptosis induced by high glucose presumably through scavenging of ROS.  相似文献   

5.
A high concentration of glucose has been implicated as a causal factor in initiation and progression of diabetic complications and there is evidence to suggest that hyperglycemia increases the production of free radicals and oxidative stress. Therefore, compounds that scavenge reactive oxygen species (ROS) may confer regulatory effects on high glucose-induced apoptosis. Ursolic acid (UA), a pentacyclic triterpene, is reported to have an antioxidant activity. We investigated the effect of UA on high glucose-induced apoptosis in U937 cells. Upon exposure to 35 mM glucose for two days, there was a distinct difference between untreated cells and cells pre-treated with 50 nM UA for 2 h in regard to cellular redox status and oxidative DNA damage to cells. UA pre-treated cells showed significant suppression of apoptotic features such as DNA fragmentation, damage to mitochondrial function and modulation of apoptotic marker proteins upon exposure to high glucose. This study indicates that UA may play an important role in regulating the apoptosis induced by high glucose presumably through scavenging of ROS.  相似文献   

6.
Oxidative stress causes mitochondrial dysfunction and heart failure through unknown mechanisms. Cardiolipin (CL), a mitochondrial membrane phospholipid required for oxidative phosphorylation, plays a pivotal role in cardiac function. The onset of age-related heart diseases is characterized by aberrant CL acyl composition that is highly sensitive to oxidative damage, leading to CL peroxidation and mitochondrial dysfunction. Here we report a key role of ALCAT1, a lysocardiolipin acyltransferase that catalyzes the synthesis of CL with a high peroxidation index, in mitochondrial dysfunction associated with hypertrophic cardiomyopathy. We show that ALCAT1 expression was potently upregulated by the onset of hyperthyroid cardiomyopathy, leading to oxidative stress and mitochondrial dysfunction. Accordingly, overexpression of ALCAT1 in H9c2 cardiac cells caused severe oxidative stress, lipid peroxidation, and mitochondrial DNA (mtDNA) depletion. Conversely, ablation of ALCAT1 prevented the onset of T4-induced cardiomyopathy and cardiac dysfunction. ALCAT1 deficiency also mitigated oxidative stress, insulin resistance, and mitochondrial dysfunction by improving mitochondrial quality control through upregulation of PINK1, a mitochondrial GTPase required for mitochondrial autophagy. Together, these findings implicate a key role of ALCAT1 as the missing link between oxidative stress and mitochondrial dysfunction in the etiology of age-related heart diseases.  相似文献   

7.
Vascular disease is the leading cause of morbidity and mortality in patients with diabetes. Persistent hyperglycemia - the dominant metabolic derangement of diabetes, can cause endothelial cell apoptosis. Diabetes is often associated with low insulin like growth factor-1 (IGF-1), and the latter state has been linked to adverse risk profile and increased cardiovascular disease incidence. Since IGF-1 acts as an important survival factor for multiple cell types, this study was to investigate whether IGF-1 exert regulatory effects on high glucose-induced apoptosis of vascular endothelial cells. Exposure to high glucose dose- and time-dependently induced apoptotic changes (e.g., DNA fragmentation, altered mitochondrial membrane potential, and cytochrome-c release) in human umbilical vein endothelial cells (HUVECs). Addition of IGF-1 blocked the high glucose effect in a manner dependent on expression of IGF-1 receptor (IGF-1R) since silencing IGF-1R with small interference RNA could diminish the IGF-1′ anti-apoptosis effect. Our findings show that enhanced IGF-1 signaling inhibits glucose-induced apoptosis in HUVECs by reducing mitochondrial dysfunction, and maintaining the mitochondrial retention of cytochrome-c. These results may have therapeutic implications in preventing/reducing diabetes associated endothelial dysfunction.  相似文献   

8.
Mitochondrial dysfunction is associated with insulin resistance. Although chicoric acid (CA) is known to have beneficial effects on insulin sensitivity, the involvement of mitochondrial function has not been elucidated yet. Here, we investigated the effect of CA on insulin resistance and mitochondrial dysfunction. In palmitate-induced insulin-resistant C2C12 myotubes, CA improved impaired glucose uptake and insulin signaling pathways, along with enhanced mitochondrial membrane potential and oxygen consumption. CA treatment in diet-induced obese mice ameliorated glucose tolerance and increased insulin sensitivity. CA treatment also recovered the dysregulated expression of glucose metabolism-related genes in the high-fat-fed mice. CA significantly increased the mitochondrial DNA content, citrate synthase, and ATP content, as well as the expression of genes related to mitochondrial biogenesis and oxidative phosphorylation in the liver and skeletal muscle in high-fat- fed obese mice. These findings suggested that CA attenuates insulin resistance and promotes insulin sensitivity by enhancing mitochondrial function.  相似文献   

9.
Saturated free fatty acids (FFAs) have been implicated in the increase of oxidative stress, mitochondrial dysfunction, endoplasmic reticulum (ER) stress, autophagy, and insulin resistance (IR) observed in skeletal muscle. Previously, we have shown that palmitate-induced mitochondrial DNA (mtDNA) damage triggers mitochondrial dysfunction, mitochondrial reactive oxygen species (mtROS) production, apoptosis and IR in L6 myotubes. The present study showed that mitochondrial overexpression of human 8-oxoguanine DNA glycosylase/AP lyase (hOGG1) decreased palmitate-induced carbonylation of proteins in mitochondria. Additionally, we found that protection of mtDNA from palmitate-induced damage significantly diminished markers of both ER stress and autophagy in L6 myotubes. Moreover, we observed that the addition of ROS scavenger, N-acetylcystein (NAC), to palmitate diminished both ER stress and autophagy markers mimicking the effect of mitochondrial overexpression of hOGG1. This is the first study to show that mtDNA damage is upstream of palmitate-induced ER stress and autophagy in skeletal muscle cells.  相似文献   

10.
Bcl-2 phosphorylation at serine-70 (S70pBcl2) confers resistance against drug-induced apoptosis. Nevertheless, its specific mechanism in driving drug-resistance remains unclear. We present evidence that S70pBcl2 promotes cancer cell survival by acting as a redox sensor and modulator to prevent oxidative stress-induced DNA damage and execution. Increased S70pBcl2 levels are inversely correlated with DNA damage in chronic lymphocytic leukemia (CLL) and lymphoma patient-derived primary cells as well as in reactive oxygen species (ROS)- or chemotherapeutic drug-treated cell lines. Bioinformatic analyses suggest that S70pBcl2 is associated with lower median overall survival in lymphoma patients. Empirically, sustained expression of the redox-sensitive S70pBcl2 prevents oxidative stress-induced DNA damage and cell death by suppressing mitochondrial ROS production. Using cell lines and lymphoma primary cells, we further demonstrate that S70pBcl2 reduces the interaction of Bcl-2 with the mitochondrial complex-IV subunit-5A, thereby reducing mitochondrial complex-IV activity, respiration and ROS production. Notably, targeting S70pBcl2 with the phosphatase activator, FTY720, is accompanied by an enhanced drug-induced DNA damage and cell death in CLL primary cells. Collectively, we provide a novel facet of the anti-apoptotic Bcl-2 by demonstrating that its phosphorylation at serine-70 functions as a redox sensor to prevent drug-induced oxidative stress-mediated DNA damage and execution with potential therapeutic implications.  相似文献   

11.

Background

Recent studies showed a link between a high fat diet (HFD)-induced obesity and lipid accumulation in non-adipose tissues, such as skeletal muscle and liver, and insulin resistance (IR). Although the mechanisms responsible for IR in those tissues are different, oxidative stress and mitochondrial dysfunction have been implicated in the disease process. We tested the hypothesis that HFD induced mitochondrial DNA (mtDNA) damage and that this damage is associated with mitochondrial dysfunction, oxidative stress, and induction of markers of endoplasmic reticulum (ER) stress, protein degradation and apoptosis in skeletal muscle and liver in a mouse model of obesity-induced IR.

Methodology/Principal Findings

C57BL/6J male mice were fed either a HFD (60% fat) or normal chow (NC) (10% fat) for 16 weeks. We found that HFD-induced IR correlated with increased mtDNA damage, mitochondrial dysfunction and markers of oxidative stress in skeletal muscle and liver. Also, a HFD causes a change in the expression level of DNA repair enzymes in both nuclei and mitochondria in skeletal muscle and liver. Furthermore, a HFD leads to activation of ER stress, protein degradation and apoptosis in skeletal muscle and liver, and significantly reduced the content of two major proteins involved in insulin signaling, Akt and IRS-1 in skeletal muscle, and Akt in liver. Basal p-Akt level was not significantly influenced by HFD feeding in skeletal muscle and liver.

Conclusions/Significance

This study provides new evidence that HFD-induced mtDNA damage correlates with mitochondrial dysfunction and increased oxidative stress in skeletal muscle and liver, which is associated with the induction of markers of ER stress, protein degradation and apoptosis.  相似文献   

12.
Free radical damage can have fatal consequences. Mitochondria carry out essential cellular functions and produce high levels of reactive oxygen species (ROS). Many agents also generate ROS. Using the yeast Saccharomyces cerevisiae as a eukaryotic model, the role of functional mitochondria in surviving free radical damage was investigated. Respiratory-deficient cells lacking mitochondrial DNA (rho(0)) were up to 100-fold more resistant than isogenic rho(+) cells to killing by ROS generated by the bleomycin-phleomycin family of oxidative agents. Up to approximately 90% of the survivors of high oxidative stress lost mitochondrial function and became "petites." The selective advantage of respiratory deficiency was studied in several strains, including DNA repair-deficient rad52/rad52 and blm5/blm5 diploid strains. These mutant strains are hypersensitive to lethal effects of free radicals and accumulate more DNA damage than related wild-type strains. Losses in mitochondrial function were dose-dependent, and mutational alteration of the RAD52 or BLM5 gene did not affect the resistance of surviving cells lacking mitochondrial function. The results indicate that inactivation of mitochondrial function protects cells against lethal effects of oxygen free radicals.  相似文献   

13.
Mitochondrial dysfunction in skeletal muscle has been implicated in the development of insulin resistance and type 2 diabetes. Considering the importance of mitochondrial dynamics in mitochondrial and cellular functions, we hypothesized that obesity and excess energy intake shift the balance of mitochondrial dynamics, further contributing to mitochondrial dysfunction and metabolic deterioration in skeletal muscle. First, we revealed that excess palmitate (PA), but not hyperglycemia, hyperinsulinemia, or elevated tumor necrosis factor alpha, induced mitochondrial fragmentation and increased mitochondrion-associated Drp1 and Fis1 in differentiated C2C12 muscle cells. This fragmentation was associated with increased oxidative stress, mitochondrial depolarization, loss of ATP production, and reduced insulin-stimulated glucose uptake. Both genetic and pharmacological inhibition of Drp1 attenuated PA-induced mitochondrial fragmentation, mitochondrial depolarization, and insulin resistance in C2C12 cells. Furthermore, we found smaller and shorter mitochondria and increased mitochondrial fission machinery in the skeletal muscle of mice with genetic obesity and those with diet-induced obesity. Inhibition of mitochondrial fission improved the muscle insulin signaling and systemic insulin sensitivity of obese mice. Our findings indicated that aberrant mitochondrial fission is causally associated with mitochondrial dysfunction and insulin resistance in skeletal muscle. Thus, disruption of mitochondrial dynamics may underlie the pathogenesis of muscle insulin resistance in obesity and type 2 diabetes.  相似文献   

14.
Dietary intake of long-chain fatty acids (LCFAs) plays a causative role in insulin resistance and risk of diabetes. Whereas LCFAs promote lipid accumulation and insulin resistance, diets rich in medium-chain fatty acids (MCFAs) have been associated with increased oxidative metabolism and reduced adiposity, with few deleterious effects on insulin action. The molecular mechanisms underlying these differences between dietary fat subtypes are poorly understood. To investigate this further, we treated C2C12 myotubes with various LCFAs (16:0, 18:1n9, and 18:2n6) and MCFAs (10:0 and 12:0), as well as fed mice diets rich in LCFAs or MCFAs, and investigated fatty acid-induced changes in mitochondrial metabolism and oxidative stress. MCFA-treated cells displayed less lipid accumulation, increased mitochondrial oxidative capacity, and less oxidative stress than LCFA-treated cells. These changes were associated with improved insulin action in MCFA-treated myotubes. MCFA-fed mice exhibited increased energy expenditure, reduced adiposity, and better glucose tolerance compared with LCFA-fed mice. Dietary MCFAs increased respiration in isolated mitochondria, with a simultaneous reduction in reactive oxygen species generation, and subsequently low oxidative damage. Collectively our findings indicate that in contrast to LCFAs, MCFAs increase the intrinsic respiratory capacity of mitochondria without increasing oxidative stress. These effects potentially contribute to the beneficial metabolic actions of dietary MCFAs.  相似文献   

15.
Mitochondrial dysfunction is associated with the pathophysiology of insulin resistance. Allylisothiocyanate (AITC) is found in many cruciferous vegetables and has been reported to possess anticancer activity. However, the effect of AITC on insulin resistance and mitochondrial function has not yet been investigated. Here, we show that AITC increased glucose uptake in insulin-resistant C2C12 myotubes and augmented glucose transporter 4 (GLUT4) translocation in L6-GLUT4myc cells. AITC recovered the impaired insulin signaling evoked by free fatty acid exposure and increased mitochondrial membrane potential and mitochondrial DNA content. AITC also elevated the rate of oxygen consumption in C2C12 cells. Furthermore, mice that were fed a high-fat diet with AITC for 10 weeks had reduced diet-induced obesity and hepatic steatosis. AITC also inhibited the hyperglycemia and hyperinsulinemia induced by the consumption of a high-fat diet. Glucose and insulin tolerance tests indicated that AITC improved both glucose tolerance and insulin sensitivity. In addition, AITC inhibited hepatic gluconeogenesis and ameliorated high fat diet-induced mitochondrial dysfunction. Collectively, these data suggest that the protective effect of AITC on insulin resistance is partly mediated through the modulation of mitochondrial dysfunction.  相似文献   

16.
17.
We explored the role of low mitochondrial membrane potential (DeltaPsim) and the lack of oxidative phosphorylation in apoptosis by assessing the susceptibility of osteosarcoma cell lines with and without mitochondrial DNA to staurosporine-induced death. Our cells without mitochondrial DNA had low DeltaPsim and no functional oxidative phosphorylation. Contrary to our expectation, these cells were more resistant to staurosporine-induced death than were the parental cells. This reduced susceptibility was associated with decreased activation of caspase 3 but not with the mitochondrial permeability transition pore or cytochrome c release from the mitochondria. Apoptosis in both cell lines was associated with an increase in DeltaPsim. Bcl-x(L) could protect both cell types against caspase 3 activation and apoptosis by a mechanism that does not appear to be mediated by mitochondrial function or modulation of DeltaPsim. Nevertheless, we found that Bcl-x(L) expression can stimulate cell respiration in cells with mitochondrial DNA. Our results showed that the lack of functional oxidative phosphorylation and/or low mitochondrial membrane potential are associated with an antiapoptotic effect, possibly contributing to the development of some types of cancer. It also reinforces a model in which Bcl-x(L) can exert an antiapoptotic effect by stimulating oxidative phosphorylation and/or inhibiting caspase activation.  相似文献   

18.
Mitochondria are associated with various radiation responses, including adaptive responses, mitophagy, the bystander effect, genomic instability, and apoptosis. We recently identified a unique radiation response in the mitochondria of human cells exposed to low-dose long-term fractionated radiation (FR). Such repeated radiation exposure inflicts chronic oxidative stresses on irradiated cells via the continuous release of mitochondrial reactive oxygen species (ROS) and decrease in cellular levels of the antioxidant glutathione. ROS-induced oxidative mitochondrial DNA (mtDNA) damage generates mutations upon DNA replication. Therefore, mtDNA mutation and dysfunction can be used as markers to assess the effects of low-dose radiation. In this study, we present an overview of the link between mitochondrial ROS and cell cycle perturbation associated with the genomic instability of low-dose irradiated cells. Excess mitochondrial ROS perturb AKT/cyclin D1 cell cycle signaling via oxidative inactivation of protein phosphatase 2A after low-dose long-term FR. The resulting abnormal nuclear accumulation of cyclin D1 induces genomic instability in low-dose irradiated cells.  相似文献   

19.
Diabetes is associated with low concentrations of apoM in plasma. In db/db mice, ob/ob mice as well as in the alloxan-induced diabetic mouse, the low apoM levels are paralleled by decreased expression of the apoM gene. In the latter model, insulin substitution tended to reverse the low apoM expression. It is not known whether the impairment in apoM expression can be ascribed to hyperglycemia, insulin deficiency or insulin resistance. In the present study, we investigated apoM levels and expression in rats rendered hyperglycemic by short-term glucose infusion. As expected, serum insulin concentrations rose moderately during the infusions. Serum apoM concentrations and hepatic apoM mRNA levels were significantly reduced in the hyperglycemic rats, indicating that the low expression of apoM in these diabetic models can be ascribed to hyperglycemia rather than to insulin deficiency or insulin resistance. However, in HepG2 cells both glucose and insulin markedly inhibited apoM expression these effects were additive. Thus, the possible effects of insulin in vivo seem to be mediated indirectly.  相似文献   

20.
Curcumin exhibits anticancer activity in vivo and triggers tumor cell apoptosis in vivo and in vitro. Several in vitro studies suggest that curcumin-induced apoptosis is associated with reactive oxygen species (ROS) production and/or oxidative stress in transformed cells. This study compared and contrasted the effects of curcumin on human skin cancer cells and their respiration-deficient (rho0) clones to characterize the prospective oxidative stress signaling responsible for initiating apoptosis. Curcumin promoted a dose-and time-dependent G2/M cell cycle arrest and/or apoptosis in COLO 16 cells. Apoptosis induction in COLO 16 cells was associated with DNA fragmentation, cell shrinkage, the externalization of cell membrane phosphatidylserine, and mitochondrial disruption, which were preceded by an increase in intracellular ROS production. Pharmacologically lowering the mitochondrial bioenergetic capacity, as well as the constitutive ROS levels, in COLO 16 cells suppressed the cytotoxic effects of curcumin. Correspondingly, the rho0 counterparts of COLO 16 cells were markedly resistant to ROS production, mitochondrial disruption, and DNA fragmentation following curcumin exposure. These observations implied that the diminution of mitochondrial ROS production protected cells against the cytotoxic effects of curcumin, and support the notion that mitochondrial respiration and redox tone are pivotal determinants in apoptosis signaling by curcumin in human skin cancer cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号