首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The crystal structures of Thermus thermophilus phenylalanyl-tRNA synthetase (PheRS) complexed with phenylalanine and phenylalaninyl-adenylate (PheOH-AMP), the synthetic analogue of phenylalanyl-adenylate, have been determined at 2.7A and 2.5A resolution, respectively. Both Phe and PheOH-AMP are engulfed in the active site cleft of the catalytic alpha-subunit of PheRS, and neither makes contact with the PheRS beta-subunit. The conformations and binding of Phe are almost identical in both complexes. The recognition of Phe by PheRS is achieved through a mixture of multiple van der Waals interactions and hydrogen bonds. The side-chain of the Phe substrate is sandwiched between the hydrophobic side-chains of Phealpha258 and Phealpha260 on one side, and the main-chain atoms of the two adjacent beta-strands on the other. The side-chains of Valalpha261 and Alaalpha314 form the back wall of the amino acid binding pocket. In addition, PheRS residues (Trpalpha149, Seralpha180, Hisalpha178, Argalpha204, Glnalpha218, and Glualpha220) form a total of seven hydrogen bonds with the main-chain atoms of Phe. The conformation of PheOH-AMP and the network of interactions of its AMP moiety with PheRS are reminiscent of the other class II synthetases. The structural similarity between PheRS and histidyl-tRNA synthetase extends to the amino acid binding site, which is normally unique for each enzyme. The complex structures suggest that the PheRS beta-subunit may affect the first step of the reaction (formation of phenylalanyl-adenylate) through the metal-mediated conserved alpha/beta-subunit interface. The modeling of tyrosine in the active site of PheRS revealed no apparent close contacts between tyrosine and the PheRS residues. This result implies that the proofreading mechanism against activated tyrosine, rather than direct recognition, may play the major role in the PheRS specificity.  相似文献   

2.
The functional roles of phenylalanine and ATP in productive binding of the tRNA(Phe) acceptor end have been studied by photoaffinity labeling (cross-linking) of T. thermophilus phenylalanyl-tRNA synthetase (PheRS) with tRNA(Phe) analogs containing the s(4)U residue in different positions of the 3'-terminal single-stranded sequence. Human and E. coli tRNA(Phe)s used as basic structures differ by efficiency of the binding and aminoacylation with the enzyme under study. Destabilization of the complex with human tRNA(Phe) caused by replacement of three recognition elements decreases selectivity of labeling of the alpha- and beta-subunits responsible for the binding of adjacent nucleotides of the CCA-end. Phenylalanine affects the positioning of the base and ribose moieties of the 76th nucleotide, and the recorded effects do not depend on structural differences between bacterial and eukaryotic tRNA(Phe)s. Both in the absence and presence of phenylalanine, ATP more effectively inhibits the PheRS labeling with the s(4)U76-substituted analog of human tRNA(Phe) (tRNA(Phe)-s(4)U76) than with E. coli tRNA(Phe)-s(4)U76: in the first case the labeling of the alpha-subunits is inhibited more effectively; the labeling of the beta-subunits is inhibited in the first case and increased in the second case. The findings analyzed with respect to available structural data on the enzyme complexes with individual substrates suggest that the binding of phenylalanine induces a local rearrangement in the active site and directly controls positioning of the tRNA(Phe) 3'-terminal nucleotide. The effect of ATP on the acceptor end positioning is caused by global structural changes in the complex, which modulate the conformation of the acceptor arm. The rearrangement of the acceptor end induced by small substrates results in reorientation of the 3'-OH-group of the terminal ribose from the catalytic subunit onto the noncatalytic one, and this may explain the unusual stereospecificity of aminoacylation in this system.  相似文献   

3.
Neither the tertiary structure nor the location of active sites are known for phenylalanyl-tRNA synthetase (PheRS; alpha 2 beta 2 structure), a member of class II aminoacyl-tRNA synthetases. In an attempt to detect the phenylalanine (Phe) binding site, two Escherichia coli PheRS mutant strains (pheS), which were resistant to p-fluorophenylalanine (p-F-Phe) were analysed genetically. The pheS mutations were found to cause Ala294 to Ser294 exchanges in the alpha subunits from both independent strains. This alteration (S294) resided in the well-conserved C-terminal part of the alpha subunit, precisely within motif 3, a typical class II tRNA synthetase sequence. We thus propose that motif 3 participates in the formation of the Phe binding site of PheRS. Mutation S294 was also the key for proposing a mechanism by which the substrate analogue p-F-Phe is excluded from the enzymatic reaction; this may be achieved by steric interactions between the para-position of the aromatic ring and the amino acid residue at position 294. The Phe binding site model was then tested by replacing the alanine at position 294 as well as the two flanking phenylalanines (positions 293 and 295) by a number of selected other amino acids. In vivo and in vitro results demonstrated that Phe293 and Phe295 are not directly involved in substrate binding, but replacements of those residues affected PheRS stability. However, exchanges at position 294 altered the binding of Phe, and certain mutants showed pronounced changes in specificity towards Phe analogues. Of particular interest was the Gly294 PheRS in which presumably an enlarged cavity for the para position of the aromatic ring allowed an increased aminoacylation of tRNA with p-F-Phe. Moreover, the larger para-chloro and para-bromo derivatives of Phe could interact with this enzyme in vitro and became highly toxic in vivo. The possible exploitation of the Gly294 mutant PheRS for the incorporation of non-proteinogenic amino acids into proteins is discussed.  相似文献   

4.
Monomeric human mitochondrial phenylalanyl-tRNA synthetase (PheRS), or hmPheRS, is the smallest known enzyme exhibiting aminoacylation activity. HmPheRS consists of only two structural domains and differs markedly from heterodimeric eukaryotic cytosolic and bacterial analogs both in the domain organization and in the mode of tRNA binding. Here, we describe the first crystal structure of mitochondrial aminoacyl-tRNA synthetase (aaRS) complexed with tRNA at a resolution of 3.0 Å. Unlike bacterial PheRSs, the hmPheRS recognizes C74, the G1–C72 base pair, and the “discriminator” base A73, proposed to contribute to tRNAPhe identity in the yeast mitochondrial enzyme. An interaction of the tRNA acceptor stem with the signature motif 2 residues of hmPheRS is of critical importance for the stabilization of the CCA-extended conformation and its correct placement in the synthetic site of the enzyme. The crystal structure of hmPheRS–tRNAPhe provides direct evidence that the formation of the complex with tRNA requires a significant rearrangement of the anticodon-binding domain from the “closed” to the productive “open” state. Global repositioning of the domain is tRNA modulated and governed by long-range electrostatic interactions.  相似文献   

5.
The extent of tRNA recognition at the level of binding by Thermus thermophilus phenylalanyl-tRNA synthetase (PheRS), one of the most complex class II synthetases, has been studied by independent measurements of the enzyme association with wild-type and mutant tRNA(Phe)s as well as with non-cognate tRNAs. The data obtained, combined with kinetic data on aminoacylation, clearly show that PheRS exhibits more tRNA selectivity at the level of binding than at the level of catalysis. The anticodon nucleotides involved in base-specific interactions with the enzyme prevail both in the initial binding recognition and in favouring aminoacylation catalysis. Tertiary nucleotides of base pair G19-C56 and base triple U45-G10-C25 contribute primarily to stabilization of the correctly folded tRNA(Phe) structure, which is important for binding. Other nucleotides of the central core (U20, U16 and of the A26-G44 tertiary base pair) are involved in conformational adjustment of the tRNA upon its interaction with the enzyme. The specificity of nucleotide A73, mutation of which slightly reduces the catalytic rate of aminoacylation, is not displayed at the binding step. A few backbone-mediated contacts of PheRS with the acceptor and anticodon stems revealed in the crystal structure do not contribute to tRNA(Phe) discrimination, their role being limited to stabilization of the complex. The highest affinity of T. thermophilus PheRS for cognate tRNA, observed for synthetase-tRNA complexes, results in 100-3000-fold binding discrimination against non-cognate tRNAs.  相似文献   

6.
Roy H  Ibba M 《Biochemistry》2006,45(30):9156-9162
Phenylalanyl-tRNA synthetase (PheRS) is a multidomain (alphabeta)2 heterotetrameric protein responsible for synthesizing Phe-tRNA(Phe) during protein synthesis. Previous studies showed that the alpha subunit forms the catalytic core of the enzyme, while the beta subunit contains a number of autonomous structural modules with a wide range of functions including tRNA anticodon binding and editing of the misaminoacylated species Tyr-tRNA(Phe). The B2 domain of the beta subunit is a structural homologue of the EMAPII/OB fold, which has been shown in other systems to contribute to tRNA binding. Structural studies of PheRS indicated that the B2 domain is distant from bound tRNA(Phe), leaving the role of this module in question. On the basis of homology modeling with other EMAPII domain-containing proteins, the 110 amino acid B2 domain was deleted to produce PheRS deltaB2. Full-length PheRS and PheRS deltaB2 showed comparable kinetics for in vitro aminoacylation, and both enzymes complemented a defect in phenylalanylation in vivo. PheRS deltaB2 showed a 2-fold drop compared to full-length PheRS in the catalytic efficiency (kcat/KM) of Tyr-tRNA(Phe) hydrolysis, suggesting a role for the B2 domain in post-transfer editing. A comparison of tRNA binding by full-length PheRS and PheRS deltaB2 indicated that the B2 domain acts as a secondary tRNA-binding site that could contribute to editing by promoting the translocation of mischarged tRNA to the editing site of PheRS. This proposed role for the B2 domain of PheRS is consistent with previous studies, suggesting that the highly conserved EMAPII fold is able to modulate the affinity of tRNA for its primary binding site.  相似文献   

7.
rRNA(Gm)methyltransferase from an extreme thermophile, Thermus thermophilus HB 27 specifically methylates the 2'-OH of the ribose ring of G18 in the invariant G18-G19 sequence in the D loop of tRNA. The interaction site on tRNA was presumed to be the D loop and stem structure. Destruction of tertiary structure of tRNA caused by heat resulted in a great decrease in the acceptor activity of methyl group. It was suggested by CD measurement that a conformational change of tRNA occurs when it forms an equimolar complex with Gm-methylase.  相似文献   

8.
Bovine mitochondrial (mt) phenylalanine tRNA (tRNAPhe) was purified on a large scale using a new hybridization assay method developed by the authors. Although its melting profile suggested a loose higher order structure, presumably influenced by the apparent loss of D loop-T loop interaction necessary for forming a rigid L-shaped tertiary structure, its aminoacylation capacity catalyzed by mt phenylalanyl-tRNA synthetase (PheRS) was nearly equal to that of Escherichia coli tRNAPhe. Misaminoacylation was not observed for the mt tRNAPhe-mt PheRS system. Comparing the aminoacylation efficiencies of several combinations of tRNAPheS and PheRSs from various sources, including bovine mitochondria, bovine and yeast cytosols, E. coli, Thermus thermophilus, and Sulfolobus acidocaldarius, it was clarified that mt PheRS was able to aminoacylate all the above mentioned tRNAPhe species, albeit with varying degrees of efficiency. This broad charging spectrum suggests that mt PheRS possesses a relatively simple recognition mechanism toward its substrate, tRNAPhe.  相似文献   

9.
Synthetic RNA stem loops corresponding to positions 28-42 in the anticodon region of tRNA(Phe) bind efficiently in an mRNA-dependent manner to ribosomes, whereas those made from DNA do not. In order to identify the positions where ribose is required, the anticodon stem-loop region of tRNA(Phe) (Escherichia coli) was synthesized chemically using a mixture of 2'-hydroxyl- and 2'-deoxynucleotide phosphoramidites. Oligonucleotides whose ribose composition allowed binding were retained selectively on nitrocellulose filters via binding to 30S ribosomal subunits. The binding-competent oligonucleotides were submitted to partial alkaline hydrolysis to identify the positions that were enriched for ribose. Quantification revealed a strong preference for a 2'-hydroxyl group at position U33. This was shown directly by the 50-fold lower binding affinity of a stem loop containing a single deoxyribose at position U33. Similarly, defective binding of the corresponding U33-2'-O-methyl-substituted stem-loop RNA suggests that absence of the 2'-hydroxyl group, rather than an altered sugar pucker, is responsible. Stem-loop oligoribonucleotides from different tRNAs with U33-deoxy substitutions showed similar, although quantitatively different effects, suggesting that intramolecular rather than tRNA-ribosome interactions are affected. Because the 2'-hydroxyl group of U33 was shown to be a major determinant of the U-turn of the anticodon loop in the crystal structure of tRNA(Phe) in yeast, our finding might indicate that the U-turn conformation in the anticodon loop is required and/or maintained when the tRNA is bound to the ribosomal P site.  相似文献   

10.
The effect of replacement of tRNA(Phe) recognition elements on positioning of the 3'-terminal nucleotide in the complex with phenylalanyl-tRNA synthetase (PheRS) from T. thermophilus in the absence or presence of phenylalanine and/or ATP has been studied by photoaffinity labeling with s(4)U76-substituted analogs of wild type and mutant tRNA(Phe). The double mutation G34C/A35U shows the strongest disorientation in the absence of low-molecular-weight substrates and sharply decreases the protein labeling, which suggests an initiating role of the anticodon in generation of contacts responsible for the acceptor end positioning. Efficiency of photo-crosslinking with the alpha- and beta-subunits in the presence of individual substrates is more sensitive to nucleotide replacements in the anticodon (G34 by A or A36 by C) than to changes in the general structure of tRNA(Phe) (as a result of replacement of the tertiary pair G19-C56 by U19-G56 or of U20 by A). The degree of disorders in the 3'-terminal nucleotide positioning in the presence of both substrates correlates with decrease in the turnover number of aminoacylation due to corresponding mutations. The findings suggest that specific interactions of the enzyme with the anticodon mainly promote the establishment (controlled by phenylalanine) of contacts responsible for binding of the CCA-end and terminal nucleotide in the productive complex, and the general conformation of tRNA(Phe) determines, first of all, the acceptor stem positioning (controlled by ATP). The main recognition elements of tRNA(Phe), which optimize its initial binding with PheRS, are also involved in generation of the catalytically active complex providing functional conformation of the acceptor arm.  相似文献   

11.
The interaction of Thermus thermophilus phenylalanyl-tRNA synthetase (PheRS) with the 3;-terminal nucleotide of tRNAPhe has been studied by affinity labeling to solve the problem arising from X-ray crystallographic study: the binding sites of phenylalanine and the 3;-terminal nucleotide base were revealed to be identical in the crystal structures of PheRS complexed with the substrates. tRNAPhe derivatives containing a photoreactive 4-thiouridine (tRNAPhe-s4U-76) or 6-thioguanosine residue (tRNAPhe-s6G-76) in the 3;-end have been prepared using terminal tRNA nucleotidyl transferase. Kinetic measurements of aminoacylation provide evidence for a functional role of base-specific interactions of the 3;-terminal adenosine in productive interaction of tRNAPhe with the enzyme: tRNAPhe-s4U-76 cannot be aminoacylated; the replacement of A-76 with s6G results in a 370-fold reduction of catalytic efficiency of aminoacylation mainly due to decreased Vmax value. Relative cross-linking of the s6G-substituted tRNA to the alpha-subunit (69% of the total yield of the cross-linked alpha- and beta-subunits) is two times higher as compared to the cross-linking of tRNAPhe-s4U-76. The dialdehyde derivative, tRNAPhe-Aox-76, with periodate-oxidized 3;-terminal ribose is cross-linked with the same selectivity to the alpha-subunit as tRNAPhe-s6G-76. The results suggest specific binding of the 3;-terminal nucleotide of tRNAPhe by the catalytic subunit of PheRS in the absence of other substrates. Comparative analysis of the cross-linked products in the absence and in the presence of small substrates revealed ATP and aminoacyl-adenylate to effect the interaction of the tRNAPhe acceptor end with PheRS. The correct positioning of the 3;-terminal nucleotide of tRNAPhe corresponding to the structure of the productive complex with PheRS is therefore promoted only in the presence of all three substrates.  相似文献   

12.
The crystal structure of Phenylalanyl‐tRNA synthetase from E. coli (EcPheRS), a class II aminoacyl‐tRNA synthetase, complexed with phenylalanine and AMP was determined at 3.05 Å resolution. EcPheRS is a (αβ)2 heterotetramer: the αβ heterodimer of EcPheRS consists of 11 structural domains. Three of them: the N‐terminus, A1 and A2 belong to the α‐subunit and B1‐B8 domains to the β subunit. The structure of EcPheRS revealed that architecture of four helix‐bundle interface, characteristic of class IIc heterotetrameric aaRSs, is changed: each of the two long helices belonging to CLM transformed into the coil‐short helix structural fragments. The N‐terminal domain of the α‐subunit in EcPheRS forms compact triple helix domain. This observation is contradictory to the structure of the apo form of TtPheRS, where N‐terminal domain was not detected in the electron density map. Comparison of EcPheRS structure with TtPheRS has uncovered significant rearrangements of the structural domains involved in tRNAPhe binding/translocation. As it follows from modeling experiments, to achieve a tighter fit with anticodon loop of tRNA, a shift of ~5 Å is required for C‐terminal domain B8, and of ~6 to 7 Å for the whole N terminus. EcPheRSs have emerged as an important target for the incorporation of novel amino acids into genetic code. Further progress in design of novel compounds is anticipated based on the structural data of EcPheRS.  相似文献   

13.
Tyrosyl-tRNA synthetase (TyrRS) has been studied extensively by mutational and structural analyses to elucidate its catalytic mechanism. TyrRS has the HIGH and KMSKS motifs that catalyze the amino acid activation with ATP. In the present study, the crystal structures of the Escherichia coli TyrRS catalytic domain, in complexes with l-tyrosine and a l-tyrosyladenylate analogue, Tyr-AMS, were solved at 2.0A and 2.7A resolution, respectively. In the Tyr-AMS-bound structure, the 2'-OH group and adenine ring of the Tyr-AMS are strictly recognized by hydrogen bonds. This manner of hydrogen-bond recognition is conserved among the class I synthetases. Moreover, a comparison between the two structures revealed that the KMSKS loop is rearranged in response to adenine moiety binding and hydrogen-bond formation, and the KMSKS loop adopts the more compact ("semi-open") form, rather than the flexible, open form. The HIGH motif initially recognizes the gamma-phosphate, and then the alpha and gamma-phosphates of ATP, with a slight rearrangement of the residues. The other residues around the substrate also accommodate the Tyr-AMS. This induced-fit form presents a novel "snapshot" of the amino acid activation step in the aminoacylation reaction by TyrRS. The present structures and the T.thermophilus TyrRS ATP-free and bound structures revealed that the extensive induced-fit conformational changes of the KMSKS loop and the local conformational changes within the substrate binding site form the basis for driving the amino acid activation step: the KMSKS loop adopts the open form, transiently shifts to the semi-open conformation according to the adenosyl moiety binding, and finally assumes the rigid ATP-bound, closed form. After the amino acid activation, the KMSKS loop adopts the semi-open form again to accept the CCA end of tRNA for the aminoacyl transfer reaction.  相似文献   

14.
GNRA tetraloops make a U-turn.   总被引:8,自引:3,他引:5       下载免费PDF全文
The U-turn (uridine turn) is an RNA structural motif that contains a change in backbone direction stabilized by specific interactions across the bend. It was first identified in the anticodon loop and the T-loop of yeast tRNA(Phe) (Quigley & Rich, 1976, Science 194:796-806) and has recently also been found in the crystal structure of the hammerhead ribozyme (Pley HW, Flaherty KM, McKay DB, 1994a, Nature 372:68-74). These U-turn motifs follow a UNR consensus sequence (where N is any nucleotide and R is G or A). Here we report that the frequently occurring GNRA tetraloops also contain a U-turn motif, and we discuss the role of U-turns as abundant tertiary structural motifs in RNA.  相似文献   

15.
Nucleoside base modifications can alter the structures, dynamics, and metal ion binding properties of transfer RNA molecules and are important for accurate aminoacylation and for maintaining translational fidelity and efficiency. The unmodified anticodon stem-loop from Escherichia coli tRNA(Phe) forms a trinucleotide loop in solution, but Mg(2+) and dimethylallyl modification of A(37) N6 disrupt the loop conformation and increase the mobility of the loop and loop-proximal nucleotides. We have used NMR spectroscopy to investigate the binding and structural effects of multivalent cations on the unmodified and dimethylallyl-modified anticodon stem-loops from E. coli tRNA(Phe). The divalent cation binding sites were probed using Mn(2+) and Co(NH(3))(6)(3+). These ions bind along the major groove of the stem and associate with the anticodon loop on the major groove side in a nonspecific manner. Co(NH(3))(6)(3+) stabilizes the U-turn conformation of the loop in the dimethylallyl-modified molecule, and the chemical shift changes that accompany Co(NH(3))(6)(3+) binding are similar to those observed with the addition of Mg(2+). The base-phosphate and base-2'-OH hydrogen bonds that characterize the UNR U-turn motif lead to spectral signatures in the form of unusual (15)N and (1)H chemical shifts and reduced solvent exchange of the U(33) 2'-OH and N3H protons. The unmodified molecule also displays spectral features of the U-turn fold in the presence of Co(NH(3))(6)(3+), but the loop has additional conformations and is dynamic. The results indicate that charge neutralization by a polyvalent cation is sufficient to promote formation of the U-turn fold. However, base modification is necessary to destabilize competing alternative conformers even for a purine-rich loop sequence that is predicted to have strongly favorable base stacking energy.  相似文献   

16.
The low temperature crystal structure of the ternary complex of Thermus thermophilus seryl-tRNA synthetase with tRNA(Ser) (GGA) and a non-hydrolysable seryl-adenylate analogue has been refined at 2.7 angstrom resolution. The analogue is found in both active sites of the synthetase dimer but there is only one tRNA bound across the two subunits. The motif 2 loop of the active site into which the single tRNA enters interacts within the major groove of the acceptor stem. In particular, a novel ring-ring interaction between Phe262 on the extremity of this loop and the edges of bases U68 and C69 explains the conservation of pyrimidine bases at these positions in serine isoaccepting tRNAs. This active site takes on a significantly different ordered conformation from that observed in the other subunit, which lacks tRNA. Upon tRNA binding, a number of active site residues previously found interacting with the ATP or adenylate now switch to participate in tRNA recognition. These results shed further light on the structural dynamics of the overall aminoacylation reaction in class II synthetases by revealing a mechanism which may promote an ordered passage through the activation and transfer steps.  相似文献   

17.
Periodate-oxidized tRNA(Phe) (tRNA(oxPhe)) behaves as a specific affinity label of tetrameric Escherichia coli phenylalanyl-tRNA synthetase (PheRS). Reaction of the alpha 2 beta 2 enzyme with tRNA(oxPhe) results in the loss of tRNAPhe aminoacylation activity with covalent attachment of 2 mol of tRNA dialdehyde/mol of enzyme, in agreement with the stoichiometry of tRNA binding. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of the PheRS-[14C]tRNA(oxPhe) covalent complex indicates that the large (alpha, Mr 87K) subunit of the enzyme interacts with the 3'-adenosine of tRNA(oxPhe). The [14C]tRNA-labeled chymotryptic peptides of PheRS were purified by both gel filtration and reverse-phase high-performance liquid chromatography. The radioactivity was almost equally distributed among three peptides: Met-Lys[Ado]-Phe, Ala-Asp-Lys[Ado]-Leu, and Lys-Ile-Lys[Ado]-Ala. These sequences correspond to residues 1-3, 59-62, and 104-107, respectively, in the N-terminal region of the 795 amino acid sequence of the alpha subunit. It is noticeable that the labeled peptide Ala-Asp-Lys-Leu is adjacent to residues 63-66 (Arg-Val-Thr-Lys). The latter sequence was just predicted to resemble the proposed consensus tRNA CCA binding region Lys-Met-Ser-Lys-Ser, as deduced from previous affinity labeling studies on E. coli methionyl- and tyrosyl-tRNA synthetases [Hountondji, C., Dessen, P., & Blanquet, S. (1986) Biochimie 68, 1071-1078].  相似文献   

18.
Moor N  Lavrik O  Favre A  Safro M 《Biochemistry》2003,42(36):10697-10708
The interaction of human phenylalanyl-tRNA synthetase, a eukaryotic prototype with an unknown three-dimensional structure, with the tRNA(Phe) acceptor end was studied by s(4)U-induced affinity cross-linking with human tRNA(Phe) derivatives site-specifically substituted at the single-stranded 3' end. Two different subunits of the enzyme bind two adjacent nucleotides of the tRNA(Phe) 3' end: nucleotide 76 is associated with the catalytic alpha subunit, while nucleotide 75 is in contact with the beta subunit. The binding mode is similar to that revealed previously in structural and affinity cross-linking studies of the prokaryotic Thermus thermophilus phenylalanyl-tRNA synthetase. Our results suggest that the distinctive features of tRNA(Phe) acceptor end binding are conserved for the eukaryotic and prokaryotic tetrameric phenylalanyl-tRNA synthetases despite their significant differences in the domain composition of the beta subunits. The data from affinity cross-linking experiments with human phenylalanyl-tRNA synthetase complexed with small ligands (ATP and/or phenylalanine or a stable synthetic analogue of phenylalanyl adenylate) reveal that the location of the tRNA(Phe) acceptor end varies with the presence and nature of other substrates. The lack of substrate activity of human tRNA(Phe) substituted with s(4)U at the 3'-terminal position suggests that base-specific interactions of the terminal adenosine are critically important for a productive interaction. The conformational rearrangement of the tRNA 3' end induced by the other substrates and dictated by base-specific contacts of the terminal nucleotide is an additional means of ensuring the phenylalanylation specificity in both prokaryotic and eukaryotic systems.  相似文献   

19.
Madore E  Lipman RS  Hou YM  Lapointe J 《Biochemistry》2000,39(23):6791-6798
The conformation of a tRNA in its initial contact with its cognate aminoacyl-tRNA synthetase was investigated with the Escherichia coli glutamyl-tRNA synthetase-tRNA(Glu) complex. Covalent complexes between the periodate-oxidized tRNA(Glu) and its synthetase were obtained. These complexes are specific since none were formed with any other oxidized E. coli tRNA. The three major residues cross-linked to the 3'-terminal adenosine of oxidized tRNA(Glu) are Lys115, Arg209, and Arg48. Modeling of the tRNA(Glu)-glutamyl-tRNA synthetase based on the known crystal structures of Thermus thermophilus GluRS and of the E. coli tRNA(Gln)-glutaminyl-tRNA synthetase complex shows that these three residues are located in the pocket that binds the acceptor stem, and that Lys115, located in a 26 residue loop closed by coordination to a zinc atom in the tRNA acceptor stem-binding domain, is the first contact point of the 3'-terminal adenosine of tRNA(Glu). In our model, we assume that the 3'-terminal GCCA single-stranded segment of tRNA(Glu) is helical and extends the stacking of the acceptor stem. This assumption is supported by the fact that the 3' CCA sequence of tRNA(Glu) is not readily circularized in the presence of T4 RNA ligase under conditions where several other tRNAs are circularized. The two other cross-linked sites are interpreted as the contact sites of the 3'-terminal ribose on the enzyme during the unfolding and movement of the 3'-terminal GCCA segment to position the acceptor ribose in the catalytic site for aminoacylation.  相似文献   

20.
FRS1 and FRS2, the structural genes encoding the large (alpha) and small (beta) subunits of yeast phenylalanyl-tRNA synthetase (PheRS) were placed under the control of the lacZ promoter by creating an artificial operon. The FRS2 gene was fused next to the promoter, followed by a 14 base pair intergenic sequence containing a translation reinitiation site in front of the FRS1 coding sequences. The engineered PheRS has 16 N-terminal amino acids from beta-galactosidase fused to the beta subunit. However, the purified protein shows a Km value for tRNA(Phe) that is indistinguishable from that of the the native enzyme. The product of the FRS2-FRS1 operon is not able to complement thermosensitive E. coli PheRS, indicating the lack of heterologous aminoacylation in vivo. We made a deletion in the FRS2 gene that removed about 150 amino terminal residues of the beta subunit. The truncated protein showed intact ATP-PPi exchange, whereas tRNA aminoacylation was lost. This result is similar to that of limited proteolysis performed on the native enzyme that yielded a tetrameric alpha 2 beta'2 structure, able to form aminoacyladenylate but unable to bind tRNA(Phe). A deletion of 50 amino acids from the carboxyl terminus of the beta chain resulted in the loss of both enzyme activities; this suggests the participation of the C-terminal end of the beta subunit in the active site or in subunit assembly to yield a tetrameric functional enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号