首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
ABSTRACT The relative capacity of Na+, K+ and Cl- to stimulate germination of spores of the microsporidian Nosema algerae, a pathogen of mosquitoes, was examined by ion substitution experiments. Sodium at 0.1 M was ineffective to produce the high percentage of germination that typically occurs with 0.1 M NaCl (the normal stimulation solution) if Cl- was substituted with the usually impermeant anions SO42-, HPO42-, or the organic acids oxalate, cacodylate, EGTA, MES and HEPES. However, substantial concentration- and pH-dependent germination was seen with Na2SO4 in the 0.2-0.8 M Na+ range. Similar results were obtained with solutions of K+ accompanied by impermeant anions. In contrast, the chloride salts of usually impermeant cations, like choline and triethanolamine, failed to germinate spores even at 0.8 M unless Na+ or K+ was independently added. The presence of 0.5 M choline chloride in the medium reduced the levels of Na2SO4 required to produce germination down to equivalence with those of Na+ in the normal stimulation solution. Monensin, a Na+ ionophore, facilitated the germination induced by a medium-level stimulus (0.04 M NaCl) in sonicated samples. These findings indicate that N. algerae spores germinate in response to the alkali metal cations, while CI- plays a passive role by diffusing to maintain internal electroneutrality during cation influx. A possible mechanism of cation action in spore germination is suggested on the basis of these results and observations on other systems of intracellular motility.  相似文献   

2.
Under conditions that assured rebinding of the extrinsic 17 and 23 kDa polypeptides, Cl--depleted Photosystem II membranes isolated from spinach chloroplasts were subjected to reconstituting treatments in media containing NaF, NaCl, NaBr, NaI or NaNO3, or they were kept in a medium without any added salt other than the buffer. After removing most of the unbound reconstituting anions by washing, the O2-evolution activities and thermoluminescence properties of the membranes were compared. While the temperature of maximal thermoluminescence emission was lowest for membranes treated with Cl-, no uniform correlation was evident between the temperature profile of the thermoluminescence emission and the apparent activating effectiveness of the anions in the membranes' water oxidizing machinery. However, the differences between the thermoluminescence features did conform to a trend according to which the emission temperatures were upshifted as the size of the activating anion increased, and its hydration energy decreased, i.e. Cl-<Br-<NO3 -<I-. The inactive F- anions were not well retained by the membranes. To explain the experimental data it is suggested that the structural environment of the charge accumulating Mn-center is influenced by the ionic conditions encountered by the Photosystem II membranes after Cl- removal, further enforced by the binding of compatible anions, and then stabilized by the 17 and 23 kDa extrinsic polypeptides. If, as some concepts imply, the anion binding sites are located at or near the functional Mn, only very exceptional characteristics of the water-oxidizing mechanism may account for the observation that the potentially electron-donating I- anion can serve as activator and that it stabilizes rather than destabilizes the S2-state.Abbreviations Chl chlorophyll - Hepes 4-(2-hydroxyethyl)-1-piperazine-ethane sulfonic acid - Mes 2-(N-morpholino)ethane sulfonic acid - Pheo the pheophytin a of the Photosystem II reaction center - PS photosystem  相似文献   

3.
Growth yield of the halotolerant bacterium A505 was increased by the supplement of Na+, K+, or Rb+ into the culture media with pH 7.5, and inhibited by Li+ or Cs+. In the presence of less than 0.1 M NaCl or KCl alkaline growth media, pH 9.2 to 9.7, afforded optimal growth of this strain. Intracellular ion content of this microbe changed reflecting on the Na+ or K+ concentration in the media, although it tended to accumulate K+ and extrude Na+ in the media without NaCl supplemented. A 1.2 to 1.4-fold stimulation of in vitro NADH oxidase activity was obtained by supplement of salts, except for LiCl. The rate of NADH oxidation in the absence of salts correlated with the pH and showed clear maxima at pH about 8, irrespective of growth conditions. In the presence of 0.5 M NaCl or KCl, on the other hand, pH dependence was less significant and showed only a flat maximum at pH around 7. Effects of anions on NADH oxidase were realized following the lyotropic series: SO 4 2- >F->CH3COO->Cl->I->SCN-, aside from NO 3 - , which exhibited the largest stimulation on enzyme activity in all the anions examined.Abbreviations HEPES 4-(2-hydroxyethyl)-1-piperazine-ethanesulfonic acid - HQNO 2-heptyl-4-hydroxyquinoline-N-oxide - MES 4-morpholineethanesulfonic acid - Tris tris(hydroxy-methyl)methylamine  相似文献   

4.
R. Behl  K. Raschke 《Planta》1986,167(4):563-568
Excised Na+-starved barley roots were suspended in solutions of Na+ in combination with NO 3 - , Cl-, and SO 4 2- , and effects of the added phytohormone, abscisic acid (ABA), to the medium were determined. Abscisic acid increased the rate of Na+ (22Na+) accumulation and the amount of Na+ deposited in the vacuoles. These stimulating effects of ABA were modified by anions following the sequence NO 3 - >Cl->SO 4 2- . Testing whether the magnitude of the pH gradient across the plasmalemma of the cells of the root cortex affects rates of Na+ accumulation and their dependence upon ABA, we observed that, in the pH range from 4 to 8, the ABA-induced stimulation was strongest at pH 5.8, and least at pH 4. Changes in pH during the experiment caused changes in the rates of Na+ accumulation in agreement with experiments performed at constant pH values. Simultaneously with ABA-enhanced accumulation, loss of Na+ occurred. Loss of Na+ was strongest at pH 4 and was affected by anions, being greatest with SO 4 2- and following the sequence SO 4 2- >Cl->NO 3 - . On the basis of the finding that initial acceleration of uptake as well as loss of Na+ depended on the pH of the medium we suggest that, in barley roots, ABA stimulates an exchange of Na+ for H+ at the plasmalemma of the cortical cells. The results indicate that ABA-stimulated expulsion of Na+, in combination with ABA-stimulated sequestration in the vacuoles, constitutes one of the mechanisms which enable barley plants to tolerate higher than normal levels of Na+.Abbreviations ABA abscisic acid - FW fresh weight  相似文献   

5.
Anion conductance and permeability sequences were obtained for frog skeletal muscle membranes from the changes in characteristic resistance and transmembrane potential after the replacement of one anion by another in the bathing solution. Permeability and conductance sequences are the same. The conductance sequence at pH = 7.4 is Cl- Br- > NO3 - > I- > trichloroacetate ≥ benzoate > valerate > butyrate > proprionate > formate > acetate ≥ lactate > benzenesulfonate ≥ isethionate > methylsulfonate > glutamate ≥ cysteate. The anions are divided into two classes: (a) Chloride-like anions (Cl- through trichloroacetate) have membrane conductances that decrease as pH decreases. The last six members of the complete sequence are also chloride like. (b) Benzoate-like anions (benzoate through acetate) have conductances that increase as pH decreases. At pH = 6.7 zinc ions block Cl- and benzoate conductances with inhibitory dissociation constants of 0.12 and 0.16 mM, respectively. Chloride-like and benzoate-like anions probably use the same channels. The minimum size of the channel aperture is estimated as 5.5 x 6.5 Å from the dimensions of the largest permeating anions. A simple model of the channel qualitatively explains chloride-like and benzoate-like conductance sequences and their dependence on pH.  相似文献   

6.
Spirulina platensis (=Arthrospira fusiformis) was isolated from Lake Chitu, a soda crater lake in the Ethiopian Rift Valley, where it formsa dense and almost unialgal population. Growth experiments were run in turbidostats under constant light, to assess growth response and tolerance to salinity, as well as to the component anions. Salinity was tested over the range 13–88 g L-1 using additions of NaHCO3, NaCl or Na2SO4. A maximum specific growth rate (μmax d-1) of 2.14 was achieved at the lowest salinity, but quantum yield (Φ%) was highest between 33 to 51 g L-1. Increasing salinity of the medium reduced the specific growth rate (μ) to a minimum of 0.33 d-1, and Φ to < 0.5%. Growth response in terms of μ and Φ was best in HCO 3 - , less in Cl-, and least in SO 4 2- series. Cultures showed obvious differences in cellular morphology, pigment, nitrogen and phosphorus contents in response to treatment with the different anions. Results indicate that the species has a wide range of tolerance to salinity from NaHCO3. Some degree of tolerance is also shown to high concentrations of Cl- and SO 4 2 , but with an overall lower performance of cells in terms of growth rate, light utilization efficiency, and nutrient status to cells grown in high HCO 3 - concentrations and the same levels of salinity and light. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

7.
Summary Internodal cells ofChara australis were made tonoplast-free by replacing the cell sap with EGTA-containing media; then the involvement of internal Cl and K+ in the excitation of the plasmalemma was studied.[Cl] i was drastically decreased by perfusing the cell interior twice with a medium lacking Cl. The lowered [Cl] i was about 0.01mm. Cells with this low [Cl] i generated action potential and showed anN-shapedV–I curve under voltage clamped depolarization like Cl-rich cells containing 13 or 29mm Cl.E m at the peak of the action potential was constant at [Cl] i between 0.01 and 29mm. The possibility that the plasmalemma becomes as permeable to other anions as to Cl during excitation is discussed.At [Cl] i higher than 48mm, cells were inexcitable. When anions were added to the perfusion medium to bring the K+ concentration to 100mm, NO 3 , F, SO 4 2– , acetate, and propionate inhibited the generation of action potentials like Cl, while methane sulfonate, PIPES, and phosphate did not inhibit excitability.The duration of the action potential depended strongly on the intracellular K+ concentration. It decreased as [K+] i (K-methane sulfonate) increased. Increase in [Na+] i (Na-methane sulfonate) also caused its decrease, although this effect was weaker than that of K+. The action of these monovalent cations on the duration of the action potential is the opposite of their action on the membrane from the outside (cf. Shimmen, Kikuyama & Tazawa, 1976,J. Membrane Biol. 30:249).  相似文献   

8.
We investigated the activity of several anions at various sites on photosystem II, in particular those associated with the Cl- effect (anion binding-site I) and the HCO3 - effect (anion binding-site II). Chlorophyll a fluorescence changes were used to monitor partial photosystem II reactions either in the oxygen-evolving mechanism or involving endogenous quinone electron acceptors. We find that anions such as NO3 -, HCO3 -, HCO2 -, F-, NO2 -, and acetate can, depending on conditions, bind to either anion binding-site I, anion binding-site II, or both sites simultaneously. The anions N3 - and Au(CN)2 - are exceptions. In their presence, oxygen-consumption reactions are enhanced. The results demonstrate that an exclusive site or mode of action of an anion on photosystem II cannot be determined by measuring the Hill reaction alone. Anion interactions with photosystem II are shown to be very complex and, therefore, caution is advisable in interpreting related experiments. Carbonic anhydrase associated with photosystem II was also investigated as a possible target for some anion effects. In Cl--depleted thylakoids, NO3 -, stimulated both electron transport and carbonic anhydrase activity at low concentrations, while higher concentrations inhibited both. However, carbonic anhydrase was more sensitive to inhibition by NO3 - than was electron flow. Possible interpretations are discussed; the electron transport and carbonic anhydrase activity appear not to be functionally linked.Abbreviations ABSI Anion binding-site(s) I associated with the oxygen-evolving mechanism - ABSII Anion binding-site(s) II, which controls quinone-related reactions on the electron-acceptor side of photosystem II - OAc- Acetate - Chl Chlorophyll - DCMU 3—(3,4-dichlorophenyl)-1,1-dimethyl urea - DCBQ 2,6-dichloro-p-benzoquinone - DMBQ 2,5-dimethyl-p-benzoquinone - Mes 2-[N-morpholino]ethanesulphonic acid - Mops 3-[N-morpholino]propanesulphonic acid - Tes N-Tris[hydroxymethyl]methyl-2-aminoethanesulphonic acid - Tricine N-Tris[hydroxymethyl]methylglycine  相似文献   

9.
36Cl- was used to study the slow exchange of chloride at a binding site associated with Photosystem II (PS II). When PS II membranes were labeled with different concentrations of 36Cl-, saturation of binding at about I chloride/PS II was observed. The rate of binding showed a clear dependence on the concentration of chloride approaching a limiting value of about 3·10-4 s-1 at high concentrations, similar to the rate of release of chloride from labeled membranes. These rates were close to that found earlier for the release of chloride from PS II membranes isolated from spinach grown on 36Cl-, which suggests that we are observing the same site for chloride binding. The similarity between the limiting rate of binding and the rate of release of chloride suggests that the exchange of chloride with the surrounding medium is controlled by an intramolecular process. The binding of chloride showed a pH-dependence with an apparent pKa of 7.5 and was very sensitive to the presence of the extrinsic polypeptides at the PS II donor side. The binding of chloride was competitively inhibited by a few other anions, notably Br- and NO3 -. The slowly exchanging Cl- did not show any significant correlation with oxygen evolution rate or yield of EPR signals from the S2 state. Our studies indicate that removal of the slowly exchanging chloride lowers the stability of PS II as indicated by the loss of oxygen evolution activity and S2 state EPR signals.Abbreviations Chl chlorophyll - EPR electron paramagnetic resonance - Hepes 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid - Mes 4-morpholineethanesulfonic acid - MWCO molecular weight cut off - PPBQ phenyl-p-benzoquinone - PS II Photosystem II  相似文献   

10.
Strain X4 was isolated several years ago from an anaerobic mesophilic plant treating vegetable cannery waste waters. It was the first example of propionic fermentation from ethanol. Morphologic and physiologic characterizations of the strain are presented here. This strain is described as type strain of a new species, Clostridium neopropionicum sp. nov. Whole cells of strain X4 ferment [1-13C]ethanol and CO2 to [2-13C]propionate, [1-13C]acetate and [2-13C]propanol, suggesting the absence of a randomizing pathway during the propionate formation. Enzymes involved in this fermentation were assayed in cell-free extracts of cells grown with ethanol as sole substrate. Alcohol dehydrogenase, aldehyde dehydrogenase, phosphate acetyl transferase, acetate kinase, pyruvate synthase, lactate dehydrogenases, and the enzymes of the acrylate pathway were detected at activities sufficient to be involved in ethanol fermentation. The same pathway may be used for the degradation of lactate or acrylate to acetate.  相似文献   

11.
Summary The biosynthesis of avermectins was studied further inStreptomyces avermitilis MA5502 by feeding experiments with labeled precursors.13C-NMR analysis of the compounds biosynthesized from [2-13C]acetate, [1,2-13C2]acetate, [3-13C]propionate and [2,3-13C2]propionate confirmed that the aglycone of avermectins is made from seven intact acetate and five propionate units. Feeding experiments with [1-13C]2-methylbutyrate and [1-13C]isobutyrate have shown that 2-methylbutyrate and isobutyrate are immediate precursors of the starter units of the polyketide chains of avermectin a and b components, respectively. The3H/14C doublelabeling experiments suggest that the two oleandrose moieties are derived from glucose.  相似文献   

12.
Pathways of Propionate Degradation by Enriched Methanogenic Cultures   总被引:11,自引:10,他引:1       下载免费PDF全文
A mixed methanogenic culture was highly enriched in a growth medium containing propionate as the sole organic carbon and energy source. With this culture, the pathways of propionate degradation were studied by use of 14C-radiotracers. Propionate was first metabolized to acetate, carbon dioxide, and hydrogen by nonmethanogenic organisms. Formate was not excreted. The carbon dioxide originated exclusively from the carboxyl group of propionate, whereas both [2-14C]- and [3-14C]propionate lead to the production of radioactive acetate. The methyl and carboxyl groups of the acetate produced were equally labeled, regardless of whether [2-14C]- or [3-14C]propionate was used. These observations suggest that in the culture, propionate was degraded through a randomizing pathway.  相似文献   

13.
Active Cl- uptake by Chlorella fusca was examined by using 36Cl as a label. Under light/air conditions chloride influx from a 2.4·10-5 M solution was 4.0±0.04 nmol m-2s-1. After 70±10 min a stationary 380±40 fold accumulation was reached. In dark/air and dark/argon influx and accumulation were reduced to 25±6%, respectively, 5±1.5% of the light/air control. Cl- uptake had a broad optimum around pH 7 and showed saturation kinetics with a K M of 1.25·10-5 M and a v max of 7.0 nmol m-2s-1 in light/air. Br- inhibited Cl- uptake strongly, J-, ClO 4 - , SO 4 2- , and NO 3 - had no inhibitory effect. Inhibitor studies with carbonyl cyanide m-chlorophenylhydrazone and N,N-dicyclohexylcarbodiimide resulted in a good correlation between Cl- uptake and ATP level. 3-(3,4-Dichlorophenyl)-1,1-dimethylurea and darkness reduced transport activity without affecting the ATP level.The magnitudes of the pH gradient and the membrane potential across the cell membrane were determined and/or estimated under different conditions. It could be shown that in Chlorella Cl- transport cannot proceed via secondary active H+/Cl- cotransport. In addition, 2H+/Cl- cotransport seems unlikely for energetic reasons. On the basis of the results of this and the following study, a primary active ATP-driven Cl-/OH- exchange pump is proposed.Abbreviations CCCP carbonyl cyanide m-chlorophenylhyd razone - DCCD N,N-dicyclohexylcarbodiimide - DCMU 3-(3.4-dichlorophenyl)-1.1-dimethylurea - DMO 5,5-dimethyloxazolidine-2,4-dione - Hepes N-2-hydroxyethylpiperazine-N ethane-sulfonic acid - POPOP 1.4-bis-2-(4-methyl-5-phenyloxazolyl)-benzene - PPO 2.5-diphenyloxazole To whom correspondence should be addressed  相似文献   

14.
A fluorescence method for the direct measurement of Cl- transport in isolated tonoplast vesicles is described. This technique utilises the Cl--sensitive fluorescent compound, 6-methoxy-1-(3-sulfonatopropyl)quinolinium (SPQ). This is a water-soluble compound with excitation and emission wavelengths of 350 and 440 nm, respectively. Its fluorescence is quenched by Cl-, Br-, I-, SCN-, NO 2 - and tetraphenylborate but not by NO 3 - , SO 4 2- , iminodiacetate or malate. These effects are independent of pH. This compound was loaded into tonoplast vesicles from red beet (Beta vulgaris L.) storage roots or from barley (Hordeum vulgare L.) roots by incubation at 37° C and the external probe was then removed by repeated centrifugation of the vesicles in SPQ-free medium. In this way a large proportion of the observed fluorescence signal was from the interior of the vesicles, and its quenching could be used to monitor, quantitatively, and in real time, the intravesicular Cl- concentration. In this paper we describe some of the problems encountered in using this probe to measure Cl- transport in tonoplast vesicles, how these were overcome and some characteristics of Cl- transport at the tonoplast as measured by the probe.Abbreviations and symbols BTP 1,3-bis[tris(hydroxymethyl)-methylamino-propane - DTT dithiothreitol - membrane potential - pH pH gradient - PPase inorganic pyrophosphatase - PPi inorganic pyrophosphate - SPQ 6-methoxy-1-(3-sulfonatopropyl)quinolinium - Tricine N-[2-hydroxy-1,1-bis(hydroxymethyl)ethyl]glycine  相似文献   

15.
Synaptosomes swell rapidly in isosmotic solutions of glycerol or urea, but the swelling in solutions of larger non-electrolytes, such as erythritol, glucose or sucrose is slower. The permeability of synaptosomes to non-electrolytes is temperature dependent, and the low activation energies for the permeation of urea (13 kcal/mol) and erythritol (9.5 kcal/mol) indicate that the penetration of non-electrolytes into the synaptosomes does not imply complete dehydration of the molecules. The relative permeability of synaptosomes to cations, as measured by the rate of swelling in isosmotic solutions of acetate salts is in the order: NH+4 > Na+ > Li+ > K+ > Ca2+. The ionophores, X-537A and nigericin, or valinomycin + FCCP, which promote exchange of cations for H+, cause swelling of synaptosomes in solutions of potassium salts of acetate or propionate, but not in KCI, whereas H+ release is higher in KCI medium. This suggests that the organic unions cross the membrane after combining with H+ to form the respective weak acids. The relative permeability to anions is in the order: acetate ? propionate > Cl? > SO2-4? maleate ? succinate. The energies of activation for the permeability of synaptosomes to potassium acetate in the presence of X-537A or gramicidin D are 13 kcal/mol and 7.5 kcal/mol, respectively, which reflects different mechanisms of action for the two ionophores in the membranes.  相似文献   

16.
《Insect Biochemistry》1989,19(1):7-13
Experiments were performed to characterize the metabolism of propionate to acetate in the cabbage looper Trichoplusia ni and correlate the results with vitamin B12 levels. Fourth and fifth instar larvae contain 2–4 pg vitamin B12/mg dry wt whereas pupae and adults do not contain detectable amounts. In vivo studies as a function of time in larvae, pupae and adults gave evidence that [2-14C]propionate was converted to 3-hydroxypropionate and then to acetate, which subsequently labeled Krebs cycle intermediates. Radioactivity from [1-14C]propionate was recovered only in the propionate and 3-hydroxypropionate fractions, and not in acetate or Krebs cycle intermediates, suggesting that carbon 1 of propionate was lost as carbon dioxide and that carbons 2 and 3 of propionate were retained during conversion to acetate. The enzymes of this pathway were located entirely in the mitochondrial fraction. Cyanide inhibited the metabolism of propionate to 3-hydroxypropionate and acetate in mitochondrial preparations, whereas carbon monoxide did not. [2,3-14C]Acrylic acid was metabolized to 3-hydroxypropionate, which is consistent with a dehydrogenase converting propionate to acrylate which is then hydrated to 3-hydroxypropionate and then oxidized and decarboxylated to acetate.  相似文献   

17.
Summary The anaerobic degradation of propionate to acetate and methane by a defined sulfidogenic syntrophic co-culture consisting of Syntrophobacter wolinii and Desulfovibrio G11, and a new thermophilic, methanogenic consortium T13 was studied. Tracer experiments using (14C) propionate produced evidence for the generally accepted biochemical pathway involving methylmalonyl-CoA as an intermediate in the degradation of propionate. The degradation of (1-14C) propionate led exclusively to the formation of 14CO2 by S. wolinii/D. G11 and to the formation of 14CH4 by the methanogenic consortium T13. The conversion of either (2-14) or (3-14) propionate by S. wolinii/D. G11 resulted in uniform labelled acetate as the endproduct. The methanogenic consortium formed (U-14C) acetate from (2-14) and (3-14) propionate as an intermediary product followed by aceticlastic splitting to yield equivalent amounts of 14CO2 and 14CH4.  相似文献   

18.
Summary The nephridial nerve cells of the leech, Hirudo medicinalis, 34 sensory cells, each associated with one nephridium, are sensitive to changes in extracellular Cl- concentration, an important factor in ion homeostasis. Using single-electrode current- and voltage clamp and ion substitution techniques, the specificity and mechanism of Cl- sensitivity of the nephridial nerve cell was studied in isolated preparations. Increase of the normally low external Cl- concentration leads to immediate and sustained hyperpolarization, decrease of the frequency of bursts and decrease of membrane conductance. The response is halogen specific: Cl- can be replaced by Br, but not by organic mono- or divalent anions or inorganic divalent anions.At physiological Cl- concentrations (36mM extra-cellular Cl-), the nephridial nerve cell has a high resting conductance for Cl- and the membrane potential is governed by Cl-. In high extracellular Cl- concentrations (110–130 mM), membrane conductance is low, most likely due to the gating off of Cl- channels. Under these conditions, membrane potential is dominated by the K+ distribution and the nephridial nerve cell hyperpolarizes towards EK.Abbreviations NNC nephridial nerve cell - V m membrane potential - E Cl(k) equilibrium potential for Cl (K) - IV-curve current-voltage relationship  相似文献   

19.
It is suggested that photophobic responses caused by a sudden step-down in light intensity require the presence of cations in the blue-green alga, Phormidium uncinatum.Drastic removal of cations abolishes the phobic response, which recovers after addition of Ca2+ ions. Calcium can be substituted for partially by other cations with an effectivity following the sequence Ca>Mg>Na>Ba>Co=0. During the photophobic response there is a 25% increase in 45Ca binding by the cells related to a step-down in light intensity. Three seconds after a light-dark transition there is a sharp increase in the binding of labelled calcium, followed by a subsequent release.Flushing the filaments with high cation concentrations, esp. calcium causes a reversal of movement in the absence of a light stimulus similar to a photophobic reversal. This stimulus could trigger the same sequence of events in the transduction chain bypassing the primary photoresponse.Abbreviations EDTA Ethylene diaminetetraacetic acid - EGTA ethylene glycol-bis (2-aminoethylether) N,N tetraacetic acid  相似文献   

20.
Medicinal leeches (Hirudo medicinalis L.) responded to self-induced hypoxia (72 h) with typical anaerobic metabolism characterized by a decrease in adenylate energy charge, utilization of the substrates glycogen and malate, and accumulation of the main anaerobic endproducts succinate and propionate. Propionate was also excreted into the medium. Ammonia excretion was suppressed. Aerobic recovery resulted in a profound O2 debt. Resynthesis of ATP was completed within 30 min. Disposal of succinate and restoring of malate required 2–3 h, and clearance of propionate and recharging of glycogen 6–12 h. Ammonia excretion did not exceed normoxic rates and excretion of propionate during recovery accounted for only 10% of total propionate accumulated during hypoxia. It is postulated that the clearance of succinate and propionate involves oxidation but also resynthesis of malate and glycogen. During hypoxia and recovery blood osmolality remained constant. The Na+ and Cl- ion concentrations in blood, the decrease of which was nearly equimolar during hypoxia, were re-established following different time-courses. Na+ concentration returned to normoxic levels after 2–3 h. The delayed increase in Cl- concentration, however, correlating with 6–12 h necessary to clear blood propionate, is interpretated as an anion regulating effect.Abbreviations AEC adenylate energy charge; fw, fresh weight - HPLC high-performance liquid chromatography - SCCA shortchain carboxylic acids  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号