首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Excision repair was measured in normal human and xeroderma pigmentosum group C fibroblasts treated with ultraviolet radiation and the carcinogens acridine mustard (ICR-170) or 4-nitroquinoline 1-oxide (4NQO) by the techniques of unscheduled synthesis, photolysis of bromodeoxyuridine incorporated into parental DNA during repair, and assays of sites sensitive to ultraviolet (UV)-endonuclease. Doses of ICR-170 and 4NQO, low enough not to inhibit unscheduled DNA synthesis (UDS), caused damage to DNA that was repaired by a long patch type mechanism and the rates of UDS decreased rapidly in the first 12 h after treatment. Repair after a combined action of UV plus ICR-170 or UV plus 4NQO was additive in normal cells and no inhibition of loss of endonuclease sensitive sites was detected. In xeroderma pigmentosum (XP) C cells there was less repair after UV plus ICR-170 than after each treatment separately; whereas there was an additive effect after UV plus 4NQO and no inhibition of loss of endonuclease sensitive sites. The results indicate that in normal human fibroblasts there are different rate limiting steps for removal of chemical and physical damages from DNA and that XP cells have a different repair system for ICR-170, not just a lower level, than normal cells. Possibly the same long patch repair system works on 4NQO damage in both normal and XP cells.  相似文献   

2.
Excision repair of DNA damage produced by 4-nitroquinoline 1-oxide (4NQO), a potent chemical carcinogen, was compared in a normal human amnion FL cell line and a xeroderma pigmentosum (XP) cell line unable to repair ultraviolet-induced pyramidine dimers. The main objective of this study was to investigate, by a direct assay of the loss of damage from DNA, whether DNA damage induced by 4NQO in human cells is repaired by the excision-repair system as in Escherichia coli cells. DNA was extracted from FL and XP cells treated with [3H]4NQO, hydrolyzed and subjected to radiochromatographic analysis in order to quantitate the initial formation of 4NQO damage and subsequent disappearance during post-incubation. Two peaks of stable 4NQO-quanine adducts appeared on the chromatogram, together with one peak of stable 4NQO-adenine adduct and a peak due to 4-aminoquinoline 1-oxide (4AQO) released from a labile fraction of 4NQO-guanine adduct during hydrolysis. The three kinds of stable 4NQO-purine adduct disappeared from DNA of the FL cells at almost the same rate of about 60% during 24-h post-incubation in culture medium, and 4AQO disappeared somewhat faster. In the XP cells, however, the stable adducts did not disappear from DNA, whereas about 40% of the 4AQO-releasing adduct disappeared from DNA. These findings at the molecular level quantitatively parallel the previous findings at the cellular level that the XP cells are several times as sensitive as normal cells to killing by 4NQO. These results lead to the conclusion that in human cells 4NQO-induced lethality is mainly due to the four kinds of 4NQO-purine adduct as it is in E. coli, and that the adducts are excisable by the same excision-repair mechanism that works on pyramidine dimers.  相似文献   

3.
A replica-plating technique has been adopted for the isolation of mutagen-sensitive mutants of Chinese hamster V79 and CHO cell lines. After the mutagenic treatment (ENU) clones derived from these cell lines were replica plated into micro wells and replicas were treated with UV (254 nm), X-ray, MMC, EMC or MMS. Clonal cell lines which demonstrated mutagen sensitivity were retested by the determination of survival. Only one UV-sensitive line was obtained in 1500 clonal lines derived from CHO cells. This mutant appeared also sensitive to 4NQO and MMC. The sensitivity to UV and MMC was 2-3-fold enhanced, while the increase in sensitivity to 4NQO was 4-5-fold. In V79 cells 9 mutagen-sensitive lines were found after screening of 500 clonal lines; six of them showed increased sensitivity towards UV, two towards MMC, and one cell line was found to be X-ray sensitive. A considerable cross-sensitivity for the various agents was found among the isolated mutants. When a 2-fold increase is taken as a minimum to indicate mutagen sensitivity 6 mutants were sensitive to UV, 8 mutants were sensitive to MMC, 6 mutants were sensitive to 4NQO and 4 mutants were sensitive to X-rays. The difference in sensitivity to UV versus 4NQO makes it unlikely that 4NQO can be considered as a UV-mimetic agent. The sensitivity to MMC appears to fall into 2 classes: a class with moderate sensitivity (2-8-fold) and a class with high sensitivity (30-100-fold). The presence of similar classes is indicated for UV. Except for the two lines V-E5, V-B7 and the two lines V-H11, V-H4 all obtained mutants have a different spectrum of mutagen sensitivities which suggests that different genetic alterations underly these effects. The observed high frequency of mutagen-sensitive mutants in V79 cells, although unexpected and substantially higher than those published for CHO cells and L5178Y cells, can still be explained by the presence of functionally hemizygous loci.  相似文献   

4.
Sister-chromatid exchange (SCE) induced by ultraviolet (UV) irradiation and viability after UV irradiation were studied in lymphoblastoid cell lines derived from 7 patients with xeroderma pigmentosum (XP) and 6 normal donors. UV irradiation caused significant increases of SCEs in both XP and normal cells. In 3 XP cell lines, which were deficient in unscheduled DNA synthesis (UDS) and sensitive to the killing effect of UV, very high SCE frequencies were observed after UV irradiation. Cells from a patient with the De Sanctis-Cacchione syndrome were the most sensitive to UV in terms of both SCE induction and cell killing. In 2 of 4 UDS-proficient XP cell lines tested, the incidences of UV-induced SCEs were similar to those in normal cell lines, but in 2 other UDS-proficient lines from 2 XP patients with skin cancer, the frequencies of UV-induced SCEs were significantly higher than in normal cells.Continuous post-UV treatment with 1 mM caffeine markedly enhanced UV-induced SCEs in 3 of 4 UDS-proficient XP cell lines but had only slight effects on cells from the 4th UDS-proficient XP patient and from normal individuals.  相似文献   

5.
Xeroderma pigmentosum (XP) cells are dificient in the repair of damage induced by ultraviolet irradiation. Excision-repair-deficient XP cell strains have been classified into 7 distinct complementation groups, according to results of studies on cell fusion and UV irradiation. XP cells are not only abnormally sensitive to UV, but also to a variety of chemical carcinogens, including 4-nitroquinoline-1-oxide (4NQO). Complementation analysis with XP strains from 4 different complementation groups with respect to the repair of 4NQO-induced DNA damage revealed that the classification of the strains into complementation groups with respect to 4NQO-induced repair coincides with the classification based on the repair of UV damage.  相似文献   

6.
This paper describes experiments involving the measurement of DNA damage and repair after treatment with 4-nitroquinoline 1-oxide (4NQO) or aflatoxin B1 (AFB1) epoxide in a number of mammalian cell cultures primarily associated with defects in the excision repair of UV-induced DNA damage. The results with transformed derivatives of XP cells belonging to different complementation groups showed that the extent of repair of 4NQO adducts at the N2 or C8 of guanosine did not correlate to the extent of repair reported by others after UV-irradiation. An examination of 4NQO repair in rodent UV-sensitive cell lines from different ERCC groups indicated that again there was little correlation between the extent of 4NQO and UV repair. However, regardless of complementation group those mutants that were defective in the repair of pyrimidine dimers and 6,4-photoproducts did exhibit a reduced ability to repair the 4NQO N2 guanosine adduct, whereas those mutants defective in pyrimidine dimer repair alone were able to repair this lesion as normal. In all of these cell lines there was a normal capacity to repair the 4NQO C8 guanosine adduct. Less extensive experiments involving AFB1 epoxide showed an XPC-transformed cell line was able to repair 40% of lesions after 6 h, whereas only 20% of repair is seen after UV. The rodent mutant V-C4 which belongs to the same ionising radiation group as irs2, was partially defective in repairing AFB1-induced damage. These experiments highlight the fact that although there are many commonalities between the repair of UV damages and lesions classed as large DNA adducts differences clearly exist, the most striking example here being the repair of the C8 guanosine 4NQO adduct which rarely correlates with a defect in UV repair.  相似文献   

7.
Replicative bypass repair of UV damage to DNA was studied in wide variety of human, mouse and hamster cells in culture. Survival curve analysis revealed that in established cell lines (mouse L, Chinese hamster V79, HeLa S3 and SV40-transformed xeroderma pigmentosum (XP)), post-UV caffeine treatment potentiated cell killing by reducing the extrapolation number and mean lethal UV fluence (Do). In the Do reduction as the result of random inactivation by caffeine of sensitive repair there were marked clonal differences among such cell lines, V79 being most sensitive to caffeine potentiation. However, other diploid cell lines (normal human, excision-defective XP and Syrian hamster) exhibited no obvious reduction in Do by caffeine. In parallel, alkaline sucrose sedimentation results showed that the conversion of initially smaller segments of DNA synthetized after irradiation with 10 J/m2 to high-molecular-weight DNA was inhibited by caffeine in transformed XP cells, but not in the diploid human cell lines. Exceptionall, diploid XP variants had a retarded ability of bypass repair which was drastically prevented by caffeine, so that caffeine enhanced the lethal effect of UV. Neutral CsCl study on the bypass repair mechanism by use of bromodeoxyuridine for DNA synthesis on damaged template suggests that the pyrimidine dimer acts as a block to replication and subsequently it is circumvented presumably by a new process involving replicative bypassing following strand displacement, rather than by gap-filling de novo. This mechanism worked similarly in normal and XP cells, whether or not caffeine was present, indicating that excision of dimer is not always necessary. However, replicative became defective in XP variant and transformed XP cells when caffeine was present. It appears, therefore, that the replicative bypass repair process is either caffeine resistant or sensitive, depending on the cell type used, but not necessarily on the excision repair capability.  相似文献   

8.
《Mutation research》1977,43(2):279-290
We have used a T4 endonuclease V assay method for UV-induced pryrimidine dimers in cellular DNA in vivo to obtain evidence for recombinational DNA exchanges after UV irradiation of normal human and Xeroderma pigmentosum (XP) cells. Our data indicate that the endonuclease-sensitive sites in excision-defective XP cells are removed very slowly from the irradiated parental strands and appear concomitantly in daughter strands newly synthesized during post-UV incubation. In the defective XP cells, the extent of appearance of sensitive sites in daughter strands synthesized during a period of 24 h after 10 J/m2 appears to be small, probably less than 15% of the initial number of sensitive sites detected in cellular parental strands. Demonstration of such exchanges between normal-density parental and 5-bromodeoxyuridine-labeled daughter strands by alkaline CsCl isopycnic centrifugation was unsuccessful. Further, the extent is much lower in normal human cell because of their efficiet excision repair of the dimers before and after exchanges than in the defective XP cells.  相似文献   

9.
H Tanaka  T Orii 《Mutation research》1980,72(1):143-150
We established lymphoblastoid cell lines from 2 children with Chediak--Higashi syndrome (CHS), 2 xeroderma pigmentosum (XP) patients and control donors after transformation of peripheral lymphocytes by Epstein--Barr virus (EBV). We used these lymphoblastoid cell lines to investigate repair activity after ultraviolet irradiation. Cell survival of both CHS lymphoblastoid cell lines after irradiation by UV and treatment by 4-nitroquinoline 1-oxide (4NQO) fell between those of the XP and control cell lines. Unscheduled DNA synthesis of CHS cells after UV irradiation occurred at rates similar to those of control cells.  相似文献   

10.
The clone-forming capacity and level of DNA repair was examined on normal human cells and repair-deficient Xeroderma pigmentosum (XP) fibroblasts exposed to various chemical carcinogens and mutagens.The cultured fibroblasts were treated for 90 min with the carcinogenic and mutagenic 4-nitroquinoline 1-oxide (4NQO), 4-hydroxyaminoquinoline 1-oxide (4HAQO), 2-methyl-4-nitroquinoline 1-oxide (2-Me-4NQO), 3-methyl-4-nitropyridine 1-oxide 3-Me-4NPO) and the non-carcinogenic 6-nitroquinoline 1-oxide (6NQO). The response of the cells to the N-oxides was compared to that induced by the mutagen and carcinogen N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) and UV-irradiation.The XP cells showed (1) a reduced level of DNA repair synthesis when exposed to various carcinogenic N-oxides, (2) no unscheduled DNA synthesis following 6NQO and (3) a normal degree of DNA repair synthesis after treatment with MNNG.When the clone-forming capacity was examined the XP cells exhibited (1) a higher increased sensitivity to the various carcinogenic N-oxides, (2) no reduction in the clone formation following 6NQO and (3) a sensitivity virtually comparable to that of normal cells after treatment with MNNG.The results suggest a link between extent of DNA damage, level of DNA repair and degree of sensitivity in human cells exposed to various chemical carcinogens and which induce DNA alterations that cannot be repaired by DNA repair synthesis.  相似文献   

11.
The effects of the UV-mimetic chemical 4-nitroquinoline-1-oxide (4-NQO) upon cell lines heterozygous or homozygous for the recessive mutant xeroderma pigmentosum (XP) were investigated. Human lymphoblastoid cell lines, which were established from 4 XP homozygote patients (XPL15, XPL17, XPL19 and XPL20). 2 XP heterozygote individuals (XPPL17 and XPML17) and 58 normal individuals, were cultured in the presence of 4-NQO at doses of 0, 2, 4 and 8 x 10(-6) M. Then the total cell number was counted and the viability of the cells was measured by the dye exclusion method using trypan blue and a newly devised fluorometric method with fluorescein diacetate. Results showed that 4-NQO affected, in increasing order of impairment, the cell lines: normal less than XP heterozygote less than XP homozygote.  相似文献   

12.
Excision repair of DNA damage was measured by the photolysis of bromodeoxy-uridine incorporated during repair in normal human and xeroderma pigmentosum group C fibroblasts (XP C) treated with a combination of the carcinogens N-acetoxy-2-acetylamino-fluorene (AAAF), and 4-nitroquinoline 1-oxide (4NQO). Repair was additive in normal and XP C cells treated with AAAF plus 4NQO, indicating that there are different rate limiting steps for removal of 4NQO and AAAF lesions.  相似文献   

13.
A study was made of the effects of a chemical mutagen of the "gamma-type"--methylmethansulfonate (MMS) and of mutagen of the "UV-type"--4-nitroquinolin-1-oxide (NQO) and 7-brommethylbenz(alpha)antracen (BMBA) exerted on chromosome aberration frequency in lymphocytes of patients with classical Xeroderma pigmentosum and with a so-called form II of the disease on different stages of the cell cycle. Mutagens were added to PHA stimulated lymphocyte cultures every 3 hours, simultaneously with pulse 3H-thymidine labelling, to fix the stage of the cell cycle at the moment of treatment. NQO and BMBA treatments were found to increase the frequency of chromosome aberrations in classical XP cells, whereas MMS was not found to. In the XP II cells, defective in repair of both UV and gamma damaged DNA, chromosome aberrations yield is higher than in normal cells after all the three mutagens treatment. The data obtained show the correlation between DNA repair and chromosome aberrations yield.  相似文献   

14.
Environmental carcinogen exposures contribute to the development of oral cancer and improved test systems for the analysis of such carcinogens are needed. We have previously isolated and characterized an epithelial cell line from the tongue of a BigBlue rat. Now, we have established an immortalized fibroblast cell line from the same organ. We exposed these cells to 4-nitroquinoline-1-oxide (NQO), a well-known experimental oral carcinogen in the rat and other species, and measured its cytotoxic and genotoxic (cII transgene mutagenesis) effects. Both cell lines were very sensitive to NQO toxicity and showed dose-dependent mutant frequency responses. At the highest NQO dose tested, 70 ng/ml, the mutant frequency was elevated more than eight-fold above background for the epithelial cells and more than 25-fold for the fibroblast cells. We examined cellular parameters which could affect glutathione-dependent detoxication of mutagens. Glutathione (GSH) contents of the two cell lines were similar. Glutathione transferase (GST) activities were measured with several substrates and were generally higher in the epithelial cells. Although multiple biochemical and biological characteristics of individual cell lines are likely to determine responses to mutagens, the greater sensitivity of the fibroblast cells to NQO mutagenicity is in accord with the lower GST activity and the lower DNA content of these cells. These new cell lines are suitable for in vitro testing of chemicals as possible oral mutagens and for studies of their biochemical mechanisms of action.  相似文献   

15.
Sister-chromatid exchanges (SCEs) induced by mitomycin C (MMC), 4-nitroquinoline-1-oxide (4NQO) or UV-light in cultured Chinese hamster ovary cells (CHO K-1 cells) were enhanced by cinoxate (2-ethoxyethyl p-methoxycinnamate) or methyl sinapate (methyl 3,5-dimethoxy 4-hydroxycinnamate). Both substances are cinnamate derivatives and cinoxate is commonly used as a cosmetic UV absorber. Methyl sinapate also increased the frequency of cells with chromosome aberrations in the CHO K-1 cells treated with MMC, 4NQO or UV. These increasing effects of methyl sinapate were critical in the G1 phase of the cell cycle and the decline of the frequencies of UV-induced SCEs and chromosome aberrations during liquid holding was not seen in the presence of methyl sinapate. Both compounds were, however, ineffective in cells treated with X-rays. In cells from a normal human embryo and from a xeroderma pigmentosum (XP) patient, MMC-induced SCEs were also increased by the post-treatment with methyl sinapate. The SCE frequencies in UV-irradiated normal human cells were elevated by methyl sinapate, but no SCE-enhancing effects were observed in UV-irradiated XP cells. Our results suggest that the test substances inhibit DNA excision repair and that the increase in the amount of unrepaired DNA damage might cause the enhancement of induced SCEs and chromosome aberrations.  相似文献   

16.
Complementation analysis was performed 24 h after fusion of UV-sensitive CHO cells (CHO 12 RO) with XP cells of complementation groups A, B, C, D, F and G. The parental cells are characterized by low levels of unscheduled DNA synthesis (UDS). In all combinations, the UDS levels observed in heterokaryons were higher than those in parental mutant cells, clearly indicating cooperation of human and Chinese hamster repair functions. In heterokaryons of CHO 12 RO with XP-A and XP-C cells, the UDS values reached about the normal human level, whereas in heterokaryons with XP-B, XP-D and XP-F, UDS was restored at a level approaching that in wild-type CHO cells. The results obtained after fusion of CHO cells with two representative cell strains from the XP-G group, XP 2 BI and XP 3 BR, were inconsistent. Fusion with XP 3 BR cells yielded UDS levels ranging from wild-type Chinese hamster to normal human, whereas fusion with XP 2 BI cells resulted in a slight increase in UDS which even after 48 h remained below the level found in wild-type CHO cells. The occurrence of complementation in these interspecies heterokaryons indicates that the genetic defect in the CHO 12 RO cells is different from the defects in the XP complementation groups tested.  相似文献   

17.
A uniform response to UV of four normal cell strains was demonstrated. One excision-proficient xeroderma pigmentosum variant strain (XP7TA) had a wild-type UV response but a second (XP30RO) was more sensitive. An excision-deficient xeroderma pigmentosum strain XP4L0 was substantially more sensitive than wild-type cell strains. A continuous post-irradiation treatment with non-toxic levels of caffeine enhanced the lethal effect of UV light in both xeroderma pigmentosum variant cell strains but not in cells from normal individuals. There was no detectable effect on cells from a xeroderma pigmentosum individual from complementation group A. These results correlate well with observations on the influence of caffeine on post-replication repair in the three classes of cells.  相似文献   

18.
Three mutagen-sensitive mutants, MS-1, M10 and Q31, have been isolated from mouse L5178Y cells. MS-1 cells are sensitive to methyl methanesulfonate (MMS), M10 cells are cross-sensitive to X-rays, MMS and 4-nitroquinoline 1-oxide (4NQO), and Q31 cells are cross-sensitive to UV and 4NQO. Lines resistant to 6-thioguanine (TGr) and 5-bromo-2'-deoxyuridine (BUr) were isolated from L5178Y and these three mutagen -sensitive mutants. All the TGr lines were sensitive to 5-bromo-2'-deoxyuridine and HAT medium and all the BUr lines were sensitive to 6-thioguanine and HAT medium. The hybrids homozygous for the mutagen-sensitive markers showed nearly the same sensitivity to UV, 4NQO, X-rays and MMS as their parental TGr and BUr lines. The hybrids constructed by fusing L5178Y BUr and TGr lines from each of MS-1, M10 and Q31 displayed the normal UV, X-ray and MMS resistancy of L5178Y cells. Thus the UV-, X-ray- and MMS-sensitive markers in MS-1, M10 and Q31 were recessive in somatic cell hybrids. The 4NQO-sensitive phenotype, however, behaved codominantly in somatic cell hybrids.  相似文献   

19.
Xeroderma pigmentosum (XP) is an autosomal recessive human disease, characterized by an extreme sensitivity to sunlight, caused by the inability of cells to repair UV light-induced damage to DNA. Cell fusion was used to transfer fragments of Chinese hamster ovary (CHO) chromosomes into XP cells. The hybrid cells exhibited UV resistance and DNA repair characteristics comparable to those expressed by CHO cells, and their DNA had greater homology with CHO DNA than did the DNA from XP cells. Control experiments consisted of fusion of irradiated and unirradiated XP cells and repeated exposure of unfused XP cells to UV doses used for hybrid selection. These treatments did not result in an increase in UV resistance, repair capability, or homology with CHO DNA. The hybrid cell lines do not, therefore, appear to be XP revertants. The establishment of these stable hybrid cell lines is an initial step toward identifying and cloning CHO DNA repair genes that complement the XP defect in human cells. The method should also be applicable to cloning genes for other diseases, such as ataxia-telangiectasia and Fanconi's anemia.  相似文献   

20.
Doxorubicin (DOX), a member of the anthracycline group, is a widely used drug in cancer therapy. The mechanisms of DOX action include topoisomerase II-poisoning, free radical release, DNA adducts and interstrand cross-link (ICL) formation. Nucleotide excision repair (NER) is involved in the removal of helix-distorting lesions and chemical adducts, however, little is known about the response of NER-deficient cell lines to anti-tumoral drugs like DOX. Wild type and XPD-mutated cells, harbouring mutations in different regions of this gene and leading to XP-D, XP/CS or TTD diseases, were treated with this drug and analyzed for cell cycle arrest and DNA damage by comet assay. The formation of DSBs was also investigated by determination of γH2AX foci. Our results indicate that all three NER-deficient cell lines tested are more sensitive to DOX treatment, when compared to wild type cells or XP cells complemented by the wild type XPD cDNA, suggesting that NER is involved in the removal of DOX-induced lesions. The cell cycle analysis showed the characteristic G2 arrest in repair-proficient MRC5 cell line after DOX treatment, whereas the repair-deficient cell lines presented significant increase in sub-G1 fraction. The NER-deficient cell lines do not show different patterns of DNA damage formation as assayed by comet assay and phosphorylated H2AX foci formation. Knock-down of topoisomerase IIα with siRNA leads to increased survival in both MRC5 and XP cells, however, XP cell line still remained significantly more sensitive to the treatment by DOX. Our study suggests that the enhanced sensitivity is due to DOX-induced DNA damage that is subject to NER, as we observed decreased unscheduled DNA synthesis in XP-deficient cells upon DOX treatment. Furthermore, the complementation of the XPD-function abolished the observed sensitivity at lower DOX concentrations, suggesting that the XPD helicase activity is involved in the repair of DOX-induced lesions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号