首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 217 毫秒
1.
2.
3.
Complex role of matrix metalloproteinases in angiogenesis   总被引:49,自引:0,他引:49  
Matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) play a significant role in regulating angiogenesis,the process of new blood vessel formation.Interstitial collagenase (MMP-1),72kDa gelatinase A/type IV collagenase (MMP-2),and 92 kDA gelatinase B/type IV collagenase (MMP-9) dissolve extracellular matrix (ECM) and may initiate and promote angiogenesis.TIMP-1,TIMP-2,TIMP-3,and possibly,TIMP-4 inhibit neovascularization.A new paradign is emerging that matrilysin (MMP-7),MMP-9,and metalloelastase (MMP-12) may block angiogenesis by converting plasminogen to angiostatin,which is one of the most potent angiogenesis antagonists.MMPs and TIMPs play a complex role in regulating angiogenesis.An understanding of the biochemical and cellular pathways and mechanisms of angiogenesis will provide important information to allow the control of angiogenesis,e.g.the stimulation of angiogenesis for coronary collateral circulation formation;while the inhibition for treating arthritis and cancer.  相似文献   

4.
Cigarette smoke exposure causes vascular remodeling and pulmonary hypertension by poorly understood mechanisms. To ascertain whether cigarette smoke exposure affects production of matrix metalloproteinases (MMPs) in the pulmonary vessels, we exposed C57Bl/6 (C57) mice or mice lacking TNF-alpha receptors (TNFRKO) to smoke daily for 2 wk or 6 mo. Using laser capture microdissection and RT-PCR analysis, we examined gene expression of MMP-2, MMP-9, MMP-12, MMP-13, and tissue inhibitor of metalloproteinase (TIMP-1) and examined protein production by immunohistochemistry for MMP-2, MMP-9, and MMP-12 in small intrapulmonary arteries. At 2 wk, mRNA levels of TIMP-1 and all MMPs were increased in the C57, but not TNFRKO, mice, and immunoreactive protein for MMP-2, MMP-9, and MMP-12 was also increased in the C57 mice. Increased gelatinase activity was identified by in situ and bulk tissue zymography. At 6 mo, only MMP-12 mRNA levels remained increased in the C57 mice, but at a much lower level; however, MMP-2 mRNA levels increased in the TNFRKO mice. We conclude that smoke exposure increases MMP production in the small intrapulmonary arteries but that, with the exception of MMP-12, increased MMP production is transient. MMPs probably play a role in smoke-induced vascular remodeling, as they do in other forms of pulmonary hypertension, implying that MMP inhibitors might be beneficial. MMP production is largely TNF-alpha dependent, further supporting the importance of TNF-alpha in the pathogenesis of cigarette smoke-induced lung disease.  相似文献   

5.
6.
Imbalance between matrix metalloproteinases (MMPs) and tissue inhibitor of matrix metalloproteinases (TIMPs) is an important control point in tissue remodelling. Several findings have reported a marked MMP/TIMP imbalance in a variety of in vitro models in which oxidative stress was induced. Since previous studies showed that commercial hyaluronan and chondroitin-4-sulphate are able to limit lipid peroxidation during oxidative stress, we investigated the antioxidant capacity of purified human plasma chondroitin-4-sulfate in reducing MMP and TIMP imbalance in a model of ROS-induced oxidative injury in fibroblast cultures. Purified human plasma chondroitin-4-sulfate was added to the fibroblast cultures exposed to FeSO4 plus ascorbate. We assayed cell death, MMP and TIMP mRNA expression and protein activities, DNA damage, membrane lipid peroxidation, and aconitase depletion. FeSO4 plus ascorbate produced severe death of cells and increased MMP-1, MMP-2 and MMP-9 expression and protein activities. It also caused DNA strand breaks, enhanced lipid peroxidation and decreased aconitase. TIMP-1 and TIMP-2 protein levels and mRNA expression remain unaltered. Purified human plasma C4S, at three different doses, restored the MMP/TIMP homeostasis, increased cell survival, reduced DNA damage, inhibited lipid peroxidation and limited impairment of aconitase. These results further support the hypothesis that these biomolecules possess antioxidant activity and by reducing ROS production C4S may limit cell injury produced by MMP/TIMP imbalance.  相似文献   

7.
We have previously demonstrated that in response to traumatic injury in skeletal muscle, there is a dysregulation of the matrix metalloproteases (MMPs) and their inhibitors (TIMPs), a response hypothesized to interfere with proper skeletal muscle regeneration. Moreover, we have shown that pharmacological activation of the adenosine A(3) receptor by Cl-IBMECA in skeletal muscle can protect against ischemia-reperfusion and eccentric exercise injury. However, the mechanism by which Cl-IBMECA protects muscle tissue is poorly defined. This study evaluated the effects of Cl-IBMECA on MMP/TIMP expression in skeletal muscle and tested the hypothesis that adenosine A(3) receptor-stimulated protection of skeletal muscle following traumatic injury is associated with a blunting of MMPs involved in inflammatory processes and collagen degradation, and an increase in MMPs associated with extracellular matrix remodeling. Sixty C57BL/6J male mice were injected with Cl-IBMECA (n = 30) or a vehicle (n = 30), and Evans blue dye. Injury was induced by applying a cold steel probe (-79°C) to the tibialis anterior (TA) muscle for 10 s. TA muscles from uninjured and injured legs were collected 3, 10, and 24 h postinjury for analysis of muscle injury and MMP/TIMP mRNA and protein levels. Twenty-four hours postinjury, 56.8% of the fibers were damaged in vehicle-treated mice vs. 35.4% in Cl-IBMECA-treated mice (P = 0.02). Cl-IBMECA treatment reduced membrane type 1 (MT1)-MMP, MMP-3, MMP-9, and TIMP-1 mRNA expression 2- to 20-fold compared with vehicle-treated mice (P < 0.05). Cl-IBMECA decreased protein levels of latent/shed MT1-MMP 23-2,000%, respectively, 3-10 h postinjury. In Cl-IBMECA-treated mice, latent MMP-2 was decreased 20% 3 h postinjury, active MMP-3 was decreased 64% 3 h postinjury, and latent/active MMP-9 was decreased 417,631% 3 h postinjury and 20% 10 h postinjury. Protein levels of active MMP-2 and latent MMP-3 were increased 25% and 74% 3 h postinjury, respectively. The present study elucidates a new protective role of adenosine A(3) receptor stimulation in posttraumatic skeletal muscle injury.  相似文献   

8.
The factors regulating the dynamic expression of matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs) in the primate corpus luteum (CL) during the menstrual cycle are unknown. We hypothesized that LH or progesterone (P) regulate interstitial-collagenase (MMP-1), the gelatinases (MMP-2 and -9), TIMP-1, and TIMP-2 in the CL. Hormone ablation/replacement was performed in rhesus monkeys on Days 9-11 of the luteal phase in five treatment groups (n = 4/group): control (no treatment), antide (GnRH antagonist), antide + LH; antide + LH + trilostane (TRL; 3beta-hydroxysteroid dehydrogenase inhibitor), and antide + LH + TRL + R5020 (nonmetabolizable progestin). On Day 12, the CL was removed and the RNA and protein isolated for real-time polymerase chain reaction and immunoassays, respectively. The MMP-1 mRNA increased 20-fold with antide, whereas LH replacement maintained MMP-1 mRNA at control levels. Likewise, TRL increased MMP-1 mRNA 54-fold, and R5020 prevented this effect. Immunodetectable MMP-1 protein also increased with antide or TRL; these increases were abated with LH or R5020. Gelatinase mRNA and/or protein levels increased with antide (e.g., 3-fold, MMP-2 mRNA), and LH replacement reduced protein levels (e.g., 11-fold, MMP-2). The TRL increased MMP-9, but not MMP-2, expression; however, R5020 replacement had no effect on mRNA or protein levels. The LH treatment increased TIMP-1 and -2 mRNA and TIMP-1 protein expression compared to controls and antide groups, whereas R5020 enhanced only immunodetectable TIMP-1. These data strongly suggest that LH suppresses MMP-1 in the primate CL via P and that it also suppresses gelatinases, either at the mRNA (MMP-2) or protein (MMP-2 and -9) levels, perhaps in part via steroids, including P. In contrast, LH promotes TIMP expression, perhaps via steroids, including P.  相似文献   

9.
10.
11.
Luteal tissue contains matrix metalloproteinases (MMPs) that cleave specific components of the extracellular matrix (ECM) and are inhibited by tissue inhibitors of metalloproteinases (TIMPs). We previously reported a decrease in luteal TIMP-1 within 15 min of prostaglandin F(2 alpha) (PGF(2 alpha))-induced luteolysis. An increase in the MMP:TIMP ratio may promote ECM degradation and apoptosis, as observed in other tissues that undergo involution. The objectives of these experiments were to determine whether 1) PGF(2 alpha) affects expression of mRNA encoding fibrillar collagenases (MMP-1 and -13), gelatinases A and B (MMP-2 and -9), membrane type (mt)-1 MMP (MMP-14), stromelysin (MMP-3), and matrilysin (MMP-7), and 2) PGF(2 alpha) increases MMP activity during PGF(2 alpha)-induced luteolysis in sheep. Corpora lutea (n = 3-10/time point) were collected at 0, 15, and 30 min and 1, 2, 4, 6, 12, 24, and 48 h after PGF(2 alpha) administration. Northern blot analysis confirmed the presence of all MMPs except MMP-9. Expression of mRNA for the above MMPs (except MMP-2) increased significantly (P < 0.05) by 30 min, and all MMPs increased significantly (P < 0.05) by 6 h after PGF(2 alpha) administration. Expression of MMP-14 mRNA increased significantly (P < 0.05) by 15 min post-PGF(2 alpha) and remained elevated through 48 h. MMP activity in luteal homogenates (following proenzyme activation and inactivation of inhibitors) was increased significantly (P < 0.05) by 15 min and remained elevated through 48 h post-PGF(2 alpha). MMP activity was localized (in situ zymography) to the pericellular area of various cell types in the 0-h group and was markedly increased by 30 min post-PGF(2 alpha). MMP mRNA expression and activity were significantly increased following PGF(2 alpha) treatment. Increased MMP activity may promote ECM degradation during luteolysis.  相似文献   

12.
An imbalance in the matrix metalloproteinase (MMP) : tissue inhibitor of MMP (TIMP) ratio may be associated with tissue injury. Here, we studied the regulation of TIMP and MMP gene expression in primary glial cultures to ascertain the factors involved in the regulation of these genes in conditions of inflammatory neuropathology. Astrocytes were found to basally express TIMP-1 and TIMP-3 mRNA while microglia expressed only TIMP-2 mRNA. TIMP-4 mRNA was not detectable in either cell type. Treatment with interferon-alpha (IFN-alpha), IFN-gamma, interleukin-3 (IL-3), IL-6 or tumor necrosis factor-alpha (TNF-alpha) did not alter expression of the TIMP genes. However, in astrocytes, but not in microglia, serum, IL-1beta or lipopolysaccharide (LPS) evoked a dose- and time-dependent increase in TIMP-1 mRNA and a coincident down-regulation of the TIMP-3 gene. Astrocytes were found to express mRNA constitutively for MMPs -3, -11 and -14. In contrast, microglia expressed only MMP-12 mRNA under basal conditions. IL-1beta enhanced MMP-3 mRNA levels while LPS increased the MMP-3, -9, -12, -13 and -14 mRNAs. Our findings reveal that regulatory control of TIMP and MMP gene expression by glial cells is agonist- and cell-type specific, and suggest that innate immune signals govern the temporal and spatial expression patterns of TIMP and MMP genes in neuroinflammatory conditions of the CNS.  相似文献   

13.
14.
15.
基质金属蛋白酶(MMPs)家族的作用是降解所有细胞外基质,其活性受其特异性组织抑制因子(TIMPs)的抑制。细胞外基质成分的降解与重组在动物生殖生长过程中起重要作用,其变化可以通过MMPs和TIMPs两者表达水平的变化进行监测。大鼠虽然没有月经形成,但是在其子宫内膜也出现类似灵长类的生殖生物学变化。本文从MMPs和TIMPs两者的表达水平,对大鼠子宫内膜的这些变化进行了研究。于大鼠动情周期的不同时期,将其处死、取子宫制备酶粗提液和组织切片,采用酶谱法(zymoyranhn)和原位杂交方法研究动情周期大鼠子宫中MMP-2和-9的活性变化以及MMP-2、-9和TIMP-1、-2、-3mRNA的表达。并通过光密度扫描方法对酶谱结果进行半定量分析。所用杂交探针见Table1。酶谱结果显示:在动情周期大鼠子宫中只检测到67kDa的MMP-2活性,而没有检测到MMP-9的活性(Fig.1)。MMP-2的活性在动情前期最高,动情期和动情后期次之,间情期最低(Fig.2)。原位杂交结果显示:MMP-2、-9、TIMP-1、-2、-3mRNA主要在子宫内膜基底部的基质细胞中表达。MMP-2和-9mRNA在动情前期、动情期和动  相似文献   

16.
Collagen is denatured in the gradual cervical ripening process during late pregnancy, already before the onset of final cervical ripening at parturition. Matrix Metallo Proteinases (MMPs) might be responsible for this process. To investigate the presence and potential function of MMPs at the different stages of the ripening process, serial cervical biopsies were obtained from 10 cows at Days 185 and 275 of pregnancy (approximately 5 days before calving), at parturition and at 30 days after parturition. The mRNA and protein expression of MMP-1, MMP-2, and MMP-9 and of the tissue inhibitors of MMPs (TIMP)-1 and TIMP-2 were semi-quantitatively determined using RT-PCR, respectively, zymography, Westernblot, and ELISA techniques and the localization of MMP-2 protein and presence of granulocytes by immunohistochemistry and Luna staining. At parturition compared to 185 days pregnancy the MMP-1 protein expression and the numbers of granulocytes were significantly increased by 3 and 26-fold respectively. MMP-2 mRNA and protein expression had already increased 2.5 (P < 0.05) and twofold (P < 0.05) at 5 days before parturition, prior to final ripening. At that time, MMP-2 was present in smooth muscle cells and extra cellular matrix. TIMP-1 mRNA expression was significantly increased at parturition and TIMP-2 mRNA expression peaked at 5 days before parturition. The increased expression of MMP-2 at 5 days before parturition, suggests that in the cow MMP-2 is responsible for collagen denaturation in the last part of gradual cervical ripening, while MMP-1 and MMP-9 are only active during the final cervical ripening process at parturition.  相似文献   

17.
We have investigated the effects of TGF-beta on the ability of the human fibrosarcoma cell line, HT1080, to invade a reconstituted basement membrane (Matrigel) in vitro. Exposure of HT1080 cells to TGF-beta (1-10ng/ml) caused a dose-dependent inhibition of HT1080 cell invasion. Unexpectedly, TGF-beta (10ng/ml) significantly enhanced (10-fold) the mRNA expression of the 68-72kDa latent type IV collagenase. Zymogram analysis revealed a 7-fold increase in the 68-72kDa latent type IV collagenase concomitant with an increase in the activated form (62kDa). TGF-beta induced the 92kDa type IV collagenase to a lesser degree. HT1080 cells exposed to TGF-beta also produced more tissue inhibitor of metalloprotease (TIMP) at both the mRNA (10-fold) and protein levels (5-fold). Although TGF-beta induced both type IV collagenases and TIMP, the net collagenolytic activity in the conditioned media after invasion assay was reduced in the presence of TGF-beta. The data suggest that the inhibition of invasiveness is due, at least in part, to the increased TIMP expression. These data suggest that TGF-beta may play a role in tumor cell invasion by increasing the expression of TIMP.  相似文献   

18.
BACKGROUND AND AIMS: Helicobacter pylori infection results in an active, chronic inflammation of the gastric mucosa. Previous studies have highlighted the importance of matrix metalloproteinases (MMPs) in diseases involving mucosal inflammation, prompting us to investigate MMP activity in H. pylori-induced gastritis. METHODS: Gastric biopsies were obtained from H. pylori-infected and uninfected volunteers, and MMP activity was assessed using substrate gel electrophoresis. MMP production was also evaluated by immunohistochemistry and real time-polymerase chain reaction. In parallel, tissue inhibitors of MMPs (TIMP) levels and TIMP-MMP complexes were examined in corresponding tissues using enzyme-linked immunosorbent assays and Western blotting. Finally, MMP production by gastric macrophages was determined after stimulation with H. pylori. RESULTS: Antral mucosa of H. pylori-infected subjects demonstrated a 19-fold higher MMP-9 activity than that of uninfected individuals. MMP-2 was present at lower levels, but was also increased in H. pylori-infected individuals, while there was no difference in the total levels of TIMP-1 and TIMP-2 between the groups of volunteers. Significant numbers of MMP-9-containing cells were only found in the H. pylori-infected antral mucosa. Tissue-resident macrophages were significantly increased in H. pylori-infected individuals, and double-staining showed MMP-9 colocalized to macrophages. Furthermore, gastric macrophages secreted MMP-9 in response to H. pylori bacteria. A corresponding 10-fold increase of gene expression of MMP-9 was seen in patients infected with H. pylori compared to uninfected individuals. CONCLUSIONS: Helicobacter pylori infection results in a substantial increase in MMP-9 and MMP-2 activity in the gastric mucosa, probably contributed to in large part by tissue-resident macrophages, while no changes were seen in the TIMP levels. The net increase in gastric MMP activity is likely to contribute to tissue damage during H. pylori-associated gastritis.  相似文献   

19.
Infections of body tissue by Staphylococcus aureus are quickly followed by degradation of connective tissue. Patients with rheumatoid arthritis are more prone to S. aureus-mediated septic arthritis. Various types of collagen form the major structural matrix of different connective tissues of the body. These different collagens are degraded by specific matrix metalloproteinases (MMPs) produced by fibroblasts, other connective tissue cells, and inflammatory cells that are induced by interleukin-1 (IL-1) and tumor necrosis factor (TNF). To determine the host's contribution in the joint destruction of S. aureus-mediated septic arthritis, we analyzed the MMP expression profile in human dermal and synovial fibroblasts upon exposure to culture supernatant and whole cell lysates of S. aureus. Human dermal and synovial fibroblasts treated with cell lysate and filtered culture supernatants had significantly enhanced expression of MMP-1, MMP-2, MMP-3, MMP-7, MMP-10, and MMP-11 compared with the untreated controls (p < 0.05). In the S. aureus culture supernatant, the MMP induction activity was identified to be within the molecular-weight range of 30 to >50 kDa. The MMP expression profile was similar in fibroblasts exposed to a combination of IL-1/TNF. mRNA levels of several genes of the mitogen-activated protein kinase (MAPK) signal transduction pathway were significantly elevated in fibroblasts treated with S. aureus cell lysate and culture supernatant. Also, tyrosine phosphorylation was significantly higher in fibroblasts treated with S. aureus components. Tyrosine phosphorylation and MAPK gene expression patterns were similar in fibroblasts treated with a combination of IL-1/TNF and S. aureus. Mutants lacking staphylococcal accessory regulator (Sar) and accessory gene regulator (Agr), which cause significantly less severe septic arthritis in murine models, were able to induce expression of several MMP mRNA comparable with that of their isogenic parent strain but induced notably higher levels of tissue inhibitors of metalloproteinases (TIMPs). To our knowledge, this is the first report of induction of multiple MMP/TIMP expression from human dermal and synovial fibroblasts upon S. aureus treatment. We propose that host-derived MMPs contribute to the progressive joint destruction observed in S. aureus-mediated septic arthritis.  相似文献   

20.
Lipoxins are a novel class of endogenous eicosanoid mediators that potently inhibit inflammatory events by signaling via specific receptors expressed on phagocytic cells. Animal models have shown that lipoxin A4 (LXA4) down-regulates inflammation in vivo. Here we demonstrate, for the first time, the expression of LXA4 receptors, and their up-regulation by IL-1 beta, in normal human synovial fibroblasts (SF). We examined whether exogenous LXA4 abrogated IL-1 beta stimulation of SF in vitro. IL-1 beta induced the synthesis of IL-6, IL-8, and matrix metalloproteinases (MMP)-1 and -3. At nanomolar concentrations, LXA4 inhibited these IL-1 beta responses with reduction of IL-6 and IL-8 synthesis, by 45 +/- 7% and 75 +/- 11%, respectively, and prevented IL-1 beta-induced MMP-3 synthesis without significantly affecting MMP-1 levels. Furthermore, LXA4 induced a 2-fold increase of tissue inhibitor of metalloproteinase (TIMP)-1 and a approximately 3-fold increase of TIMP-2 protein levels. LXA4 inhibitory responses were dose dependent and were abrogated by pretreatment with LXA4 receptor antiserum. LXA4-induced changes of IL-6 and TIMP were accompanied by parallel changes in mRNA levels. These results indicate that LXA4 in activated SF inhibits the synthesis of inflammatory cytokines and MMP and stimulates TIMP production in vitro. These findings suggest that LXA4 may be involved in a negative feedback loop opposing inflammatory cytokine-induced activation of SF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号