首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
  相似文献   

2.
It has been shown that microcautery on the prospective apical black region of the early pupal forewing of a butterfly, Pieris rapae , causes alteration of the scale color on the adult wing and a delay in histogenesis of the pupal wing. From these results, it has been assumed that the developmental delay of scale cells in the pupal wing alters their developmental fate and the hypothesis that different color fates of scales are determined by differences in the developmental timetables between scale cells is proposed. In this study, we attempted to find the developmental timetables of individual scales expressing specific color to test this hypothesis. It was found that the holes on the upper surface of a scale become larger as they develop and the hole sizes of scales in the white region are always larger than in the black region on the same wings either during pupal period or after eclosion. This suggests that the scale hole size is a good index that reflects developmental rate of the scale and a difference in the hole size between adult scales is attributed to a difference in the developmental timetables when their ancestral scale precursor cells were in the pupal period. A comparison of the hole sizes between adult scales in different color regions suggested that normal white scales were in a more advanced state than were the black ones but white scales induced by microcautery were in a less advanced state than black ones on the same wing. This supports our hypothesis.  相似文献   

3.
4.
Application of cold shock or tungstate to butterfly pupae produces a unique color-pattern modification type on the adult wings, in which the color-pattern elements are dislocated toward the reduced focal elements. This modification-inducing activity has been primarily attributed to the putative cold-shock hormone (CSH) that is secreted into the hemolymph upon cold shock. Here, using a species of nymphalid butterfly Junonia almana, a new "reversed" type of the color-pattern modifications of butterfly wings was obtained by the application of heat shock or thapsigargin, a calcium-ATPase inhibitor, in which most elements were dislocated away from the enlarged focal elements. This result suggests that the endocrine secretion of CSH is sensitive to a wide range of temperature shocks, which then affects the cellular interpretation of the wing-wide positional information that is emitted from the focal locations. Ecdysteroid contributes to the wing-wide patterning primarily independently from CSH, but these two systems negatively interact with each other, probably in the intracellular signaling pathways.  相似文献   

5.
    
There are billions of tiny scales on the butterfly wings, which array regularly as the tiles on the roof. Such tilts can form various colors of the wing and afford the species many abilities to survive and propagate. Morphological experiments on the wing scales of six butterfly species living in northeast of China were conducted. By the optics microscope; the form, geometry dimension and array of the scales were observed generally. By using scanning electron microscope (SEM), the 2D scanning and measurement were carried out and the surface micro configurations of scales were observed. The dimension and microstructure characteristics of the cross section of single scale were achieved through transmission electron microscope (TEM). Finally, by using 3D software, three 3D models were described and the 3D visual effect was achieved. This work can put forward a basic method for the future study on the morphology of biological microstructure.  相似文献   

6.
7.
The inhibition of protein-tyrosine phosphatase 1B (PTP1B) is a potential target for treatment of type 2 diabetes. Vanadium and zinc metal coordinated complexes have insulin-enhancing activities, and while vanadium compounds inhibit PTP1B, little is known on the mode of action of zinc compounds. In this study we developed an automated PTP1B inhibition assay that allows for a rapid assessment of the PTP1B inhibition strength of candidate compounds. Synthetic vanadium(IV) and zinc(II) complexes were evaluated: IC50 values for vanadium complexes ranged from 0.06 to 0.8m whereas for zinc compounds, values were above 10 m. Vanadium sulfate, a non-conjugated inorganic salt, had stronger inhibition activity than any of the conjugated metal complexes. Revisions requested 14 October 2004; Revisions received 6 December 2004  相似文献   

8.
The colour patterns of Heliconius butterflies are composed from a relatively simple set of pattern elements whose homologues are recognizable throughout the genus. Although Heliconius colour patterns look quite different from those of most nymphalids, these pattern elements are seen to derive from the generalized nymphalid groundplan. The differences arise primarily from the loss or positional shift of certain pattern elements, a high degree of fusion between individual pattern elements, and, in the forewing, asymmetries of the pattern elements relative to the wing-cell midline. The scheme of homologies we present is consistent with what is currently known about the comparative morphology and developmental physiology of colour pattern formation in Lepidoptera, and provides a framework for the interpretation of developmental, evolutionary and genetic studies in Heliconius.  相似文献   

9.
10.
11.
Experimental approaches to color pattern formation of lepidopteran insects have been made exclusively by analyzing pattern alterations in adult wings induced by operations. We microcauterized the presumptive black region of the dorsal forewing of the butterfly Pieris rapae and analyzed not only the resultant color pattern in the adult wing but also the cell behavior in the pupal wing epidermis around the injury. Cautery induced color alterations were as follows: (i) cautery up to 49.5 h after pupation resulted in white regions appearing within the black region while later cauteries induced larger white regions; (ii) cautery between 50 and 59.5 h resulted in the white regions induced by the cauteries being dramatically decreased; (iii) cautery after 60 h resulted in white regions that had almost disappeared. The examination of the cell behavior in the pupal wing epidermis after cauteries showed that the row formation of scale precursor cells was delayed. This delayed area varied with the time of cautery, in the same manner as that in the induced white area in the adult wing ((i) – (iii) above). The relationship between scale color alteration and the developmental delay of the scale row formation is discussed.  相似文献   

12.
    
1. Morphological characteristics, especially coloration, are related to thermoregulation and camouflage, both of which are crucial for species survival and fitness. In cool environments such as the understorey of closed rainforests, darker organisms have thermal advantages and may be able to absorb heat more efficiently. However, such habitats are also suitable for darker organisms with respect to camouflage, making it difficult to elucidate whether the association of dark‐coloured organisms with shady environments is a consequence of thermal stress or predation pressure, or both. 2. In this study, butterfly communities were surveyed and artificial butterflies (mealworms attached to plastic sheeting to mimic adult butterflies) used to test whether differences in wing luminance are related to predation rates within open and closed habitats in monsoonal tropical forests of southwestern China. 3. Using artificial butterflies, significantly lower predation rates were found for dark‐coloured artificial butterflies within closed habitats, whereas such relationships were not found within open habitats. It was found that actual butterfly communities were also significantly darker in closed than in open habitats. 4. These results demonstrate that darker colours may have the effect of reducing predation rates in shady environments and that different habitat types can have contrasting effects on luminance and therefore predation risk.  相似文献   

13.
Broadband light trapping effect and arrays of sub-wavelength textured structures based on the butterfly wing scales are applicable to solar cells and stealth technologies. In this paper, the fine optical structures in wing scales of butterfly Papilio peranthus, exhibiting efficient light trapping effect, were carefully examined. First, the reflectivity was measured by reflectance spectrum. Field Emission Scanning Electronic Microscope (FESEM) and Transmission Electron Microscope (TEM) were used to observe the coupling morphologies and structures of the scales. Then, the optimized 3D model of the coupling structure was created combining Scanning Electron Microscope (SEM) and TEM data. Afterwards, the mechanism of the light trapping effect of these structures was analyzed by simulation and theoretical calculations. A multilayer nano-structure of chitin and air was found. These structures are effective in increasing optical path, resulting in that most of the incident light can be trapped and adsorbed within the structure at last. Furthermore, the simulated optical results are consistent with the experimental and calculated ones. This result reliably confirms that these structures induce an efficient light trapping effect. This work can be used as a reference for in-depth study on the fabrication of highly efficient bionic optical devices, such as solar cells, photo detectors, high-contrast, antiglare, and so forth.  相似文献   

14.
    
Mycobacterium tuberculosis adopts various measures to escape from the hostile environment of the host cells. A low molecular weight protein tyrosine phosphatase (LMWPTPase) MPtpA was found to be active in virulent mycobacterial forms during the phagocytosis process. To ascertain the importance of conserved residues Cys11, Arg17, and Asp126 in the catalytic mechanism of MPtpA, site-directed mutagenesis was performed, namely C11S, R17A, D126A, and D126N. Kinetic characterization of wild-type and the mutant MPtpAs using para-nitrophenyl phosphate revealed the reaction mechanism followed by this LMWPTPase and it is similar to the other PTPases. All the LMWPTPases have a common signature motif, 'C(X)(5)R(S/T)' and an Asp as the general acid residue and the mechanism followed by MPtpA can be aptly attributed to other LMWPTPases as well, considering the similar three-dimensional conformation. We have shown that the mutations caused major changes in the chemical environment surrounding the mutated residues and resulted in the decrease of catalytic activity significantly. Inhibition kinetics was performed with phosphate analogues: sodium molybdate, sodium orthovanadate, and sodium tungstate.  相似文献   

15.
The contact angles of distilled water and methanol solution on the wings of butterflies were determined by a visual contact angle measuring system. The scale structures of the wings were observed using scanning electron microscopy, The influence of the scale micro- and ultra-structure on the wettability was investigated. Results show that the contact angle of distilled water on the wing surfaces varies from 134.0° to 159.2°. High hydrophobicity is found in six species with contact angles greater than 150°. The wing surfaces of some species are not only hydrophobic but also resist the wetting by methanol solution with 55% concentration. Only two species in Parnassius can not resist the wetting because the micro-structure (spindle-like shape) and ultra-structure (pinnule-like shape) of the wing scales are remarkably different from that of other species. The concentration of methanol solution for the occurrence of spreading/wetting on the wing surfaces of different species varies from 70% to 95%. After wetting by methanol solution for 10 min, the distilled water contact angle on the wing surface increases by 0.8°-2.1°, showing the promotion of capacity against wetting by distilled water.  相似文献   

16.
The Brazilian swallowtail Eurytides lysithous is evidently a Batesian mimic of several Parides species. It is polymorphic for mimetic patterns in both sexes. Various populations contain from one to three major forms, and these seem to depend on two unlinked loci or supergenes. Samples from natural populations, and one reared brood, suggest that one locus controls two white-marked forms, with incomplete dominance producing a third heterozygous form. The heterozygotes are everywhere deficient from Hardy-Weinberg expectations. The second putative locus has an allele epistatic to the first locus which converts the white-marked forms to black, but epistasis is apparently incomplete in heterozygotes. The incomplete dominance and epistasis result in extraordinarily variable polymorphic populations and would allow a genetic analysis for comparison with those already done in the classic Batesian polymorphic swallowtails of the Old World.  相似文献   

17.
    
As the demand for sustainable construction practices increases, innovative ideas are being explored for the construction of insulated wall panels in contemporary buildings. The butterfly is a remarkable organism that uses a thermostatic mechanism to regulate its body temperature. The microstructure on the surface of its wing scales is responsible for reflecting incident light multiple times, extending the optical path, and increasing the light absorption, thus ensuring that its body temperature remains stable. This microstructure, also known as the light capture structure, has been simulated and analyzed using ANSYS software. The results indicate that this structure can improve the light-thermal conversion efficiency in the illuminated region, thus increasing the local heat using light radiation. Additionally, due to the unique arrangement of units in the light capture structure, the heat exchange rate with air is significantly reduced, resulting in a low heat flux. Therefore, if this butterfly-like trapped light structure is applied to the insulated wall panels, the requirements of modern architectural concepts can be realized.  相似文献   

18.
    
Diversification rates and evolutionary trajectories are known to be influenced by phenotypic traits and the geographic history of the landscapes that organisms inhabit. One of the most conspicuous traits in butterflies is their wing color pattern, which has been shown to be important in speciation. The evolution of many taxa in the Neotropics has also been influenced by major geological events. Using a dated, species‐level molecular phylogenetic hypothesis for Preponini, a colorful Neotropical butterfly tribe, we evaluated whether diversification rates were constant or varied through time, and how they were influenced by color pattern evolution and biogeographical events. We found that Preponini originated approximately 28 million years ago and that diversification has increased through time consistent with major periods of Andean uplift. Even though some clades show evolutionarily rapid transitions in coloration, contrary to our expectations, these shifts were not correlated with shifts in diversification. Involvement in mimicry with other butterfly groups might explain the rapid changes in dorsal color patterns in this tribe, but such changes have not increased species diversification in this group. However, we found evidence for an influence of major Miocene and Pliocene geological events on the tribe''s evolution. Preponini apparently originated within South America, and range evolution has since been dynamic, congruent with Andean geologic activity, closure of the Panama Isthmus, and Miocene climate variability.  相似文献   

19.
20.
    
Adults of the three papilionid butterflies, Papilio helenus L., Papilio machaon L. and Papilio memnon L., exhibit seasonal diphenism comprising spring and summer morphs. To elucidate the physiological mechanism underlying seasonal morph development in papilionid butterflies, we investigated whether a cerebral factor showing summer‐morph‐producing hormone (SMPH) activity is present in the brain of three Papilio species using an assay system with chilled male short‐day pupae of P. xuthus L. When 2% NaCl extracts derived from 20 larval brains of the three species were injected into abdomens of chilled male short‐day pupae of P. xuthus, all recipients destined to develop into spring‐morph adults developed into summer‐ and intermediate‐morph adults. On the other hand, all recipients injected with distilled water as a control developed into spring‐morph adults. These results indicate that a cerebral factor showing SMPH activity is present in the larval brain of the three Papilio species. Additionally, all recipients injected with 2% NaCl extracts derived from 20 adult brains of Bombyx mori L. also developed into summer‐ and intermediate‐morph adults. The results revealed that SMPH or a cerebral factor showing SMPH activity is widely distributed among lepidopteran insects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号