首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
 Low elimination capacities (less than 10 g m-3 day-1) were observed for the odorant dimethyl sulphide (Me2S) when either wood bark or compost was used as the carrier material in a laboratory-scale biofilter. Enrichment experiments were set up by incubation of garden soil samples during 4 weeks with 100 ppm (v/v) headspace concentrations of both Me2S and dimethyl disulphide (Me2S2). After transfer to a mineral medium, Me2S- and Me2S2-degrading enrichment cultures were obtained for all five soil samples tested, both compounds being converted stoichiometrically to sulphuric acid. Upon inoculation of the laboratory-scale biofilter with one of these enrichment cultures (±120 g cell dry weight m-3 reactor), the elimination capacity for Me2S increased in a 3-week period to 35 g m-3 day-1 and 680 g m-3 day-1 when wood bark and compost were used as the respective carrier materials. Both inoculated biofilters were able to degrade Me2S2, however the elimination capacities obtained for Me2S2 were lower (e.g. 24 g m-3 day-1 for the wood bark filter) compared to those for Me2S. For both inoculated biofilters, a gradual decrease of the elimination capacity for the methyl sulphides was observed as a result of acidification of the carrier material, suggesting that pH regulation is necessary if long-term biofiltration experiments are to be performed. Received: 6 June 1995/Received revision: 10 August 1995/Accepted: 22 August 1995  相似文献   

2.
The applicability of dolomite particlesto control acidificationin a Hyphomicrobium MS3inoculated biofilter removingdimethyl sulphide (Me2S) wasstudied. While direct inoculationof the dolomite particles with theliquid microbial culture was notsuccessful, start-up ofMe2S-degradation in thebiofilter was observed when thedolomite particles were mixed with33% (wt/wt) of Hyphomicrobium MS3-inoculatedcompost or wood bark material.Under optimal conditions, anelimination capacity (EC) of 1680~g Me2S m-3 d-1 wasobtained for the compost/dolomitebiofilter. Contrary to a wood barkor compost biofilter, no reductionin activity due to acidificationwas observed in these biofiltersover a 235 day period because ofthe micro environmentneutralisation of the microbialmetabolite H2SO4 with thecarbonate in the dolomite material.However, performance of thebiofilter decreased when themoisture content of the mixedcompost/dolomite material droppedbelow 15%. Next to this, nutrientlimitation resulted in a gradualdecrease of the EC andsupplementation of a nitrogensource was a prerequisite to obtaina long-term high EC (> 250 gMe2S m-3 d-1) forMe2S. In relation to thisnitrogen supplementation, it wasobserved that stable ECs forMe2S were obtained when thisnutrient was dosed to the biofilterat a Me2S-C/NH4Cl-Nratio of about 10.Abbreviations:DW – dry weight,EC – elimination capacity,Me2S – dimethyl sulphide,OL – organic loading rate,VS - volatile solids  相似文献   

3.
 The biofiltration of dimethyl sulphide (Me2S) and other volatile sulphur compounds results in the accumulation of the metabolite sulphuric acid in the carrier material. Regeneration of an acidified (pH 4.7), Hyphomicrobium-MS3-inoculated compost biofilter degrading Me2S was not possible by trickling tap water (days 0–28) or a KH2PO4/K2HPO4 buffer solution (1.26 g PO3- 4 l-1, pH 7) (days 29–47) over the bioreactor at a superficial liquid flow rate of 34 lm-2 day-1. Since the protons produced displaced nutrient cations (Na+, K+, Ca2+, Mg2+, NH+ 4) from the cation-exchange sites on the compost material, 95% of the SO2- 4 was leached as the corresponding sulphate salts and not as sulphuric acid. Concomitantly, the pH of the compost material decreased from 4.7 to 3.9 over the 47 days rinsing period. Moreover, the rinsing procedure resulted in the leaching of essential microbial nutrients from the compost material, such as NH+ 4 (22.3% wash-out over the 47-day rinsing period) and PO3- 4 (39.3% washout over the 28-day tap-water rinsing period). However, mixing limestone powder into the Me2S-degrading compost biofilter was a successful approach to controlling the pH in the optimal range for the inoculum Hyphomicrobium MS3 (pH 6–7). A stoichiometric neutralisation reaction (molar ratio CaCO3/H2SO4=1.1) was observed between the CaCO3 added and the metabolite of the Me2S degradation, while high elimination capacities (above 100 g Me2S m-3 day-1) were obtained over a prolonged (more than 100 days) period. Received: 1 December 1995/Received revision: 26 April 1995 Accepted: 29 April 1996  相似文献   

4.
An efficient protocol for micropropagation of Harpagophytum procumbens DC., an endangered African medicinal plant, was developed. Maximum shoot multiplication without callus was obtained from nodal explants cultured on Murashige and Skoog (MS) basal salts plus Gamborg’s (B5) vitamins supplemented with 0.1 mg dm−3 indole-3-acetic acid and 5.0 mg dm−3 kinetin. The shoots were subsequently subcultured every 3 weeks on the same medium. Detached axillary shoots were transferred to MS basal salts plus B5 vitamins supplemented with various concentrations of α-naphthalene-acetic acid or indole-3-butyric acid (IBA), ranging from 0.5 to 2.5 mg dm−3 and 100 % rooting and optimal subsequent acclimatization was achieved on 1.0 mg dm−3 IBA. After 4 weeks of culture, the rooted shoots (>5 cm) were planted in pots containing peat, vermiculite and bark (2:1:1), covered with plastic domes and maintained at 25 °C for 2 weeks before being transferred to a glasshouse. Plant survival was about 40 %.  相似文献   

5.
A protocol was developed for plant regeneration of Melia azedarach L. by in vitro culture of apical meristem (0.5 mm in length). The influence of six clones was investigated. The culture procedure comprised two sequential steps: 1) Induction of shoots by in vitro culture of axillary buds from adult trees (10–15 years old) by culture on Murashige and Skoog (1962) medium (MS) supplemented with 0.5 mg·dm−3 BAP (6-benzylaminopurine), 0.1 mg·dm−3 IBA (indolebutyric acid), and 0.1 mg·dm−3 GA3 (gibberellic acid). The Multiplication of the regenerated shoots was achieved in MS + 0.5 mg·dm−3 BAP + 0.1 mg·dm−3 GA3. 2) In vitro culture of the apical meristems from the regenerated shoots in MS medium (0.7 %) supplemented with various combinations of BAP and IBA. Maximum shoot proliferation was obtained on MS medium supplemented with 0.5 mg·dm−3 BAP and 0.1 mg·dm−3 IBA. Regenerated shoots were rooted on MS + 3.5 mg·dm−3 IBA (4 days) followed by subculture on MS lacking growth regulators (30 days). Complete plants were transferred to soil.  相似文献   

6.
An effective protocol for the mass production of cauliflower microshoots was refined using the meristematic layer of cauliflower curd. After the meristematic layer was surface sterilized and shaved off, a commercial blender was used for homogenization and several blending treatments were tested in the range 15–120 s and 30 s was found to be optimal in terms of the amount explants produced and their subsequent growth ability. Explants were cultivated in S23 liquid medium (4.4 g L−1 MS (Murashige and Skoog) and 3% v/w sucrose) supplemented with several combinations of plant growth regulators (PGRs) including 1 and 2 mg L−1 of Kinetin in combination with three types of auxins (indole butyric acid (IBA), Naphthaleneacetic acid (NAA) and Indole-3-acetic acid (IAA)), each at 1 and 2 mg L−1 concentration. The use of 2 mg L−1 Kinetin and 1 mg L−1 IBA gave the best results in terms of its effects on explant induction. Microshoots of different sizes were encapsulated in a sodium alginate matrix and the optimal stage suitable for the production of artificial seeds was assessed in terms of both subsequent conversion and plantlet viability. The feasibility of cultivating cauliflower artificial seeds in commercial substrates (compost, vermiculite, perlite and sand) irrigated with different solution mixtures including sterilized distilled water (SDW), PGRs-free S23 medium and S23 medium supplemented with Kinetin (1 and 2 mg L−1) and IBA or NAA at (1 and 2 mg L−1) was investigated. The use of 2 mg L−1 Kinetin and 2 mg L−1 NAA applied with S23 gave the optimal response with both perlite and compost. This study showed high growth capacity of cauliflower artificial seeds in commercial substrates which is considered a promising step for their direct use in vivo.  相似文献   

7.
Hydrocarbon-contaminated wastes generated from oil and gas drilling activities may be used as a soil amendment once composted and further decomposition of residual hydrocarbons can be accomplished after the composts are applied to soils. To test if N fertilization may enhance hydrocarbon decomposition, we investigated the effects of N application on hydrocarbon degradation in different-aged composts (1-, 2-, 3-, and 4-year-old composts, coded as 1Y, 2Y, 3Y, and 4Y composts, respectively) through a pot experiment planted with white spruce (Picea glauca [Moench] Voss) seedlings. The percentage degradation of total petroleum hydrocarbon (TPH, C11 to C40) in the composts without N fertilization was correlated to initial NH4 + concentrations (R = 0.99, P < 0.001). The percentage degradation of TPH was highest in the 3Y compost (41.1%) that had an initial level of 325.3 mg NH4 +-N kg?1 and the lowest in the 1Y compost (9.3%) that had an initial level of 8.3 mg NH4 +-N kg?1. The degradation of TPH was enhanced by N fertilization in the 1Y (from 9.3 to 15.3%) and 4Y composts (from 14.3 to 22.6%) that had low initial NH4 + concentrations. Our results show that application of NH4 +-based fertilizers may enhance the degradation of TPH when initial NH4 + concentrations in the compost are low.  相似文献   

8.
Active compost biofiltration of toluene   总被引:5,自引:0,他引:5  
Composting of leaves and alfalfa (i.e. active compost) was used for thebiofiltration of toluene-contaminated air in a 6-L biofilter (initial bedheight: 180 mm). During the thermophilic phase (45 to 55 °C), toluenebiodegradation rates reached 110 gtoluene.m-3.h-1 at an inlet concentration ofabout 5 g.m-3.h-1 and a gas residence time of 90 seconds. Thehighest rates were obtained late in the thermophilic phase suggesting amicrobial adaptation was occurring. Biodegradation rates decreased rapidly(50% in 48h) in the cooling stage. Under mesophilic conditions, themaximum biodegradation rates that could be obtained by increasing the inlettoluene concentration were near 89 gtoluene.m-3.h-1 which issimilar to that reported in the literature for mature compost biofilters. Novolatile by-product was detected by gas chromatography. Mineralization of14C-toluene and benzene showed that they were completelydegraded into CO2 and H2O under boththermophilic and mesophilic conditions. Bacteria isolated from latemesophilic stage had the capacity to degrade all BTEX compounds but were notable to transform chlorinated compounds. No organisms were isolated whichcould use toluene as their sole source of carbon and energy at 50 °C.Active compost biofiltration should be an excellent process for thetreatment of gaseous BTEX by biofiltration. This is the first report ofthermophilic biofiltration of toluene.  相似文献   

9.
Indole-3-butyric acid (IBA) was recently identified by GC/MS analysis as an endogenous constituent of various plants. Plant tissues contained 9 ng g?1 fresh weight of free IBA and 37 ng g?1 fresh weight of total IBA, compared to 26 ng g?1 and 52 ng g?1 fresh weight of free and total indole-3-acetic acid (IAA), respectively. IBA level was found to increase during plant development, but never reached the level of IAA. It is generally assumed that the greater ability of IBA as compared with IAA to promote rooting is due to its relatively higher stability. Indeed, the concentrations of IAA and IBA in autoclaved medium were reduced by 40% and 20%, respectively, compared with filter sterilized controls. In liquid medium, IAA was more sensitive than IBA to non-biological degradation. However, in all plant tissues tested, both auxins were found to be metabolized rapidly and conjugated at the same rate with amino acids or sugar. Studies of auxin transport showed that IAA was transported faster than IBA. The velocities of some of the auxins tested were 7. 5 mm h?1 for IAA, 6. 7 mm h?1 for naphthaleneacetic acid (NAA) and only 3. 2 mm h?1 for IBA. Like IAA, IBA was transported predominantly in a basipetal direction (polar transport). After application of 3H-IBA to cuttings of various plants, most of the label remained in the bases of the cuttings. Easy-to-root cultivars were found to absorb more of the auxin and transport more of it to the leaves. It has been postulated that easy-to-root, as opposed to the difficult-to-root cultivars, have the ability to hydrolyze auxin conjugates at the appropriate time to release free auxin which may promote root initiation. This theory is supported by reports on increased levels of free auxin in the bases of cuttings prior to rooting. The auxin conjugate probably acts as a ‘slow-release’ hormone in the tissues. Easy-to-root cultivars were also able to convert IBA to IAA which accumulated in the cutting bases prior to rooting. IAA conjugates, but not IBA conjugates, were subject to oxidation, and thus deactivation. The efficiency of the two auxins in root induction therefore seems to depend on the stability of their conjugates. The higher rooting promotion of IBA was also ascribed to the fact that its level remained elevated longer than that of IAA, even though IBA was metabolized in the tissue. IAA was converted to IBA by seedlings of corn and Arabidopsis. The Km value for IBA formation was low (approximately 20 μM), indicating high affinity for the substrate. That means that small amounts of IAA (only a fraction of the total IAA in the plant tissues) can be converted to IBA. It was suggested that IBA is formed by the acetylation of IAA with acetyl-CoA in the carboxyl position via a biosynthetic pathway analogous to the primary steps of fatty acid biosynthesis, where acetyl moieties are transferred to an acceptor molecule. Incubation of the soluble enzyme fraction from Arabidopsis with 3H-IBA, IBA and UDP-glucose resulted in a product that was identified tentatively as IBA glucose (IBGIc). IBGIc was detected only during the first 30 min of incubation, showing that it might be converted rapidly to another conjugate.  相似文献   

10.
Large-scale composting facilities are known to cause environmental problems, mainly through pungent air emitted by composting material. In air samples taken above stacks set up to prepare compost used as a substrate in mushroom cultivation, several volatile compounds were identified by means of the coupled techniques of gas chromatography and mass spectrography. Among the compounds identified, sulfur-containing compounds [H2S, COS, CH3SH, CS2, (CH3)2S, (CH3)2S2, and (CH3)2S3] are the most conspicuous in causing a nuisance. Quantification of these compounds was performed by concentrating a relatively small air sample on Tenax GC. The sampling method appeared to be very useful under field conditions. During the composting process, the concentration of the volatile sulfur compounds in emitted air ranged from 1 to 35 μmol/m3. The highest concentrations were obtained at the end of the outdoor process. Total sulfur emission amounted to 8.3 mg of sulfur per kg (fresh weight) of compost. The end product still contained 2.58 g of sulfur per kg (fresh weight) of compost. Suggestions about the origin of the volatile sulfur compounds are made.  相似文献   

11.
Summary The continuing production of leaded petrol generates liquid wastes containing recalcitrant trialkyl lead, for which no suitable chemical treatment has been formulated. This investigation explores the feasibility of using microorganisms to catalyse the rate-limiting step of trimethyl lead degradation to dialkyl lead; this disproportionates chemically to give, ultimately, Pb2+ which is treatable by classical methods. An Arthrobacter sp. and a wood decay macrofungus, Phaeolus schweinitzii provide novel evidence for metabolic trimethyl lead (Me3Pb+) degradation. The retention of this activity in immobilized cell column reactors challenged with Me3Pb+-supplemented flows suggests that a future biotreatment process may be possible. Offprint requests to: M. E. Macaskie  相似文献   

12.
A protocol for multiple shoot induction from cotyledonary node explants of Terminalia chebula Retz. has been developed. Germination frequency of embryos (up to 100 %) was obtained on Murashige and Skoog (MS) medium supplemented with 0.5 mg dm–3 gibberellic acid (GA3). Maximum number of shoots (6.4 shoots per cotyledonary node) was obtained on half-strength MS + 0.3 mg dm–3 GA3+ 1.0 mg dm–3 indole-3-butyric acid (IBA) + 10.0 mg dm–3 benzylaminopurine (BAP) after 4 weeks of culture. When the cotyledonary nodes along with the axillary shoot buds were allowed to grow in the same medium upto 19.2 shoots were obtained after 8 – 9 weeks. Best rooting (100 %, 5.5 roots per shoot) was observed when shoots were excised and transferred to half-strength MS medium containing 1.0 mg dm–3 IBA + 1 % mannitol and 1.5 % sucrose. Survival of rooted plants in vivo was low (35 – 40 %) when they were directly transferred to soil in glasshouse. However, transfer to soil with MS nutrients and 1.0 mg dm–3 IBA in culture room for a minimum duration of 2 weeks increased the survival percentage of plants to 100 %.  相似文献   

13.
The development of new biodegradable packaging materials, especially biodegradable plastics, has created a need for biodegradability testing. The European standard for controlled composting test was used in this study for assessing if the addition of a test material results in excess CO2 production in compost. This effect, designated as the priming effect, would give an erroneous result for biodegradation, which is based on CO2 formation from the test material. Glucose was selected as a test substrate because it is the degradation product of starch and cellulose, which are major compounds of many packaging materials. Both 14C-glucose and non-labelled glucose was applied to nine compost samples of variable stability and agefrom two weeks to 1.5 years. CO2 and 14CO2 evolution were measured during the incubation. Biodegradation of glucose in unstable composts (age leq6 months) was negative and 14CO2 evolution was poor, although the respective composts without glucose produced relatively high amounts of CO2. It was concluded that a negative priming effect was observed in unstable composts, in which glucose remained mostly non-degraded and apparently inhibited the mineralization of native organic matter in the compost. In stable composts (age 6 months), biodegradation of glucose was high and approximately equal to 14C-glucose mineralization, i.e., the composts showed no priming effect. Young composts were unsuitable for controlled composting test due to lack of stability. It is important to ensure that the compost inoculum used for the test is sufficiently stable.  相似文献   

14.
Volatile sulfur compounds are known to be produced during the preparation of compost used as a substrate in mushroom cultivation. Because they cause odor problems, attempts have been made to reduce the production of these compounds. The influences of temperature and various additions on the production of volatile sulfur compounds from composting material were tested on laboratory-scale preparations. The production of H2S, COS, CH3SH, and (CH3)2S was proven to be a biological process with an optimal temperature that coincides with the optimal temperature for biological activity. The formation of CS2 and (CH3)2S2 was shown to be a nonbiological process. The emission of volatile sulfur compounds during the indoor preparation of mushroom compost appeared to be remarkably reduced (about 90%) as compared with the emission during the conventional outdoor process. Introduction of this indoor composting process would result in a significant reduction in environmental pollution.  相似文献   

15.

Introduction

In intensive agriculture areas the use of pesticides can alter soil properties and microbial community structure with the risk of reducing soil quality.

Materials and Methods

In this study the fatty acid methyl esters (FAMEs) evolution has been studied in a factorial lab experiment combining five substrates (a soil, two aged composts and their mixtures) treated with a co-application of three pesticides (azoxystrobin, chlorotoluron and epoxiconazole), with two extraction methods, and two incubation times (0 and 58 days). FAMEs extraction followed the microbial identification system (MIDI) and ester-linked method (EL).

Results and Discussion

The pesticides showed high persistence, as revealed by half-life (t1/2) values ranging from 168 to 298 days, which confirms their recalcitrance to degradation. However, t1/2 values were affected by substrate and compost age down to 8 days for chlorotoluron in S and up to 453 days for epoxiconazole in 12M. Fifty-six FAMEs were detected. Analysis of variance (ANOVA) showed that the EL method detected a higher number of FAMEs and unique FAMEs than the MIDI one, whereas principal component analysis (PCA) highlighted that the monosaturated 18:1ω9c and cyclopropane 19:0ω10c/19ω6 were the most significant FAMEs grouping by extraction method. The cyclopropyl to monoenoic acids ratio evidenced higher stress conditions when pesticides were applied to compost and compost+soil than solely soil, as well as with final time.

Conclusion

Overall, FAMEs profiles showed the importance of the extraction method for both substrate and incubation time, the t1/2 values highlighted the effectiveness of solely soil and the less mature compost in reducing the persistence of pesticides.  相似文献   

16.
Organosulfur compounds have been established to possess anticancer effects. To provide a better understanding of the biological function of dimethyl sulfides, dimethyl monosulfide (Me2S), dimethyl disulfide (Me2S2), dimethyl trisulfide (Me2S3) and dimethyl tetrasulfide (Me2S4) were used as experimental materials to investigate their effects on apoptosis induction in human leukemia Jurkat cells and HL-60 cells. Treatment with 20 μM dimethyl sulfides for 24 h decreased the viability of both cells. The cell viability-reducing effect of these sulfides was in the following order: Me2S4 ≈ Me2S3 > Me2S2 ≈ Me2S for Jurkat cells and Me2S4 > Me2S3 > Me2S2 ≈ Me2S for HL-60 cells. Me2S3 and Me2S4 significantly induced DNA fragmentation and caspase-3 activation. The addition of GSH or NAC completely suppressed the sulfide-induced apoptosis. Our results indicate that dimethyl sulfides with a larger number of sulfur atoms more strongly induced apoptosis in both human leukemia cells via ROS production and caspase-3 activation.  相似文献   

17.
Biofiltration of industrial carbon disulfide (CS2)-contaminated waste air streams results in the acidification of biofilters and therefore reduced performance, high water use, and increased costs. To address these issues, we isolated 16 extremely acidophilic CS2-converting Acidithiobacillus thiooxidans strains that tolerated up to 6% (vol/vol) sulfuric acid. The ecophysiological properties of five selected strains (2Bp, Sts 4-3, S1p, G8, and BBW1) were compared. These five strains had pH optima between 1 (2Bp) and 2 (S1p). Their affinities for CS2 ranged between 80 (G8) and 130 (2Bp) μM. Strains S1p, G8, and BBW1 had more hydrophobic cell surfaces and produced less extracellular polymeric substance than did strains 2Bp and Sts 4-3. All five strains converted about 80% of the S added as CS2 to S0 when CS2 was supplied in excess. The rate of S0 consumption varied between 7 (Sts 4-3) and 63 (S1p) nmol O2 min−1 ml culture−1. Low S0 consumption rates correlated partly with low levels of cell attachment to externally produced S0 globules. During chemostat growth, the relative amount of CS2 hydrolase in the cell increased with decreasing growth rates. This resulted in more S0 accumulation during CS2 overloads at low growth rates. Intermittent interruptions of the CS2 supply affected all five strains. Strains S1p, G8, and BBW1 recovered from 24 h of starvation within 4 h, and strains 2Bp and Sts 4-3 recovered within 24 h after CS2 was resupplied. We recommend the use of mixtures of Acidithiobacillus strains in industrial biofilters.  相似文献   

18.
Stackhousia tryonii Bailey, a rare species whichhyperaccumulates nickel and with a potential to be exploited inphytoremediation/phytomining, is difficult to propagate via seeds. This studyinvestigated the development of a micropropagation protocol for the productionof large stocks of S. tryonii. Disinfested shoot tips andnodal buds were precultured on Gamborg's (B5) basal medium toobtain aseptic shoots for the optimisation of the protocol. 6-Benzyl aminopurine(BAP) at 1.0 mg l–1 produced the highest number ofshoots per explant in B5 medium. Comparison betweenB5 and MS media showed similar responses, but with marked influenceof BAP concentration on shoot numbers. Transfer of shoots from MS(multiplication) medium to MS medium supplemented with indole-3-acetic acid(IAA) and indole-3-butyric acid (IBA), individually or in combination, indicatedthat a combination of IAA and IBA (0.75 mg l–1each) is required to produce roots on young shoots (75%) compared to IBA(15–45%) or IAA (0–10%) alone. This study demonstrated that by usingthis protocol, a high multiplication rate (up to 18 shoots per explant) could be produced within 4 weeks, andthey can be readily hardened (98% survival) in a glasshouse by transplantingthem into a potting mixture of sand and perlite (4:1).  相似文献   

19.
This paper describes the effect of agar, MS basal medium strength, sucrose and polyamines on the in vitro rooting of Syzygium alternifolium realized by a two step procedure involving root initiation (RI) and root elongation (RE). RI was carried out on solidified MS medium supplemented with 1.0 mg dm−3 indole-3-butyric acid (IBA) for 3 weeks, and RE following transfer to half-strength MS medium devoid of growth regulators for another 3 weeks. Agar and MS basal medium concentrations played important role on rooting response as well as on health of rooted shoots. Sucrose concentration was positively correlated with the rooting percentage, root number per shoot and root length. The combination of polyamines and 1.0 mg dm−3 IBA increases rooting percentage compared to media containing only 1.0 mg dm−3 IBA. Optimum rooting was attained with half-strength MS medium containing 1.0 mg dm−3 IBA, 2 % sucrose, 10 μM spermine and 0.8 % agar. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

20.
Raman, infra-red and multinuclear NMR spectroscopy were used to establish the structure of several TiX4·2L adducts (X=F, Cl, Br; L=Lewis base) in inert solvents. In contrast to the analogous SnX4·2L adducts where a cis-trans equilibrium prevails, most of the TiX4·2L adducts studied were found to have only the cis configuration. Trans isomers were observed but their formation was dependent on the donor ability of the ligand. In dichloromethane solution, the adducts with L=Me2O, Me2S, (MeOCH2-)2, Et2S, THT, Me2Se, MeCN, Me2CO, Cl(MeO)2PO, Cl2(MeO)PO, Cl3PO and Cl2(Me2N)PO were found to have the cis configuration only. For the adducts with L=THF, Cl(Me2N)2PO and TMPA, a cis-trans equilibrium was observed. The thermodynamic parameters were measured for cis-trans isomerization for TiCl4·2TMPA in CHCl3; these parameters are: Kiso277=[trans] / [cis]=0.36, ΔH°iso=− 1.3 ± 1.3 kJ/mol, ΔS°iso=−13.1 + 7.5 J/mol K, and ΔV°iso= − 1.3+0.8 cm3/mol. A complex equilibrium involving cis and trans isomers and the ionic complex [TiCl3·3HMPA]Cl was found to occur for the TiCl4 adduct with L=HMPA. 1H NMR was used to establish the relative stabilities of the cis adducts and the following sequence was obtained: Me2O ∼ MeCN < Me2CO < Me2S < Me2Se < Cl(MeO)2PO < TMPA < CI(Me2N)2PO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号