首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
Summary The antigen p97 is a tumor-associated antigen that was first identified in human melanomas using monoclonal antibodies. Recently, p97 mRNA was purified and cloned, and a p97 cDNA clone was synthesized. By using the technique of in situ chromosomal hybridization, we have localized the p97 gene to human chromosome No. 3, at bands q28 to q29. p97 belongs to a superfamily of iron-binding proteins that have amino acid homology; other members of this family include transferrin (TF), lactotransferrin, and ovotransferrin. Based upon the shared amino acid homology and upon the observation that the nucleotide sequence is internally duplicated in these genes, it has been proposed that the TF superfamily arose from a common ancestral duplicated gene. The TF gene has also been mapped to the long arm of chromosome No. 3 at bands q21 to q23.  相似文献   

6.
DRTF: a database of rice transcription factors   总被引:7,自引:0,他引:7  
  相似文献   

7.
8.
9.
10.
11.
Localization of gelsolin proximal to ABL on chromosome 9.   总被引:12,自引:2,他引:10       下载免费PDF全文
Gelsolin is a plasma and cytoskeletal protein that severs actin filaments and is regulated by both Ca+2 and polyphosphoinositides. The two forms of gelsolin are encoded by a single gene and derived through alternative message splicing. By Southern blot analysis of somatic cell hybrids and in situ chromosomal localization, we demonstrate that the gelsolin gene is present on human chromosome 9 in bands q32-q34. In situ hybridization of gelsolin to cells containing a Philadelphia chromosome [(9;22)(q34;q11)], as well as Southern blot analysis of K562 cell DNA, indicates that gelsolin is centromeric to the ABL locus in 9q34. Southern blot analysis of NotI-digested, pulsed-field gel electrophoresis-separated DNA indicates the gelsolin gene is greater than or equal to 40 kb centromeric to ABL. These studies and standard Southern blot analysis of digested DNA also indicate that the NotI restriction site contained in the gelsolin gene is uncleavable in DNA from white blood cells and hematopoietic cell lines.  相似文献   

12.
13.
Summary Using a characterized human vitamin D binding protein (DBP) cDNA probe and a panel of rodent X human somatic cell hybrids, we established the chromosomal location of the structural gene for DBP on human chromosome 4. In situ hybridization of 3H-labeled DBP cDNA to human metaphase chromosomes confirmed this assignment and allowed regional localization to bands 4q11–4q13. A restriction fragment length polymorphism associated with the DBP gene that should prove useful in future linkage studies was identified with the enzyme BamHI.  相似文献   

14.
Chromosomal translocations and deletions are among the major events that initiate neoplasia. For lymphoid chromosomal translocations, misrecognition by the RAG (recombination activating gene) complex of V(D)J recombination is one contributing factor that has long been proposed. The chromosomal translocations involving LMO2 (t(11;14)(p13;q11)), Ttg-1 (t(11;14)(p15;q11)), and Hox11 (t(10;14)(q24;q11)) are among the clearest examples in which it appears that a D or J segment has synapsed with an adventitious heptamer/nonamer at a gene outside of one of the antigen receptor loci. The interstitial deletion at 1p32 involving SIL (SCL-interrupting locus)/SCL (stem cell leukemia) is a case involving two non-V(D)J sites that have been suggested to be V(D)J recombination mistakes. Here we have used our human extrachromosomal substrate assay to formally test the hypothesis that these regions are V(D)J recombination misrecognition sites and, more importantly, to quantify their efficiency as V(D)J recombination targets within the cell. We find that the LMO2 fragile site functions as a 12-signal at an efficiency that is only 27-fold lower than that of a consensus 12-signal. The Ttg-1 site functions as a 23-signal at an efficiency 530-fold lower than that of a consensus 23-signal. Hox11 failed to undergo recombination as a 12- or 23-signal and was at least 20,000-fold less efficient than consensus signals. SIL has been predicted to function as a 12-signal and SCL as a 23-signal. However, we find that SIL actually functions as a 23-signal. These results provide a formal demonstration that certain chromosomal fragile sites can serve as RAG complex targets, and they determine whether these sites function as 12- versus 23-signals. These results quantify one of the three major factors that determine the frequency of these translocations in T-cell acute lymphocytic leukemia.  相似文献   

15.
16.
The overexpression of LIM-only protein 2 (LMO2) in T-cells, as a result of chromosomal translocations, retroviral insertion during gene therapy, or in transgenic mice models, leads to the onset of T-cell leukemias. LMO2 comprises two protein-binding LIM domains that allow LMO2 to interact with multiple protein partners, including LIM domain-binding protein 1 (Ldb1, also known as CLIM2 and NLI), an essential cofactor for LMO proteins. Sequestration of Ldb1 by LMO2 in T-cells may prevent it binding other key partners, such as LMO4. Here, we show using protein engineering and enzyme-linked immunosorbent assay (ELISA) methodologies that LMO2 binds Ldb1 with a twofold lower affinity than does LMO4. Thus, excess LMO2 rather than an intrinsically higher binding affinity would lead to sequestration of Ldb1. Both LIM domains of LMO2 are required for high-affinity binding to Ldb1 (K(D) = 2.0 x 10(-8) M). However, the first LIM domain of LMO2 is primarily responsible for binding to Ldb1 (K(D) = 2.3 x 10(-7) M), whereas the second LIM domain increases binding by an order of magnitude. We used mutagenesis in combination with yeast two-hybrid analysis, and phage display selection to identify LMO2-binding "hot spots" within Ldb1 that locate to the LIM1-binding region. The delineation of this region reveals some specific differences when compared to the equivalent LMO4:Ldb1 interaction that hold promise for the development of reagents to specifically bind LMO2 in the treatment of leukemia.  相似文献   

17.
LMO2 was first discovered through proximity to frequently occurring chromosomal translocations in T cell acute lymphoblastic leukaemia (T-ALL). Subsequent studies on its role in tumours and in normal settings have highlighted LMO2 as an archetypical chromosomal translocation oncogene, activated by association with antigen receptor gene loci and a paradigm for translocation gene activation in T-ALL. The normal function of LMO2 in haematopoietic cell fate and angiogenesis suggests it is a master gene regulator exerting a dysfunctional control on differentiation following chromosomal translocations. Its importance in T cell neoplasia has been further emphasized by the recurrent findings of interstitial deletions of chromosome 11 near LMO2 and of LMO2 as a target of retroviral insertion gene activation during gene therapy trials for X chromosome-linked severe combined immuno-deficiency syndrome, both types of event leading to similar T cell leukaemia. The discovery of LMO2 in some B cell neoplasias and in some epithelial cancers suggests a more ubiquitous function as an oncogenic protein, and that the current development of novel inhibitors will be of great value in future cancer treatment. Further, the role of LMO2 in angiogenesis and in haematopoietic stem cells (HSCs) bodes well for targeting LMO2 in angiogenic disorders and in generating autologous induced HSCs for application in various clinical indications.  相似文献   

18.
19.
C Li  A J Lusis  R Sparkes  A Nirula  R Gaynor 《Genomics》1992,13(3):665-671
Recently we isolated a cellular DNA binding protein, designated interleukin enhancer binding factor (ILF), that binds to purine-rich regulatory motifs in both the HIV-1 LTR and the IL2 promoter. Further analysis of the ILF gene reveals the existence of two mRNA species, both of which encode proteins containing the recently described fork head DNA binding domain. Gel retardation analysis demonstrates that the portion of the ILF protein with homology to the fork head domain is sufficient to mediate DNA binding to a number of related purine-rich sequences. ILF mRNA is expressed constitutively in both lymphoid and nonlymphoid tissues. Chromosomal mapping localizes the ILF gene to human chromosome 17q25, which is a site of chromosomal translocations in some cases of human acute myelogous leukemias. These studies further characterize the structure of the cellular DNA binding protein ILF and may prove valuable in the molecular analysis of possible translocations affecting this gene.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号