首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Application of cold shock or tungstate to butterfly pupae produces a unique color-pattern modification type on the adult wings, in which the color-pattern elements are dislocated toward the reduced focal elements. This modification-inducing activity has been primarily attributed to the putative cold-shock hormone (CSH) that is secreted into the hemolymph upon cold shock. Here, using a species of nymphalid butterfly Junonia almana, a new "reversed" type of the color-pattern modifications of butterfly wings was obtained by the application of heat shock or thapsigargin, a calcium-ATPase inhibitor, in which most elements were dislocated away from the enlarged focal elements. This result suggests that the endocrine secretion of CSH is sensitive to a wide range of temperature shocks, which then affects the cellular interpretation of the wing-wide positional information that is emitted from the focal locations. Ecdysteroid contributes to the wing-wide patterning primarily independently from CSH, but these two systems negatively interact with each other, probably in the intracellular signaling pathways.  相似文献   

2.
3.
A mechanistic understanding of the butterfly wing color-pattern determination can be facilitated by experimental pattern changes. Here I review physiologically induced color-pattern changes in nymphalid butterflies and their mechanistic and evolutionary implications. A type of color-pattern change can be elicited by elemental changes in size and position throughout the wing, as suggested by the nymphalid groundplan. These changes of pattern elements are bi-directional and bi-sided dislocation toward or away from eyespot foci and in both proximal and distal sides of the foci. The peripheral elements are dislocated even in the eyespot-less compartments. Anterior spots are more severely modified, suggesting the existence of an anterior-posterior gradient. In one species, eyespots are transformed into white spots with remnant-like orange scales, and such patterns emerge even at the eyespot-less "imaginary" foci. A series of these color-pattern modifications probably reveal "snap-shots" of a dynamic morphogenic signal due to heterochronic uncoupling between the signaling and reception steps. The conventional gradient model can be revised to account for these observed color-pattern changes.  相似文献   

4.
Systemic injections of sodium tungstate, a protein-tyrosine phosphatase (PTPase) inhibitor, to pupae immediately after pupation have been shown to efficiently produce characteristic color-pattern modifications on the wings of many species of butterflies. Here we demonstrated that the tungstate-induced modification pattern was entirely different from other chemically-induced ones in a species of nymphalid butterfly Junonia (Precis) orithya. In this species, the systemic injections of tungstate produced characteristic expansion of black area and shrinkage of white area together with the move of parafocal elements toward the wing base. Overall, pattern boundaries became obscure. In contrast, an entirely different modification pattern, overall darkening of wings, was observed by the injections of stress-inducing chemicals, thapsigargin, ionomycin, or geldanamycin, to pupae under the rearing conditions for the adult summer form. On the ventral wings, this darkening was due to an increase of the proportion of peppered dark scales, which was reminiscent of the natural fall form of this species. Under the same rearing conditions, the injections of ecdysteroid, which is a well-known hormone being responsible for the seasonal polyphenism of nymphalid butterflies, yielded overall expansion of orange area especially around eyespots. Taken together, we conclude that the tungstate-induced modifications are clearly distinguishable from those of stress response and ecdysteroid effect. This conclusion then suggests that the putative PTPase signaling pathway that is sensitive to tungstate uniquely contributes to the wing-wide color-pattern development in butterflies.  相似文献   

5.
As the demand for sustainable construction practices increases, innovative ideas are being explored for the construction of insulated wall panels in contemporary buildings. The butterfly is a remarkable organism that uses a thermostatic mechanism to regulate its body temperature. The microstructure on the surface of its wing scales is responsible for reflecting incident light multiple times, extending the optical path, and increasing the light absorption, thus ensuring that its body temperature remains stable. This microstructure, also known as the light capture structure, has been simulated and analyzed using ANSYS software. The results indicate that this structure can improve the light-thermal conversion efficiency in the illuminated region, thus increasing the local heat using light radiation. Additionally, due to the unique arrangement of units in the light capture structure, the heat exchange rate with air is significantly reduced, resulting in a low heat flux. Therefore, if this butterfly-like trapped light structure is applied to the insulated wall panels, the requirements of modern architectural concepts can be realized.  相似文献   

6.
Butterfly wing color-patterns are a phenotypically coordinated array of scales whose color is determined as cellular interpretation outputs for morphogenic signals. Here we investigated distribution patterns of scale shape and size in relation to position and coloration on the hindwings of a nymphalid butterfly Junonia orithya. Most scales had a smooth edge but scales at and near the natural and ectopic eyespot foci and in the postbasal area were jagged. Scale size decreased regularly from the postbasal to distal areas, and eyespots occasionally had larger scales than the background. Reasonable correlations were obtained between the eyespot size and focal scale size in females. Histological and real-time individual observations of the color-pattern developmental sequence showed that the background brown and blue colors expanded from the postbasal to distal areas independently from the color-pattern elements such as eyespots. These data suggest that morphogenic signals for coloration directly or indirectly influence the scale shape and size and that the blue “background” is organized by a long-range signal from an unidentified organizing center in J. orithya.  相似文献   

7.
The origin and diversification of evolutionary novelties-lineage-specific traits of new adaptive value-is one of the key issues in evolutionary developmental biology. However, comparative analysis of the genetic and developmental bases of such traits can be difficult when they have no obvious homologue in model organisms. The finding that the evolution of morphological novelties often involves the recruitment of pre-existing genes and/or gene networks offers the potential to overcome this challenge. Knowledge about shared developmental processes obtained from extensive studies in model organisms can then be used to understand the origin and diversification of lineage-specific structures. Here, we illustrate this approach in relation to eyespots on the wings of Bicyclus anynana butterflies. A number of spontaneous mutations isolated in the laboratory affect eyespots, lepidopteran-specific features, and also processes that are shared by most insects. We discuss how eyespot mutants with disturbed embryonic development may help elucidate the genetic pathways involved in eyespot formation, and how venation mutants with altered eyespot patterns might shed light on mechanisms of eyespot development.  相似文献   

8.
Feeding experiments with lizards are used to examine the function of small eyespot markings found along the wing margins of many butterfly species. Such eyespots are frequently suggested to function by deflecting the attacks of vertebrate predators away from the vulnerable body towards the wing margins, which can tear easily; the eyespots are considered to mislead predators and to act as targets for their attacks. Such misdirected attacks give the butterflies a chance to evade capture, albeit sometimes losing pieces of wing tissue. As a model prey species, we used fruit-feeding individuals of the tropical butterfly Bicyclus anynana that were attacked in a standard way in laboratory cages by the anolis lizard, Anolis carolinensis . We also manipulated the butterflies' wing patterns by pasting eyespots on different parts of the wings to examine the deflection hypothesis in more detail. Our results indicate no influence on the lizard attacks either of the presence of eyespots, or of their position on the wings. The lizards attacked butterflies in a highly stereotyped manner both when the prey were presented on matching or on contrasting backgrounds. We thus found no support for the deflection hypothesis for attacks by insectivorous lizards. Indeed, our only support to date has been obtained for naïve flycatcher birds, but even this requires further corroboration. Although effective deflection may occur rather infrequently, except perhaps under certain ecological conditions such as high-density feeding of butterflies on fallen fruit, it may still be sufficiently consistent over time to have contributed to shaping the evolution of marginal eyespot patterns.  © 2007 The Linnean Society of London, Biological Journal of the Linnean Society , 2007, 92 , 661–667.  相似文献   

9.
It has been shown that microcautery on the prospective apical black region of the early pupal forewing of a butterfly, Pieris rapae , causes alteration of the scale color on the adult wing and a delay in histogenesis of the pupal wing. From these results, it has been assumed that the developmental delay of scale cells in the pupal wing alters their developmental fate and the hypothesis that different color fates of scales are determined by differences in the developmental timetables between scale cells is proposed. In this study, we attempted to find the developmental timetables of individual scales expressing specific color to test this hypothesis. It was found that the holes on the upper surface of a scale become larger as they develop and the hole sizes of scales in the white region are always larger than in the black region on the same wings either during pupal period or after eclosion. This suggests that the scale hole size is a good index that reflects developmental rate of the scale and a difference in the hole size between adult scales is attributed to a difference in the developmental timetables when their ancestral scale precursor cells were in the pupal period. A comparison of the hole sizes between adult scales in different color regions suggested that normal white scales were in a more advanced state than were the black ones but white scales induced by microcautery were in a less advanced state than black ones on the same wing. This supports our hypothesis.  相似文献   

10.
The color-pattern determination of butterfly wings was studied, focusing on the cold-shock-induced color-pattern modifications of a species of butterfly, Vanessa (Cynthia) cardui (Lepidoptera: Nymphalidae). It was shown that the modification property could be transferred to the noncold-shocked individuals by the transfusion of hemolymph taken from the cold-shocked individuals, suggesting the existence of an unknown diffusible factor or hormone, induced or activated by the cold shock. The involvement of a receptor tyrosine kinase for the color-pattern modifications was tested by the simple application of some oxyanions such as sodium tungstate, sodium molybdate, and molybdic acid to pupae, since these oxyanions have been known to up-regulate the process of phosphorylation via receptor tyrosine kinases in general. It was shown that they could modify the wing color-pattern in a way very similar to the cold shock. Moreover, the topical applications of sodium tungstate or molybdic acid induced large ectopic black spots on the treated pupal wings. Among the treatment methods, the sodium tungstate treatment was by far more effective than the cold shock treatment itself. Taken together, these data suggest that an unknown cold-shock hormone activates the process of phosphorylation via a receptor tyrosine kinase necessary for the color-pattern development.  相似文献   

11.
Complex butterfly wing color patterns are coordinated throughout a wing by unknown mechanisms that provide undifferentiated immature scale cells with positional information for scale color. Because there is a reasonable level of correspondence between the color pattern element and scale size at least in Junonia orithya and Junonia oenone, a single morphogenic signal may contain positional information for both color and size. However, this color–size relationship has not been demonstrated in other species of the family Nymphalidae. Here, we investigated the distribution patterns of scale size in relation to color pattern elements on the hindwings of the peacock pansy butterfly Junonia almana, together with other nymphalid butterflies, Vanessa indica and Danaus chrysippus. In these species, we observed a general decrease in scale size from the basal to the distal areas, although the size gradient was small in D. chrysippus. Scales of dark color in color pattern elements, including eyespot black rings, parafocal elements, and submarginal bands, were larger than those of their surroundings. Within an eyespot, the largest scales were found at the focal white area, although there were exceptional cases. Similarly, ectopic eyespots that were induced by physical damage on the J. almana background area had larger scales than in the surrounding area. These results are consistent with the previous finding that scale color and size coordinate to form color pattern elements. We propose a ploidy hypothesis to explain the color–size relationship in which the putative morphogenic signal induces the polyploidization (genome amplification) of immature scale cells and that the degrees of ploidy (gene dosage) determine scale color and scale size simultaneously in butterfly wings.  相似文献   

12.
Temperature shock to early pupae causes wing color-pattern changes in butterflies. These plastic changes are ascribed to the hemolymph level of the cold-shock hormone (CSH) in pupae as well as to other mechanisms. Here, we characterized heat-shock-induced color-pattern changes using the blue pansy butterfly Junonia orithya (Lepidoptera: Nymphalidae). In response to the 38-42 °C heat-shock treatments, parafocal elements (PFEs) were thinned and dislocated away from eyespots; this was the reverse of the direction of the cold-shock-induced changes. Somewhat surprisingly, in response to the lethal 44 °C heat shock, PFEs were modified as in the case of a cold-shock. These modifications were not affected by the removal of the head-prothorax portion of pupae. While the hemolymph-mediated transfer of the possible PFE-modification property induced by the 42 °C treatment was unsuccessful in the parabiosis experiment, the transfer of the factor induced by the 44 °C treatment was successful. In contrast, reduction of the blue background area was obtained not only by the 42 and 44 °C treatments but also by the injection of thapsigargin, a plant-derived stress inducer, in males. The result of this treatment was similar to the natural color patterns of other closely related Junonia species. We also observed an increase in orange coloration by the 42 °C treatment in females, and this change was similar to ecdysteroid-induced modifications. Taken together, the heat-shock-induced PFE modifications in J. orithya can be explained by the levels of CSH, and other modifications are likely to be caused by general stress responses and ecdysteroid effects. We conclude that phenotypic plasticity of the wing color patterns to heat shock results from a combined effect of at least a few different mechanisms. These mechanisms might have been exploited in the color-pattern evolution of some Junonia species.  相似文献   

13.
The Brazilian swallowtail Eurytides lysithous is evidently a Batesian mimic of several Parides species. It is polymorphic for mimetic patterns in both sexes. Various populations contain from one to three major forms, and these seem to depend on two unlinked loci or supergenes. Samples from natural populations, and one reared brood, suggest that one locus controls two white-marked forms, with incomplete dominance producing a third heterozygous form. The heterozygotes are everywhere deficient from Hardy-Weinberg expectations. The second putative locus has an allele epistatic to the first locus which converts the white-marked forms to black, but epistasis is apparently incomplete in heterozygotes. The incomplete dominance and epistasis result in extraordinarily variable polymorphic populations and would allow a genetic analysis for comparison with those already done in the classic Batesian polymorphic swallowtails of the Old World.  相似文献   

14.
Throughout the evolutionary history of life, only three vertebrate lineages took to the air by acquiring a body plan suitable for powered flight: birds, bats, and pterosaurs. Because pterosaurs were the earliest vertebrate lineage capable of powered flight and included the largest volant animal in the history of the earth, understanding how they evolved their flight apparatus, the wing, is an important issue in evolutionary biology. Herein, I speculate on the potential basis of pterosaur wing evolution using recent advances in the developmental biology of flying and non‐flying vertebrates. The most significant morphological features of pterosaur wings are: (i) a disproportionately elongated fourth finger, and (ii) a wing membrane called the brachiopatagium, which stretches from the posterior surface of the arm and elongated fourth finger to the anterior surface of the leg. At limb‐forming stages of pterosaur embryos, the zone of polarizing activity (ZPA) cells, from which the fourth finger eventually differentiates, could up‐regulate, restrict, and prolong expression of 5′‐located Homeobox D (Hoxd) genes (e.g. Hoxd11, Hoxd12, and Hoxd13) around the ZPA through pterosaur‐specific exploitation of sonic hedgehog (SHH) signalling. 5′Hoxd genes could then influence downstream bone morphogenetic protein (BMP) signalling to facilitate chondrocyte proliferation in long bones. Potential expression of Fgf10 and Tbx3 in the primordium of the brachiopatagium formed posterior to the forelimb bud might also facilitate elongation of the phalanges of the fourth finger. To establish the flight‐adapted musculoskeletal morphology shared by all volant vertebrates, pterosaurs probably underwent regulatory changes in the expression of genes controlling forelimb and pectoral girdle musculoskeletal development (e.g. Tbx5), as well as certain changes in the mode of cell–cell interactions between muscular and connective tissues in the early phase of their evolution. Developmental data now accumulating for extant vertebrate taxa could be helpful in understanding the cellular and molecular mechanisms of body‐plan evolution in extinct vertebrates as well as extant vertebrates with unique morphology whose embryonic materials are hard to obtain.  相似文献   

15.
Experimental approaches to color pattern formation of lepidopteran insects have been made exclusively by analyzing pattern alterations in adult wings induced by operations. We microcauterized the presumptive black region of the dorsal forewing of the butterfly Pieris rapae and analyzed not only the resultant color pattern in the adult wing but also the cell behavior in the pupal wing epidermis around the injury. Cautery induced color alterations were as follows: (i) cautery up to 49.5 h after pupation resulted in white regions appearing within the black region while later cauteries induced larger white regions; (ii) cautery between 50 and 59.5 h resulted in the white regions induced by the cauteries being dramatically decreased; (iii) cautery after 60 h resulted in white regions that had almost disappeared. The examination of the cell behavior in the pupal wing epidermis after cauteries showed that the row formation of scale precursor cells was delayed. This delayed area varied with the time of cautery, in the same manner as that in the induced white area in the adult wing ((i) – (iii) above). The relationship between scale color alteration and the developmental delay of the scale row formation is discussed.  相似文献   

16.

1. 1. Spectral integral reflectance, transmittance and the resulting absorption of intact and descaled butterfly wings of the black-winged Pachliopta aristolochiae (Papilionidae), the white-winged Pieris brassicae (Pieridae), and the yellow-winged Gonepteryx rhamni (Pieridae) were determined between 350 and 800 nm.

2. 2. Whereas in the black forewing of the dorsal basking Pachliopta almost all incident light is absorbed nearly independent of the wavelength and thus converted into heat, the white forewing of the body basking Pieris absorbs less than 20% in the visible range of the spectrum.

3. 3. The yellow hindwing of the lateral basking Gonepteryx absorbs to a higher degree than the Pierid wing, but—due to the sparsely arranged scales—transmittance is clearly increased (40–50% between 525 and 800 nm).

4. 4. The varying thermal characteristics of the different wings with reference to the color and arrangement of the scales and the different basking strategies of the butterflies are discussed.

Author Keywords: Behavioral thermoregulation; coloration; butterfly wing; radiation absorption; heat gain; sun basking  相似文献   


17.
Colors and pterin pigmentation of pierid butterfly wings   总被引:2,自引:0,他引:2  
The reflectance of pierid butterfly wings is principally determined by the incoherent scattering of incident light and the absorption by pterin pigments in the scale structures. Coherent scattering causing iridescence is frequently encountered in the dorsal wings or wing tips of male pierids. We investigated the effect of the pterins on wing reflectance by local extraction of the pigments with aqueous ammonia and simultaneous spectrophotometric measurements. The ultraviolet-absorbing leucopterin was extracted prominently from the white Pieris species, and the violet-absorbing xanthopterin and blue-absorbing erythropterin were mainly derived from the yellow- and orange-colored Coliadinae, but they were also extracted from the dorsal wing tips of many male Pierinae. Absorption spectra deduced from wing reflectance spectra distinctly diverge from the absorption spectra of the extracted pigments, which indicate that when embedded in wing scales the pterins differ from those in solution. The evolution of pierid wing coloration is discussed.  相似文献   

18.
Changes in wing pattern, colour, shape and size associated with seasonal polyphenism in Melanitis leda were quantified using a series of 155 butterflies collected by N. Manders on Mauritius in 1905. Butterflies of the wetter period were predominantly of the wet season form with large, well differentiated eyespots, short tails, smaller wings and a characteristic background colour. The dry season form occurred only in the drier period and has much smaller eyespots, longer tails, larger wings and a variable background. Many intermediates occurred, mainly in the drier period. These are associated with an absence of extreme seasonal change in Mauritius. The first principal component (PCI) describing the morphometric and colour data is closely related to the wing form (r = 0.80). Regression analyses using temperature and rainfall data for the 8 weeks before each capture showed that about 40% of variation in PCI could be accounted for by temperature in weeks 2–3 before capture. Many of the characters measured are redundant; a subset of seven morphometric characters yields a closely similar PCI. Analysis of is subset in an additional sample of 70 M. leda from Kenya showed that the seasonal polyphenism overrides a small degree of sexual dimorphism. The results are discussed with regard to seasonal changes in adult activity, resting backgrounds and visual predation. Wing phenotype characters are part of an array of coordinated morphological and life history traits which include ovarian dormancy and fat body development in dry season adults. A partial independence occurs in the proximal control of these traits as indicated, for example, by the larger wing and tail size, and smaller eyespots of the small number of the wet season form captured in the drier period in comparison to those of the wetter months.  相似文献   

19.
本文通过对近年在福建各地采集的蝴蝶标本整理鉴定,报道了福建省蝴蝶新记录12种,其中环蝶科1种,眼蝶科3种,蛱蝶科2种,灰蝶科3种,弄蝶科3种。新记录种分别为:白袖箭环蝶Stichophthalma louisa Wood—Mason,边纹黛眼蝶如.the marginolis Motschulsky,细黛眼蝶Lethesidereal Marshall,褐眉眼蝶Mycalesis unicaLeech,中华葩蛱蝶Patsuia sinensis(Oberthur),白斑俳蛱蝶Parasarpa aIbomaculata(Leech),奇娆灰蝶Arhopala comicadleNiceville,小珀灰蝶Pratapa icetas(Hewitson),浙江生灰蝶Sinthusa zhejiangensis Yoshino,梳翅弄蝶Ctenoptilum vasava(Moore),滚边裙弄蝶Tagiades cohaerens(MabiHe)及光荣肿脉弄蝶Zographetus doxusEliot。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号