首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pseudomonas putida GJ31 contains an unusual catechol 2,3-dioxygenase that converts 3-chlorocatechol and 3-methylcatechol, which enables the organism to use both chloroaromatics and methylaromatics for growth. A 3.1-kb region of genomic DNA of strain GJ31 containing the gene for this chlorocatechol 2,3-dioxygenase (cbzE) was cloned and sequenced. The cbzE gene appeared to be plasmid localized and was found in a region that also harbors genes encoding a transposase, a ferredoxin that was homologous to XylT, an open reading frame with similarity to a protein of a meta-cleavage pathway with unknown function, and a 2-hydroxymuconic semialdehyde dehydrogenase. CbzE was most similar to catechol 2,3-dioxygenases of the 2.C subfamily of type 1 extradiol dioxygenases (L. D. Eltis and J. T. Bolin, J. Bacteriol. 178:5930–5937, 1996). The substrate range and turnover capacity with 3-chlorocatechol were determined for CbzE and four related catechol 2,3-dioxygenases. The results showed that CbzE was the only enzyme that could productively convert 3-chlorocatechol. Besides, CbzE was less susceptible to inactivation by methylated catechols. Hybrid enzymes that were made of CzbE and the catechol 2,3-dioxygenase of P. putida UCC2 (TdnC) showed that the resistance of CbzE to suicide inactivation and its substrate specificity were mainly determined by the C-terminal region of the protein.  相似文献   

2.
2,4,5-Trihydroxytoluene (THT) oxygenase from Burkholderia sp. strain DNT catalyzes the conversion of THT to an unstable ring fission product. Biochemical and genetic studies of THT oxygenase were undertaken to elucidate the mechanism of the ring fission reaction. The THT oxygenase gene (dntD) was previously localized to the 1.2-kb DNA insert subcloned in the recombinant plasmid designated pJS76 (W. C. Suen and J. C. Spain, J. Bacteriol. 175:1831–1837, 1993). Analysis of the deduced amino acid sequence of DntD revealed the presence of the highly conserved residues characteristic of the catechol 2,3-dioxygenase gene family I. The deduced amino acid sequence of DntD corresponded to a molecular mass of 35 kDa. The native molecular masses for the THT oxygenase estimated by using gel filtration chromatography and nondenaturing gel electrophoresis were 67.4 and 77.8 kDa, respectively. The results suggested that the native protein consists of two identical subunits. The colorless protein contained 2 mol of iron per mol of protein. Stimulation of activity in the presence of ferrous iron and ascorbate suggested a requirement for ferrous iron in the active site. The properties of the enzyme are similar to those of the catechol 2,3-dioxygenases (meta-cleavage dioxygenases). In addition to THT, the enzyme exhibited activity towards 1,2,4-benzenetriol, catechol, 3- and 4-methylcatechol, and 3- and 4-chlorocatechol. The chemical analysis of the THT ring cleavage product showed that the product was 2,4-dihydroxy-5-methyl-6-oxo-2,4-hexadienoic acid, consistent with extradiol ring fission of THT.  相似文献   

3.
A novel thermostable Mn(II)-dependent 2,3-dihydroxybiphenyl-1,2-dioxygenase (BphC_JF8) catalyzing the meta-cleavage of the hydroxylated biphenyl ring was purified from the thermophilic biphenyl and naphthalene degrader, Bacillus sp. JF8, and the gene was cloned. The native and recombinant BphC enzyme was purified to homogeneity. The enzyme has a molecular mass of 125 +/- 10 kDa and was composed of four identical subunits (35 kDa). BphC_JF8 has a temperature optimum of 85 degrees C and a pH optimum of 7.5. It exhibited a half-life of 30 min at 80 degrees C and 81 min at 75 degrees C, making it the most thermostable extradiol dioxygenase studied. Inductively coupled plasma mass spectrometry analysis confirmed the presence of 4.0-4.8 manganese atoms per enzyme molecule. The EPR spectrum of BphC_JF8 exhibited g = 2.02 and g = 4.06 signals having the 6-fold hyperfine splitting characteristic of Mn(II). The enzyme can oxidize a wide range of substrates, and the substrate preference was in the order 2,3-dihydroxybiphenyl > 3-methylcatechol > catechol > 4-methylcatechol > 4-chlorocatechol. The enzyme is resistant to denaturation by various chelators and inhibitors (EDTA, 1,10-phenanthroline, H2O2, 3-chlorocatechol) and did not exhibit substrate inhibition even at 3 mm 2,3-dihydroxybiphenyl. A decrease in Km accompanied an increase in temperature, and the Km value of 0.095 microm for 2,3-dihydroxybiphenyl (at 60 degrees C) is among the lowest reported. The kinetic properties and thermal stability of the native and recombinant enzyme were identical. The primary structure of BphC_JF8 exhibits less than 25% sequence identity to other 2,3-dihydroxybiphenyl 1,2-dioxygenases. The metal ligands and active site residues of extradiol dioxygenases are conserved, although several amino acid residues found exclusively in enzymes that preferentially cleave bicyclic substrates are missing in BphC_JF8. A three-dimensional homology model of BphC_JF8 provided a basis for understanding the substrate specificity, quaternary structure, and stability of the enzyme.  相似文献   

4.
A purification procedure has been developed for an extradiol dioxygenase expressed in Escherichia coli, which was originally derived from a Pseudomonas putida strain able to grow on toluidine. Physical and kinetic properties of the enzyme have been investigated. The enzyme has a subunit Mr of 33,500 +/- 2000 by SDS/polyacrylamide-gel electrophoresis. Gel filtration indicates a molecular mass under non-denaturing conditions of 120,000 +/- 20,000. The N-terminal sequence (35 residues) of the enzyme has been determined and exhibits 50% identity with other extradiol dioxygenases. Fe(II) is a cofactor of the enzyme, as it is for other extradiol dioxygenases. The reactivity of this enzyme towards catechol and methyl-substituted catechols is somewhat different from that seen for other catechol 2,3-dioxygenases, with 3-methylcatechol cleaved at a higher rate than catechol or 4-methylcatechol. Km values for these substrates with this enzyme are all around 0.3 microM. The enzyme exhibits a bell-shaped pH profile with pKa values of 6.9 +/- 0.1 and 8.7 +/- 0.1. These results are compared with those found for other extradiol dioxygenases.  相似文献   

5.
An extradiol dioxygenase was cloned from the naphthalenesulfonate-degrading bacterial strain BN6 by screening a gene bank for colonies with 2,3-dihydroxybiphenyl dioxygenase activity. DNA sequence analysis of a 1,358-bp fragment revealed an open reading frame of only 486 bp. This is the smallest gene encoding an extradiol dioxygenase found until now. Expression of the gene in a T7 expression vector enabled purification of the enzyme. Gel filtration and sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis showed that the protein was a dimer with a subunit size of 21.7 kDa. The enzyme oxidized 2,3-dihydroxybiphenyl, 3-isopropylcatechol, 3- and 4-chlorocatechol, and 3- and 4-methylcatechol. Since the ability to convert 3-chlorocatechol is an unusual characteristic for an extradiol-cleaving dioxygenase, this reaction was analyzed in more detail. The deduced amino-terminal amino acid sequence differed from the corresponding sequence of the 1,2-dihydroxynaphthalene dioxygenase, which had been determined earlier from the enzyme purified from this strain. This indicates that strain BN6 carries at least two different extradiol dioxygenases.  相似文献   

6.
Three catechol 2,3-dioxygenases for biphenyl, naphthalene/salicylate, and toluene/xylene oxidation were cloned from Achromobacter xylosoxidans KF701, Pseudomonas putida (NAH7), and Pseudomonas sp. (pWWO). The cloned catechol 2,3-dioxygenases were identified by enzymatic activity assay in addition to yellow bands on polyacrylamide gel after electrophoresis and activity staining. All of the cloned catechol 2,3-dioxygenases exhibited their highest activities on catechol as a substrate compared with catechol derivatives including 4-chlorocatechol, 3-methylcatechol, and 4-methylcatechol. The cloned catechol 2,3-dioxygenases are not fused proteins but were significantly different from one another in their electrophoretic mobilities on nondenaturing 7.5%-polyacrylamide gel.  相似文献   

7.
BACKGROUND: Catechol dioxygenases catalyze the ring cleavage of catechol and its derivatives in either an intradiol or extradiol manner. These enzymes have a key role in the degradation of aromatic molecules in the environment by soil bacteria. Catechol 2, 3-dioxygenase catalyzes the incorporation of dioxygen into catechol and the extradiol ring cleavage to form 2-hydroxymuconate semialdehyde. Catechol 2,3-dioxygenase (metapyrocatechase, MPC) from Pseudomonas putida mt-2 was the first extradiol dioxygenase to be obtained in a pure form and has been studied extensively. The lack of an MPC structure has hampered the understanding of the general mechanism of extradiol dioxygenases. RESULTS: The three-dimensional structure of MPC has been determined at 2.8 A resolution by the multiple isomorphous replacement method. The enzyme is a homotetramer with each subunit folded into two similar domains. The structure of the MPC subunit resembles that of 2,3-dihydroxybiphenyl 1,2-dioxygenase, although there is low amino acid sequence identity between these enzymes. The active-site structure reveals a distorted tetrahedral Fe(II) site with three endogenous ligands (His153, His214 and Glu265), and an additional molecule that is most probably acetone. CONCLUSIONS: The present structure of MPC, combined with those of two 2,3-dihydroxybiphenyl 1,2-dioxygenases, reveals a conserved core region of the active site comprising three Fe(II) ligands (His153, His214 and Glu265), one tyrosine (Tyr255) and two histidine (His199 and His246) residues. The results suggest that extradiol dioxygenases employ a common mechanism to recognize the catechol ring moiety of various substrates and to activate dioxygen. One of the conserved histidine residues (His199) seems to have important roles in the catalytic cycle.  相似文献   

8.
Catechol 2,3-dioxygenases were cloned from Alcaligenes sp. KF711, Pseudomonas putida KF715, and Achromobacter xylosoxidans KF701 which are biphenyl/polychlorinated biphenyls-degrading bacteria. All of the cloned enzymes were purified by preparative polyacrylamide gel electrophoresis (PAGE). The purified catechol 2,3-dioxygenases were significantly different from one another in ring-fission activities to catechol and its derivatives. The catechol 2,3-dioxygenase from Alcaligenes sp. KF711 exhibited higher ring-fission activity to 4-chlorocatechol than those from P. putida KF715 and A. xylosoxidans KF701. In electrophoretic mobilities, the three enzymes were different from one another on nondenaturing PAGE but the same on SDS-PAGE.  相似文献   

9.
Naphthalene-degradingPseudomonas stutzeri NA1 was found to harbour the NAH plasmid, which contains the classical upper and lower catabolic genes required for naphthalene mineralization. The lower pathway inP. stutzeri NA1 was found to proceedviameta-ring cleavage of catechol due to the presence of thenahH gene encoding extradiol catechol 2,3-dioxygenase. Naphthalene-induced cells were able to mineralise both salicylate and catechol. Absorption spectra and gas chromatography/mass spectrometry analysis ofritermediate metabolites of salicylate or catechol degradation by a crude extract ofP. stutzeri NA1 revealed the presence of themeta-ring cleavage product 2-hydroxymuconate semialdehyde as a major constituent. The extradiol ring cleavage genenahH was amplified successfully from the NAH plasmid ofP. stutzeri NA1 with catechol 2,3-dioxygenase-specific primers and cloned inEscherichia coli JM109 The complete nucleotide sequence of cloned PCR fragment was determined. Sequence analysis of cloned PCR fragment revealed an open reading frame with similarity to other extradiol dioxygenases. The deduced amino acid sequence ofnahH fromP. stutzeri NA1 showed 96% sequence identity with the catechol 2,3-dioxygenase gene fromPseudomonas putida strain H. However, when compared to othernahH genes from different pseudomonads, it was in a separate phylogenetic branch, indicating a degree of speciation among the extradiol dioxygenase family.  相似文献   

10.
This study aimed at characterization of catechol 2,3-dioxygenase from Stenotrophomonas maltophilia KB2, being able to utilize a wide spectrum of aromatic substrates as a sole carbon and energy source. 2-methylphenol, 3-methylphenol, and 4-methylphenol was completely degraded during 24 h in concentration 6 mM, 7 mM, and 5 mM, respectively. When cells of strain KB2 were growing on methylphenols, catechol 2,3-dioxygenase was induced. Biochemical analysis revealed that the examined enzyme was similar to another catechol 2,3-dioxygenases, but showed extremely high activity. The enzyme was optimally active at 30 °C and pH 7.6. Kinetic studies showed that the value of Km, Vmax and Hill constant was 85.11 ??M, 3.08 ??M min−1 and 4.09 respectively. Comparative structural and phylogenetic analysis of catechol 2,3-dioxygenase from S. maltophilia KB2 had placed the protein with the single-ring substrate subfamily of the extradiol dioxygenase. We observed the presence of externally located ??-helices and internally located ??-sheets. We also suggest that the Fe2+ ion binding is facilitated via four ligands: two histidine residues, one glutamate residue and one molecule of water.  相似文献   

11.
Protocatechuate 2,3-dioxygenase (2,3-PCD) from Bacillus macerans JJ1b has been purified to homogeneity for the first time. The enzyme catalyzes proximal extradiol ring cleavage of protocatechuate (PCA) with the attendant incorporation of both atoms of oxygen from O2. The holoenzyme has a mass of 143 +/- 7 kDa as determined by ultracentrifugation and other techniques. It is composed of four apparently identical subunits with M(r)s of 35,500, each containing one iron atom. Mössbauer spectroscopy of 57Fe-enriched enzyme showed that the irons are indistinguishable and are high spin (S = 2) Fe2+ in both the uncomplexed and substrate-bound enzyme. However, the quadrupole splitting, delta EQ, and isomer shift, delta, of the Mössbauer spectrum changed from delta EQ = 2.57 mm/s and delta = 1.29 mm/s to delta EQ = 2.73 mm/s and delta = 1.19 mm/s upon PCA binding to the enzyme, showing that the iron environment is altered when substrate is present. The enzyme was also found to bind variable and substoichiometric amounts of Mn2+, but this metal could be removed without loss of activity or stability. The inherently electron paramagnetic resonance (EPR)-silent Fe2+ of the enzyme reversibly bound nitric oxide to produce an EPR-active species (g = 4.11, 3.95; S = 3/2). The specific activity of the enzyme was found to be correlated with the amount of the S = 3/2 species formed, showing that activity is dependent on Fe2+. Anaerobic addition of substrates to the enzyme-nitric oxide complex significantly altered the EPR spectrum, suggesting that substrates bind to or near the iron. The enzyme was inactivated by reagents that oxidize the Fe2+, such as H2O2 and K3FE(CN)6; full activity was restored after reduction of the iron by ascorbate. Steady-state kinetic data were found to be consistent with an ordered bi-uni mechanism in which the organic substrate must add to 2,3-PCD before O2. The enzyme has the broadest substrate range of any of the well-studied catecholic dioxygenases. All substrates have vicinal hydroxyl groups on the aromatic ring except 4-NH2-3-hydroxybenzoate. This is the first substrate lacking vicinal hydroxyl groups reported for catecholic extradiol dioxygenases. 2,3-PCD is the final member of the PCA dioxygenase family to be purified. It is compared with other members of this family as well as other catecholic dioxygenases.  相似文献   

12.
A meta-cleavage pathway for the aerobic degradation of aromatic hydrocarbons is catalyzed by extradiol dioxygenases via a two-step mechanism: catechol substrate binding and dioxygen incorporation. The binding of substrate triggers the release of water, thereby opening a coordination site for molecular oxygen. The crystal structures of AkbC, a type I extradiol dioxygenase, and the enzyme substrate (3-methylcatechol) complex revealed the substrate binding process of extradiol dioxygenase. AkbC is composed of an N-domain and an active C-domain, which contains iron coordinated by a 2-His-1-carboxylate facial triad motif. The C-domain includes a β-hairpin structure and a C-terminal tail. In substrate-bound AkbC, 3-methylcatechol interacts with the iron via a single hydroxyl group, which represents an intermediate stage in the substrate binding process. Structure-based mutagenesis revealed that the C-terminal tail and β-hairpin form part of the substrate binding pocket that is responsible for substrate specificity by blocking substrate entry. Once a substrate enters the active site, these structural elements also play a role in the correct positioning of the substrate. Based on the results presented here, a putative substrate binding mechanism is proposed.  相似文献   

13.
The actinobacterium Rhodococcus jostii RHA1 grows on a remarkable variety of aromatic compounds and has been studied for applications ranging from the degradation of polychlorinated biphenyls to the valorization of lignin, an underutilized component of biomass. In RHA1, the catabolism of two classes of lignin-derived compounds, alkylphenols and alkylguaiacols, involves a phylogenetically distinct extradiol dioxygenase, AphC, previously misannotated as BphC, an enzyme involved in biphenyl catabolism. To better understand the role of AphC in RHA1 catabolism, we first showed that purified AphC had highest apparent specificity for 4-propylcatechol (kcat/KM ∼106 M−1 s−1), and its apparent specificity for 4-alkylated substrates followed the trend for alkylguaiacols: propyl > ethyl > methyl > phenyl > unsubstituted. We also show AphC only poorly cleaved 3-phenylcatechol, the preferred substrate of BphC. Moreover, AphC and BphC cleaved 3-phenylcatechol and 4-phenylcatechol with different regiospecificities, likely due to the substrates’ binding mode. A crystallographic structure of the AphC·4-ethylcatechol binary complex to 1.59 Å resolution revealed that the catechol is bound to the active site iron in a bidentate manner and that the substrate’s alkyl side chain is accommodated by a hydrophobic pocket. Finally, we show RHA1 grows on a mixture of 4-ethylguaiacol and guaiacol, simultaneously catabolizing these substrates through meta-cleavage and ortho-cleavage pathways, respectively, suggesting that the specificity of AphC helps to prevent the routing of catechol through the Aph pathway. Overall, this study contributes to our understanding of the bacterial catabolism of aromatic compounds derived from lignin, and the determinants of specificity in extradiol dioxygenases.  相似文献   

14.
The 2,3-dihydroxybiphenyl dioxygenase from Sphingomonas sp. strain BN6 (BphC1-BN6) differs from most other extradiol dioxygenases by its ability to oxidize 3-chlorocatechol to 3-chloro-2-hydroxymuconic semialdehyde by a distal cleavage mechanism. The turnover of different substrates and the effects of various inhibitors on BphC1-BN6 were compared with those of another 2,3-dihydroxybiphenyl dioxygenase from the same strain (BphC2-BN6) as well as with those of the archetypical catechol 2,3-dioxygenase (C23O-mt2) encoded by the TOL plasmid. Cell extracts containing C23O-mt2 or BphC2-BN6 converted the relevant substrates with an almost constant rate for at least 10 min, whereas BphC1-BN6 was inactivated significantly within the first minutes during the turnover of all substrates tested. Furthermore, BphC1-BN6 was much more sensitive than the other two enzymes to inactivation by the Fe(II) ion-chelating compound o-phenanthroline. The reason for inactivation of BphC1-BN6 appeared to be the loss of the weakly bound ferrous ion, which is the cofactor in the catalytic center. A mutant enzyme of BphC1-BN6 constructed by site-directed mutagenesis showed a higher stability to inactivation by o-phenanthroline and an increased catalytic efficiency for the conversion of 2,3-dihydroxybiphenyl and 3-methylcatechol but was still inactivated during substrate oxidation.  相似文献   

15.
During cultivation in a liquid medium, the bacterium Rhodococcus opacus 1G was capable of growing on phenol at a concentration of up to 0.75 g/l. Immobilization of Rhodococcus opacus 1G had a positive effect on cell growth in the presence of phenol at high concentrations. The substrate at concentrations of 1.0 and 1.5 g/l was completely utilized over 24 and 48 h, respectively. The key enzymes of phenol degradation (two catechol 1,2-dioxygenases and muconate cycloisomerase) were isolated. One of the dioxygenases was very unstable. By substrate specificity, another enzyme belonged to catechol 1,2-dioxygenases of the classical ortho-pathway. Chlorocatechols and chlorophenols served as competitive inhibitors of catechol 1,2-dioxygenases. The inhibitory effect of other aromatic compounds was less significant. Our results suggest that this strain holds promise for bioremediation of phenol wastewater.  相似文献   

16.
Catechol 2,3-dioxygenase (C23O), a key enzyme in the meta-cleavage pathway of catechol metabolism, was purified from cell extract of recombinant Escherichia coli JM109 harboring the C23O gene (atdB) cloned from an aniline-degrading bacterium Acinetobacter sp. YAA. SDS-polyacrylamide gel electrophoresis and gel filtration chromatography analysis suggested that the enzyme (AtdB) has a molecular mass of 35 kDa as a monomer and forms a tetrameric structure. It showed relative meta-cleavage activities for the following catechols tested: catechol (100%), 3-methylcatechol (19%), 4-methylcatechol (57%), 4-chlorocatechol (46%), and 2,3-dihydroxybiphenyl (5%). To elevate the activity, a DNA self-shuffling experiment was carried out using the atdB gene. One mutant enzyme, named AtdBE286K, was obtained. It had one amino acid substitution, E286K, and showed 2.4-fold higher C23O activity than the wild-type enzyme at 100 microM. Kinetic analysis of these enzymes revealed that the wild-type enzyme suffered from substrate inhibition at >2 microM, while the mutant enzyme loosened substrate inhibition.  相似文献   

17.
Yang X  Xie F  Zhang G  Shi Y  Qian S 《Biochimie》2008,90(10):1530-1538
The genes of two 2,3-dihydroxybiphenyl 1,2-dioxygenases (BphC1 and BphC2) were obtained from the gene library of Rhodococcus sp. R04. The enzymes have been purified to apparent electrophoretic homogeneity from the cell extracts of the recombinant harboring bphC1 and bphC2. Both BphC1 and BphC2 were hexamers, consisting of six subunits of 35 and 33kDa as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, respectively. The enzymes had similar optimal pH (pH 9.0), but different temperatures for their maximum activity (30 degrees C for BphC1, 80 degrees C for BphC2). In addition, they exhibited distinct stability at various temperatures. The enzymes could cleave a wide range of catechols, with 2,3-dihydroxybiphenyl being the optimum substrate for BphC1 and BphC2. BphC1 was inhibited by 2,3-dihydroxybiphenyl, catechol and 3-chlorocatechol, whereas BphC2 showed strong substrate inhibition for all the given substrates. BphC2 exhibited a half-life of 15min at 80 degrees C and 50min at 70 degrees C, making it the most thermostable extradiol dioxygenase studied in mesophilic bacteria. After disruption of bphC1 and bphC2 genes, R04DeltaC1 (bphC1 mutant) delayed the time of their completely eliminating biphenyl another 15h compared with its parent strain R04, but R04DeltaC2 (bphC2 mutant) lost the ability to grow on biphenyl, suggesting that BphC1 plays an assistant role in the degrading of biphenyl by strain R04, while BphC2 is essential for the growth of strain R04 on biphenyl.  相似文献   

18.
Abstract The extradiol ring-cleavage dioxygenases derived from seven different Pseudomonas strains were expressed in Escherichia coli and the substrate specificities were investigated for a variety of catecholic compounds. The substrate range of four 2,3-dihydroxybiphenyl dioxygenases from biphenyl-utilizing bacteria, 3-methylcatechol dioxygenase from toluene utilizing Pseudomonas putida F1, 1,2-dihydroxynaphthalene dioxygenase from a NAH7 plasmid, and catechol 2,3-dioxygenase from a TOL plasmid pWW0 were compared. Among the dioxygenases, that from Pseudomonas pseudoalcaligenes KF707 showed a very narrow substrate range. Contrary to this, the dioxygenase from pWW0 showed a relaxed substrate range. The seven extradiol dioxygenases from the various Pseudomonas strains are highly diversified in terms of substrate specificity.  相似文献   

19.
The inactivation of catechol 2,3-dioxygenase from Pseudomonas putida mt-2 by 3-chloro- and 3-fluorocatechol and the iron-chelating agent Tiron (catechol-3,5-disulfonate) was studied. Whereas inactivation by Tiron is an oxygen-independent and mostly reversible process, inactivation by the 3-halocatechols was only observed in the presence of oxygen and was largely irreversible. The rate constants for inactivation (K2) were 1.62 × 10−3 sec−1 for 3-chlorocatechol and 2.38 × 10−3 sec−1 for 3-fluorocatechol. The inhibitor constants (Ki) were 23 μM for 3-chlorocatechol and 17 μM for 3-fluorocatechol. The kinetic data for 3-fluorocatechol could only be obtained in the presence of 2-mercaptoethanol. Besides inactivated enzyme, some 2-hydroxyhexa-2,4-diendioic acid was formed from 3-chlorocatechol, suggesting 5-chloroformyl-2-hydroxypenta-2,4-dienoic acid as the actual suicide product of meta-cleavage. A side product of 3-fluorocatechol cleavage is a yellow compound with the spectral characteristics of a 2-hydroxy-6-oxohexa-2,4-dienoic acid indicating 1,6-cleavage. Rates of inactivation by 3-fluorocatechol were reduced in the presence of superoxide dismutase, catalase, formate, and mannitol, which implies that superoxide anion, hydrogen peroxide, and hydroxyl radical exhibit additional inactivation.  相似文献   

20.
2,3-Dihydroxybiphenyl 1,2-dioxygenase (EC ), the extradiol dioxygenase of the biphenyl biodegradation pathway, is subject to inactivation during the steady-state cleavage of catechols. Detailed analysis revealed that this inactivation was similar to the O(2)-dependent inactivation of the enzyme in the absence of catecholic substrate, resulting in oxidation of the active site Fe(II) to Fe(III). Interestingly, the catecholic substrate not only increased the reactivity of the enzyme with O(2) to promote ring cleavage but also increased the rate of O(2)-dependent inactivation. Thus, in air-saturated buffer, the apparent rate constant of inactivation of the free enzyme was (0.7 +/- 0.1) x 10(-3) s(-1) versus (3.7 +/- 0.4) x 10(-3) s(-1) for 2,3-dihydroxybiphenyl, the preferred catecholic substrate of the enzyme, and (501 +/- 19) x 10(-3) s(-1) for 3-chlorocatechol, a potent inactivator of 2,3-dihydroxybiphenyl 1,2-dioxygenase (partition coefficient = 8 +/- 2, K(m)(app) = 4.8 +/- 0.7 microm). The 2,3-dihydroxybiphenyl 1,2-dioxygenase-catalyzed cleavage of 3-chlorocatechol yielded predominantly 2-pyrone-6-carboxylic acid and 2-hydroxymuconic acid, consistent with the transient formation of an acyl chloride. However, the enzyme was not covalently modified by this acyl chloride in vitro or in vivo. The study suggests a general mechanism for the inactivation of extradiol dioxygenases during catalytic turnover involving the dissociation of superoxide from the enzyme-catecholic-dioxygen ternary complex and is consistent with the catalytic mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号