首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Tumor suppression by the p53 protein largely depends on the elimination of damaged cells by apoptosis. Mutations in the polyproline region (PPR) of p53 impair its apoptotic function. Deletion of the PPR renders p53 more sensitive to inhibition by Mdm2 via an unknown mechanism. We have explored the mechanism by which the PPR modulates the p53/Mdm2 loop. Proline 82 of p53 was identified to be essential for its interaction with the checkpoint kinase 2 (Chk2) and consequent phosphorylation of p53 on serine 20, following DNA damage. These physical and functional interactions are regulated by Pin1 through cis-trans isomerization of proline 82. Our study unravels the pathway by which Pin1 activates p53 in response to DNA damage and explains how Pin1 protects p53 from Mdm2. Further, we propose a role for Pin1-dependent induction of p53 conformational change as a mechanism responsible for the enhanced interaction between p53 and Chk2 following DNA damage. Importantly, our findings elucidate the selection for mutations in the Pin1 target Thr81/Pro82 motif within the PPR of p53 in human cancer.  相似文献   

4.
Shin YK  Li Y  Liu Q  Anderson DH  Babiuk LA  Zhou Y 《Journal of virology》2007,81(23):12730-12739
Recent studies have demonstrated that influenza A virus infection activates the phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway by binding of influenza NS1 protein to the p85 regulatory subunit of PI3K. Our previous study proposed that two polyproline motifs in NS1 (amino acids 164 to 167 [PXXP], SH3 binding motif 1, and amino acids 213 to 216 [PPXXP], SH3 binding motif 2) may mediate binding to the p85 subunit of PI3K. Here we performed individual mutational analyses on these two motifs and demonstrated that SH3 binding motif 1 contributes to the interactions of NS1 with p85β, whereas SH3 binding motif 2 is not required for this process. Mutant viruses carrying NS1 with mutations in SH3 binding motif 1 failed to interact with p85β and induce the subsequent activation of PI3K/Akt pathway. Mutant virus bearing mutations in SH3 binding motif 2 exhibited similar phenotype as the wild-type (WT) virus. Furthermore, viruses with mutations in SH3 binding motif 1 induced more severe apoptosis than did the WT virus. Our data suggest that SH3 binding motif 1 in NS1 protein is required for NS1-p85β interaction and PI3K/Akt activation. Activation of PI3K/Akt pathway is beneficial for virus replication by inhibiting virus induced apoptosis through phosphorylation of caspase-9.  相似文献   

5.
6.
7.
Dynamin function is mediated in part through association of its proline-rich domain (PRD) with the Src homology 3 (SH3) domains of several putative binding proteins. To assess the specificity and kinetics of this process, we undertook surface plasmon resonance studies of the interaction between isolated PRDs of dynamin-1 and -2 and several purified SH3 domains. Glutathione S-transferase-linked SH3 domains bound with high affinity (K(D) approximately 10 nm to 1 microm) to both dynamin-1 and -2. The simplest interaction appeared to take place with the amphiphysin-SH3 domain; this bound to a single high affinity site (K(D) approximately 10 nm) in the C terminus of dynamin-1 PRD, as predicted by previous studies. Binding to the dynamin-2 PRD was also monophasic but with a slightly lower affinity (K(D) approximately 25 nm). Endophilin-SH3 binding to both dynamin-1 and -2 PRDs was biphasic, with one high affinity site (K(D) approximately 14 nm) in the N terminus of the PRD and another lower affinity site (K(D) approximately 60 nm) in the C terminus of dynamin-1. The N-terminal site in dynamin-2 PRD had a 10-fold lower affinity for endophilin-SH3. Preloading of dynamin-1 PRD with the amphiphysin-SH3 domain partially occluded binding of the endophilin-SH3 domain, indicating overlap between the binding sites in the C terminus, but endophilin was still able to interact with the high affinity N-terminal site. This shows that more than one SH3 domain can simultaneously bind to the PRD and suggests that competition probably occurs in vivo between different SH3-containing proteins for the limited number of PXXP motifs. Endophilin-SH3 binding to the high affinity site was disrupted when dynamin-1 PRD was phosphorylated with Cdk5, indicating that this site overlaps the phosphorylation sites, but amphiphysin-SH3 binding was unaffected. Other SH3 domains showed similarly complex binding characteristics, and substantial differences were noted between the PRDs from dynamin-1 and -2. For example, SH3 domains from c-Src, Grb2, and intersectin bound only to the C-terminal half of dynamin-2 PRD but to both the N- and C-terminal portions of dynamin-1 PRD. Thus, differential binding of SH3 domain-containing proteins to dynamin-1 and -2 may contribute to the distinct functions performed by these isoforms.  相似文献   

8.
Accumulating evidence suggests that endoplasmic reticulum (ER) stress plays a major role in the development of many diseases. A previous study indicated that the apoptotic regulator p53 is significantly increased in response to ER stress and participates in ER stress-induced apoptosis. However, the regulators of p53 expression during ER stress are still not fully understood. Here, we investigated whether p53 contributes to the impairment of Pin1 signaling under ER stress. We found that treatment with thapsigargin, a stimulator of p53 expression and an inducer of ER stress, decreased Pin1 expression in HCT116 cells. Also, we identified functional p53 response elements (p53REs) in the Pin1 promoter. Overexpression of p53 significantly decreased Pin1 expression in HCT116 cells while abolition of p53 gene expression induced Pin1 expression. Pin1 expression was significantly increased by treatment with the p53 inhibitor pifithrin-α or down-regulation of p53 expression. Taken together, ER stress decreased Pin1 expression through p53 activation, and this mechanism may be associated with ER stress-induced cell death. These data reported here support the importance of Pin1 as a potential target molecule mediating tumor development.  相似文献   

9.
10.
11.
WW domains mediate protein-protein interactions through binding to short proline-rich sequences. Two distinct sequence motifs, PPXY and PPLP, are recognized by different classes of WW domains, and another class binds to phospho-Ser-Pro sequences. We now describe a novel Pro-Arg sequence motif recognized by a different class of WW domains using data from oriented peptide library screening, expression cloning, and in vitro binding experiments. The prototype member of this group is the WW domain of formin-binding protein 30 (FBP30), a p53-regulated molecule whose WW domains bind to Pro-Arg-rich cellular proteins. This new Pro-Arg sequence motif re-classifies the organization of WW domains based on ligand specificity, and the Pro-Arg class now includes the WW domains of FBP21 and FE65. A structural model is presented which rationalizes the distinct motifs selected by the WW domains of YAP, Pin1, and FBP30. The Pro-Arg motif identified for WW domains often overlaps with SH3 domain motifs within protein sequences, suggesting that the same extended proline-rich sequence could form discrete SH3 or WW domain complexes to transduce distinct cellular signals.  相似文献   

12.
It has recently been observed that G protein-coupled receptors (GPCRs) can interact with SH3 domains through polyproline motifs. These interactions appear to be involved in receptor internalization and MAPK signalling. Here we report that the third cytoplasmic loop of the dopamine D3 receptor can interact in vitro with the adaptor protein Grb2. While the amino- and carboxy-terminal SH3 domains of Grb2 separately did not interact with the D3 receptor loop, the interaction is at least partially maintained with a Grb2 mutant for the amino-terminal SH3 domain, but disrupted for a Grb2 mutant with a nonfunctional carboxy-terminal SH3 domain. The data indicate the need of structural integrity of the entire Grb2 protein for the interaction and dominant role of the carboxy-terminal SH3 domain in the interaction. Disruption of the PXXP motifs in the D3 receptor did not affect the interaction with Grb2. These results indicate that GPCRs may contain SH3 ligands that do not contain the postulated minimal consensus sequence PXXP.  相似文献   

13.
14.
The low density lipoprotein (LDL) receptor family comprises several proteins with similar structures including the LDL receptor and apoE receptor 2 (apoER2). The human brain expresses two major splice variants of apoER2 mRNA, one of which includes an additional exon that encodes 59 residues in the cytoplasmic domain. This exon is absent from the LDL receptor and contains three proline-rich (PXXP) motifs that may allow apoER2 to function as a signal transducer. To investigate the role of this insert, we took advantage of the well characterized low density lipoprotein receptor pathway. Chimeras comprising the ectodomain and transmembrane domain of the LDL receptor fused to the cytoplasmic domain of apoER2 lacking the PXXP-containing residues are able to mediate clathrin-dependent endocytosis of LDL as effectively as cells expressing the LDL receptor but not if the PXXP insert is present in the protein. Although expressed on the cell surface, the PXXP-containing chimeric receptor is excluded from clathrin vesicles as judged by its failure to co-localize with adaptor protein-2 possibly due to interaction with intracellular adaptors or scaffolding proteins. Chimeras with the transmembrane domain of apoER2, predicted to be longer than that of the LDL receptor by several residues, fail to mediate endocytosis of LDL or to co-localize with adaptor protein-2 regardless of the presence or absence of the PXXP insert. Thus features of apoER2 that distinguish it as a signaling receptor, rather than as an endocytosis receptor like the LDL receptor, reside in or near the transmembrane domain and in the proline-rich motifs.  相似文献   

15.
ABSTRACT: BACKGROUND: It has been suggested that inactivation of p14ARF, a tumor suppressor central to regulating p53 protein stability through interaction with the MDM2 oncoprotein, abrogates p53 activity in human tumors retaining the wild-type TP53 gene. Differences in expression of tumor suppressor genes are frequently associated with cancer. We previously reported on a pattern of restricted p53 immunohistochemical overexpression significantly associated with microsatellite instability (MSI), low TP53 mutation frequency, and MDM2 overexpression in colorectal cancers (CRCs). In this study, we investigated whether p14ARF alterations could be a mechanism for disabling the p53 pathway in this subgroup of CRCs. RESULTS: Detailed maps of the alterations in the p14ARF gene were determined in a cohort of 98 CRCs to detect both nucleotide and copy-number changes. Methylation-specific PCR combined with bisulfite sequencing was used to evaluate the prevalence and distribution of p14ARF methylation. p14ARF alterations were then correlated with MSI status, TP53 mutations, and immunohistochemical expression of p53 and MDM2. The frequency of p14ARF mutations was extremely low (1/98; 1%), whereas coexistence of methylated and unmethylated alleles in both tumors and normal colon mucosa was common (91/98; 93%). Only seven of nine tumors (7%) had a distinct pattern of methylation compared with normal colon mucosa. Evaluation of the prevalence and distribution of p14ARF promoter methylation in a region containing 27 CpG sites in 35 patients showed a range of methylated CpG sites in tumors (0 to 25 (95% CI 1 to 13) versus 0 to 17 (95% CI 0 to 2)) in adjacent colon mucosa (P = 0.004). Hypermethylation of the p14ARF promoter was significantly correlated with the restricted p53 overexpression pattern (P = 0.03), and MDM2 overexpression (P = 0.02), independently of MSI phenotype. Although no significant correlation between p14ARF methylation and TP53 mutational status was seen (P = 0.23), methylation involving the proximal CpG sites within the 5' CpG flanking exon 1beta was present more frequently in tumors with restricted p53 overexpression than in those with diffuse p53 overexpression (range of methylated clones 17 to 36% (95% CI 24 to 36%) versus range 0 to 3% (95% CI 0 to 3%), P = 0. 0003). CONCLUSION: p14ARF epigenetic silencing may represent an important deregulating mechanism of the p53- MDM2-p14ARF pathway in CRCs exhibiting a restricted p53 overexpression pattern.  相似文献   

16.
17.
We studied the effects of Pin1, a regulatory molecule of the oncosuppressor p53, on both cell cycle arrest and apoptosis by treating primary mouse embryonic fibroblasts (MEFs) with etoposide. Etoposide induced G1 arrest in both wild-type and Pin1 null (pin1(-/-)) MEFs, and G2/M arrest and apoptotic cell death in MEFs lacking either p53 only (p53(-/-)) or both Pin1 and p53 (pin1(-/-)p53(-/-)). Both pin1(-/-) and pin1(-/-)p53(-/-) MEFs were enhanced the release of cytochrome c from the mitochondria, which might induce apoptosis. In response to etoposide treatment, apoptotic cell death was displayed in pin1(-/-)p53(-/-) MEFs but not in pin1(-/-) MEFs. These results suggest that p53 retards growth and suppresses etoposide-induced apoptosis in pin1(-/-) MEFs.  相似文献   

18.
Replication factor C (RFC) is an essential, multi-subunit ATPase that functions in DNA replication, DNA repair, and DNA metabolism-related checkpoints. In order to investigate how the individual RFC subunits contribute to these functions in vivo, we undertook a genetic analysis of RFC genes from budding yeast. We isolated and characterized mutations in the RFC5 gene that could suppress the cold-sensitive phenotype of rfc1-1 mutants. Analysis of the RFC5 suppressors revealed that they could not suppress the elongated telomere phenotype, the sensitivity to DNA damaging agents, or the mutator phenotype of rfc1-1 mutants. Unlike the checkpoint-defective rfc5-1 mutation, the RFC5 suppressor mutations did not interfere with the methylmethane sulfonate- or hydroxyurea-induced phosphorylation of Rad53p. The Rfc5p suppressor substitutions mapped to amino acid positions in the conserved RFC box motifs IV-VII. Comparisons of the structures of related RFC box-containing proteins suggest that these RFC motifs may function to coordinate interactions between neighboring subunits of multi-subunit ATPases.  相似文献   

19.
IGF-1 induces Pin1 expression in promoting cell cycle S-phase entry.   总被引:3,自引:0,他引:3  
Insulin-like growth factor I (IGF-1) is a well-established mitogen to many different cell types and is implicated in progression of a number of human cancers, notably breast cancer. The prolyl isomerase Pin1 plays an important role in cell cycle regulation through its specific interaction with proteins that are phosphorylated at Ser/Thr-Pro motifs. Pin1 knockout mice appear to have relatively normal development yet the Pin1(-/-)mouse embryo fibroblast (MEF) cells are defective in re-entering cell cycle in response to serum stimulation after G0 arrest. Here, we report that Pin1(-/-) MEF cells display a delayed cell cycle S-phase entry in response to IGF stimulation and that IGF-1 induces Pin1 protein expression which correlates with the induction of cyclin D1 and RB phosphorylation in human breast cancer cells. The induction of Pin1 by IGF-1 is mediated via the phosphatidylinositol 3-kinase as well as the MAP kinase pathways. Treatment of PI3K inhibitor LY294002 and the MAP kinase inhibitor PD098059, but not p38 inhibitor SB203580, effectively blocks IGF-1-induced upregulation of Pin1, cyclin D1 and RB phosphorylation. Furthermore, we found that Cyclin D1 expression and RB phosphorylation are dramatically decreased in Pin1(-/-) MEF cells. Reintroducing a recombinant adenovirus encoding Pin1 into Pin1(-/-) MEF cells restores the expression of cyclin D1 and RB phosphorylation. Thus, these data suggest that the mitogenic function of IGF-1 is at least partially linked to the induction of Pin1, which in turn stimulates cyclin D1 expression and RB phosphorylation, therefore contributing to G0/G1-S transition.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号