首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Genomics》2020,112(1):831-836
Copy number variation (CNV) refers to a kind of structural variation, having functional and evolutionary effects on phenotypes. Thus far, further elucidation of the CNVs in different Chinese indigenous cattle breeds by whole genome sequencing have yet not been done. In this study, a comprehensive genomic analysis was performed on 75 cattle individuals including six Chinese indigenous cattle breeds and two non-native specialized beef cattle breeds. Based on the 11,486 CNVRs discovered, population analysis was performed, showed that all the cattle breeds clustered in to three clades, consistent with their lineages Bos taurus, Bos taurus × Bos indicus and Bos indicus. Importantly, a set of CNVRs related genes were found to be associated with the traits of interest, which include meat production or quality (CAST, ACTC1, etc.), adaption (BLA-DQB, EGLN2, etc.) and coat color (KIT, MITF, etc.). These results provide valuable full genome variation resources for Chinese bovine genome research and would be helpful for cattle breeding and selection programs in the future.  相似文献   

2.
Recent developments have yielded new technologies that have greatly simplified the detection of deletions and duplications, i.e., copy number variants (CNVs). These technologies can be used to screen for CNVs in and around specific genomic regions, as well as genome-wide. Several genome-wide studies have demonstrated that CNV in the human genome is widespread and may include millions of nucleotides. One of the questions that emerge is which sequences, structures and/or processes are involved in their generation. Using as an example the human DMD gene, mutations in which cause Duchenne and Becker muscular dystrophy, we review the current data, determine the deletion and duplication profile across the gene and summarize the information that has been collected regarding their origin. In addition we discuss the methods most frequently used for their detection, in particular MAPH and MLPA.  相似文献   

3.
Alvarez CE  Akey JM 《Mammalian genome》2012,23(1-2):144-163
Differences in the content and organization of DNA, collectively referred to as structural variation, have emerged as a major source of genetic and phenotypic diversity within and between species. In addition, structural variation provides an important substrate for evolutionary innovations. Here, we review recent progress in characterizing patterns of canine structural variation within and between breeds, and in correlating copy number variants (CNVs) with phenotypes. Because of the extensive phenotypic diversity that exists within and between breeds and the tantalizing examples of canine CNVs that influence traits such as skin wrinkling in Shar-Pei, dorsal hair ridge in Rhodesian and Thai Ridgebacks, and short limbs in many breeds such as Dachshunds and Corgis, we argue that domesticated dogs are uniquely poised to contribute novel insights into CNV biology. As new technologies continue to be developed and refined, the field of canine genomics is on the precipice of a deeper understanding of how structural variation and CNVs contribute to canine genetic diversity, phenotypic variation, and disease susceptibility.  相似文献   

4.
A report of the First Golden Helix Symposium 'Copy Number Variation (CNV) and Genomic Alterations in Health and Disease', Athens, Greece, 28-29 November 2008.  相似文献   

5.
Copy number variants (CNVs) are known to cause Mendelian forms of Parkinson disease (PD), most notably in SNCA and PARK2. PARK2 has a recessive mode of inheritance; however, recent evidence demonstrates that a single CNV in PARK2 (but not a single missense mutation) may increase risk for PD. We recently performed a genome-wide association study for PD that excluded individuals known to have either a LRRK2 mutation or two PARK2 mutations. Data from the Illumina370Duo arrays were re-clustered using only white individuals with high quality intensity data, and CNV calls were made using two algorithms, PennCNV and QuantiSNP. After quality assessment, the final sample included 816 cases and 856 controls. Results varied between the two CNV calling algorithms for many regions, including the PARK2 locus (genome-wide p = 0.04 for PennCNV and p = 0.13 for QuantiSNP). However, there was consistent evidence with both algorithms for two novel genes, USP32 and DOCK5 (empirical, genome-wide p-values<0.001). PARK2 CNVs tended to be larger, and all instances that were molecularly tested were validated. In contrast, the CNVs in both novel loci were smaller and failed to replicate using real-time PCR, MLPA, and gel electrophoresis. The DOCK5 variation is more akin to a VNTR than a typical CNV and the association is likely caused by artifact due to DNA source. DNA for all the cases was derived from whole blood, while the DNA for all controls was derived from lymphoblast cell lines. The USP32 locus contains many SNPs with low minor allele frequency leading to a loss of heterozygosity that may have been spuriously interpreted by the CNV calling algorithms as support for a deletion. Thus, only the CNVs within the PARK2 locus could be molecularly validated and associated with PD susceptibility.  相似文献   

6.
Genome analysis provides a powerful approach to test for evidence of genetic variation within and between geographical regions and local populations. Copy number variants which comprise insertions, deletions and duplications of genomic sequence provide one such convenient and informative source. Here, we investigate copy number variants from genome wide scans of single nucleotide polymorphisms in three European population isolates, the island of Vis in Croatia, the islands of Orkney in Scotland and the South Tyrol in Italy. We show that whereas the overall copy number variant frequencies are similar between populations, their distribution is highly specific to the population of origin, a finding which is supported by evidence for increased kinship correlation for specific copy number variants within populations.  相似文献   

7.
8.
Identification of neuropsychiatric CNVs. A) Schematic of a deletion and duplication. B) Example of a locus enriched for deletions in cases. C) Number of risk CNVs implicated in published studies of neuropsychiatric disorders. The number of cases included in each study is shown on the x axis, and larger points represent studies with more control samples (see Table 1 for further details). SCZ = schizophrenia, ASD = autism spectrum disorder, ID = intellectual disability, MDD = major depressive disorder, ADHD = attention-deficit hyperactivity disorder, TS = Tourette syndrome, OCD = obsessive compulsive disorder, BD = bipolar disorder.
  1. Download : Download high-res image (107KB)
  2. Download : Download full-size image
  相似文献   

9.
10.
11.
Plant genome diversity varies from single nucleotide polymorphisms to large-scale deletions, insertions, duplications, or re-arrangements. These re-arrangements of sequences resulting from duplication, gains or losses of DNA segments are termed copy number variations (CNVs). During the last decade, numerous studies have emphasized the importance of CNVs as a factor affecting human phenotype; in particular, CNVs have been associated with risks for several severe diseases. In plants, the exploration of the extent and role of CNVs in resistance against pathogens and pests is just beginning. Since CNVs are likely to be associated with disease resistance in plants, an understanding of the distribution of CNVs could assist in the identification of novel plant disease-resistance genes. In this paper, we review existing information about CNVs; their importance, role and function, as well as their association with disease resistance in plants.  相似文献   

12.
Identification of genomic variants within dogs is important for understanding genetic factors contributing to breed diversity and phenotypic traits. This study aimed to identify sources of variation in the Bullmastiff using high‐density signal intensity and whole‐genome sequence data. Close to 3000 copy number variants (CNVs) were identified in Bullmastiff dogs using Canine HD BeadChip data. When CNVs were collated, 82 CNV regions (CNVRs) were detected, 50% in transcribed regions encompassing 432 genes. Fifty of the CNVRs detected have not been reported in other breeds and represent potential breed‐specific variants. A proportion of the CNVR variants with predicted modifying effects on gene pathways may contribute to breed traits. Approximately 5 million putative variants per dog, inclusive of single nucleotide polymorphisms (SNPs), multi‐nucleotide polymorphisms (MNPs) and insertion and deletions (INDELs), were identified from DNA sequence data on a small number of animals. Identification of genetic variants in the Bullmastiff highlights sources of variation in the breed and molecular markers that will assist in future trait and disease investigations in dogs.  相似文献   

13.
Copy number variation (CNV) is likely to be an important component of heritable variation in livestock. To characterise CNVs in cattle, we performed a genome wide survey to determine the number, location and gene content of these genomic features. A tiling oligonucleotide array with ~385,000 probes was used for comparative genomic hybridisation of both taurine and zebu cattle. Using a conservative set of calling criteria, a total of 51 CNV were detected that collectively spanned approximately half of one percent of the bovine genome. The size of the average CNV within each animal ranged from 213 kb up to 335 kb. Half of the CNV were detected in a single animal only, whilst the remainder was independently identified in multiple individuals. Analysis was performed to determine the gene content for each CNV region. This revealed that the majority of CNV (82%) spanned at least one gene, with a number of CNV containing genes which are known to control aspects of phenotypic variation in cattle. Whilst additional studies are required to determine the impact of individual CNV, this study confirmed them as an important class of genomic variation in cattle.  相似文献   

14.
15.
ABSTRACT: BACKGROUND: Copy number variants (CNVs) account for substantial variation between genomes and are a major source of normal and pathogenic phenotypic differences. The dog is an ideal model to investigate mutational mechanisms that generate CNVs as its genome lacks a functional ortholog of the PRDM9 gene implicated in recombination and CNV formation in humans. Here we comprehensively assay CNVs using high-density array comparative genomic hybridization in 50 dogs from 17 dog breeds and 3 gray wolves. RESULTS: We use a stringent new method to identify a total of 430 high-confidence CNV loci, that range in size from 9 kb to 1.6 Mb and span 26.4 Mb, or 1.08%, of the assayed dog genome, overlapping 413 annotated genes. 98% of CNVs observed in each breed are also observed in multiple breeds. CNVs predicted to disrupt gene function are significantly less common than expected by chance. We identify a significant overrepresentation of peaks of GC content, previously shown to be enriched in dog recombination hotspots, in the vicinity of CNV breakpoints. CONCLUSIONS: A number of the CNVs identified by this study are candidates for generating breed-specific phenotypes. Purifying selection seems to be a major factor shaping structural variation in the dog genome, suggesting that many CNVs are deleterious. Localized peaks of GC content appear to be novel sites of CNV formation in the dog genome by non-allelic homologous recombination, potentially activated by the loss of PRDM9. These sequence features may have driven genome instability and chromosomal rearrangements throughout canid evolution.  相似文献   

16.
A genome-wide screen for large structural variants showed that a copy number variant (CNV) in the region encoding killer cell immunoglobulin-like receptors (KIR) associates with HIV-1 control as measured by plasma viral load at set point in individuals of European ancestry. This CNV encompasses the KIR3DL1-KIR3DS1 locus, encoding receptors that interact with specific HLA-Bw4 molecules to regulate the activation of lymphocyte subsets including natural killer (NK) cells. We quantified the number of copies of KIR3DS1 and KIR3DL1 in a large HIV-1 positive cohort, and showed that an increase in KIR3DS1 count associates with a lower viral set point if its putative ligand is present (p = 0.00028), as does an increase in KIR3DL1 count in the presence of KIR3DS1 and appropriate ligands for both receptors (p = 0.0015). We further provide functional data that demonstrate that NK cells from individuals with multiple copies of KIR3DL1, in the presence of KIR3DS1 and the appropriate ligands, inhibit HIV-1 replication more robustly, and associated with a significant expansion in the frequency of KIR3DS1+, but not KIR3DL1+, NK cells in their peripheral blood. Our results suggest that the relative amounts of these activating and inhibitory KIR play a role in regulating the peripheral expansion of highly antiviral KIR3DS1+ NK cells, which may determine differences in HIV-1 control following infection.  相似文献   

17.
Park JH  Lee S  Yu HG  Kim JI  Seo JS 《PloS one》2012,7(2):e31243
PurposeStudies that analyzed single nucleotide polymorphisms (SNP) in various genes have shown that genetic factors are strongly associated with age-related macular degeneration (AMD) susceptibility. Copy number variation (CNV) may be an additional type of genetic variation that contributes to AMD pathogenesis. This study investigated CNV in 4 AMD-relevant genes in Korean AMD patients and control subjects.MethodsFour CNV candidate regions located in AMD-relevant genes (VEGFA, ARMS2/HTRA1, CFH and VLDLR), were selected based on the outcomes of our previous study which elucidated common CNVs in the Asian populations. Real-time PCR based TaqMan Copy Number Assays were performed on CNV candidates in 273 AMD patients and 257 control subjects.ResultsThe predicted copy number (PCN, 0, 1, 2 or 3+) of each region was called using the CopyCaller program. All candidate genes except ARMS2/HTRA1 showed CNV in at least one individual, in which losses of VEGFA and VLDLR represent novel findings in the Asian population. When the frequencies of PCN were compared, only the gain in VLDLR showed significant differences between AMD patients and control subjects (p = 0.025). Comparisons of the raw copy values (RCV) revealed that 3 of 4 candidate genes showed significant differences (2.03 vs. 1.92 for VEGFA, p<0.01; 2.01 vs. 1.97 for CFH, p<0.01; 1.97 vs. 2.01, p<0.01 for ARMS2/HTRA1).ConclusionCNVs located in AMD-relevant genes may be associated with AMD susceptibility. Further investigations encompassing larger patient cohorts are needed to elucidate the role of CNV in AMD pathogenesis.  相似文献   

18.
基因组拷贝数变异及其突变机理与人类疾病   总被引:1,自引:0,他引:1  
Du RQ  Jin L  Zhang F 《遗传》2011,33(8):857-869
拷贝数变异(Copy number variation,CNV)是由基因组发生重排而导致的,一般指长度为1 kb以上的基因组大片段的拷贝数增加或者减少,主要表现为亚显微水平的缺失和重复。CNV是基因组结构变异(Structural variation,SV)的重要组成部分。CNV位点的突变率远高于SNP(Single nucleotide polymorphism),是人类疾病的重要致病因素之一。目前,用来进行全基因组范围的CNV研究的方法有:基于芯片的比较基因组杂交技术(array-based comparative genomic hybridization,aCGH)、SNP分型芯片技术和新一代测序技术。CNV的形成机制有多种,并可分为DNA重组和DNA错误复制两大类。CNV可以导致呈孟德尔遗传的单基因病与罕见疾病,同时与复杂疾病也相关。其致病的可能机制有基因剂量效应、基因断裂、基因融合和位置效应等。对CNV的深入研究,可以使我们对人类基因组的构成、个体间的遗传差异、以及遗传致病因素有新的认识。  相似文献   

19.
《遗传学报》2021,48(12):1070-1080
Premenstrual dysphoric disorder (PMDD) affects nearly 5% of women of reproductive age. Symptomatic heterogeneity, together with largely unknown genetics, has greatly hindered its effective treatment. In the present study, analysis of genomic sequencing-based copy number variations (CNVs) called from 100 kb white blood cell DNA sequence windows by means of semisupervized clustering led to the segregation of patient genomes into the D and V groups, which correlated with the depression and invasion clinical types, respectively, with 89.0% consistency. Application of diagnostic CNV features selected using the correlation-based machine learning method enabled the classification of the CNVs obtained into the D group, V group, total patient group, and control group with an average accuracy of 83.0%. The power of the diagnostic CNV features was 0.98 on average, suggesting that these CNV features could be used for the molecular diagnosis of the major clinical types of PMDD. This demonstrated concordance between the CNV profiles and clinical types of PMDD supported the validity of symptom-based diagnosis of PMDD for differentiating between its two major clinical types, as well as the predominantly genetic nature of PMDD with a host of overlaps between multiple susceptibility genes/pathways and the diagnostic CNV features as indicators of involvement in PMDD etiology.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号