首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 780 毫秒
1.
A total of 140 lactic acid bacteria (LAB) strains were isolated from corn, alfalfa, clover, sainfoin, and Indian goosegrass in the Tibetan Plateau. According to phenotypic and chemotaxonomic characteristics, 16S rDNA sequence, and recA gene PCR amplification, these LAB isolates were identified as belonging to five genera and nine species. Corn contained more LAB species than other forage crops. Leuconostoc pseudomesenteroides, Lactococcus lactis subsp. lactis, Lactobacillus brevis, and Weissella paramesenteroides were dominant members of the LAB population on alfalfa, clover, sainfoin, and Indian goosegrass, respectively. The comprehensive 16S rDNA and recA-based approach effectively described the LAB community structure of the relatively abundant LAB species distributed on different forage crops. This is the first report describing the diversity and natural populations of LAB associated with Tibetan forage crops, and most isolates grow well at or below 10°C. The results will be valuable for the future design of appropriate inoculants for silage fermentation in this very cold area.  相似文献   

2.
A total of 161 low-G+C-content gram-positive bacteria isolated from whole-crop paddy rice silage were classified and subjected to phenotypic and genetic analyses. Based on morphological and biochemical characters, these presumptive lactic acid bacterium (LAB) isolates were divided into 10 groups that included members of the genera Enterococcus, Lactobacillus, Lactococcus, Leuconostoc, Pediococcus, and WEISSELLA: Analysis of the 16S ribosomal DNA (rDNA) was used to confirm the presence of the predominant groups indicated by phenotypic analysis and to determine the phylogenetic affiliation of representative strains. The virtually complete 16S rRNA gene was PCR amplified and sequenced. The sequences from the various LAB isolates showed high degrees of similarity to those of the GenBank reference strains (between 98.7 and 99.8%). Phylogenetic trees based on the 16S rDNA sequence displayed high consistency, with nodes supported by high bootstrap values. With the exception of one species, the genetic data was in agreement with the phenotypic identification. The prevalent LAB, predominantly homofermentative (66%), consisted of Lactobacillus plantarum (24%), Lactococcus lactis (22%), Leuconostoc pseudomesenteroides (20%), Pediococcus acidilactici (11%), Lactobacillus brevis (11%), Enterococcus faecalis (7%), Weissella kimchii (3%), and Pediococcus pentosaceus (2%). The present study, the first to fully document rice-associated LAB, showed a very diverse community of LAB with a relatively high number of species involved in the fermentation process of paddy rice silage. The comprehensive 16S rDNA-based approach to describing LAB community structure was valuable in revealing the large diversity of bacteria inhabiting paddy rice silage and enabling the future design of appropriate inoculants aimed at improving its fermentation quality.  相似文献   

3.

This study was conducted to evaluate the fermentative profile and microbial populations of wilted and non-wilted alfalfa silages ensiled with or without inoculant and the population dynamics of lactic acid bacteria (LAB) of wilted alfalfa plant and theirs silage. A 2?×?2?×?6 factorial arrangement was used, with the absence or presence of wilting (W), with and without bacterial inoculant (I) and six fermentation periods (P) (1, 3, 7, 14, 28 and 56 days), in a completely randomized design, with three replicates. The alfalfa was slightly wilted for 6 h and increased the dry matter content from 133.9 to 233.4 g/kg. It was performed the cultivation, followed by the isolation of LAB from samples of alfalfa forage before ensiling and its silage only in non-inoculated silages, after different fermentation periods. DNA was extracted from the isolated strains of LAB; the 16S rRNA gene sequences were amplified by PCR and the sequences were compared to those available from the GenBank database. Wilting provided silages with lower pH, ammonia nitrogen and acetic acid concentrations. The wilting process did not alter the amount of LAB; however, it affected the LAB diversity of the silages. The Lactobacillus plantarum was the predominant species in non-wilted and wilted silages.

  相似文献   

4.
Kwak WS  Kim YI  Seok JS  Oh YK  Lee SM 《Bioresource technology》2009,100(3):1471-1473
A small-silo study was conducted to develop an effective ensiling storage method for the use of cotton waste-based spent mushroom substrate (SMS) as an animal feed. The SMS was ensiled with 5% molasses (DM basis), 0.5% (v/w) lactic acid bacteria (LAB, Lactobacillus plantarum) inoculant or 0.5% (v/w) yeast (Saccharomyces cerevisiae) inoculant. The treatments included 100% SMS (control), 95% SMS+5% molasses (T1), 95% SMS+5% molasses+0.5% LAB (T2) and 95% SMS+5% molasses+5% LAB+0.5% yeast (T3). The treatments were ensiled for 10. Change in chemical compositions was little (P>0.05) according to the ensiling process and treatments. Compared with those before ensiling, 100% SMS (control) after ensiling showed unstable fermentative properties with high pH (5.2) and little lactic acid production. Compared with the ensiled control, treatments (T1, T2 and T3) resulted in decreased pH, 18-20 times higher concentrations of lactic acid, and greater populations of total bacteria (P<0.07), LAB and yeast (P<0.07). The addition of 5% molasses, 0.5% LAB and 0.5% yeast (T3) to the SMS resulted in the lowest pH (4.25) and the greatest microbial populations. Treatment T3 was selected for a large scale silo study which was ensiled for 10, 20 and 30 d. As in the small-silo study, the T3 treatment showed favorable fermentative and microbial parameters, compared with the control, by decreasing pH and increasing lactic acid concentrations, LAB and yeast populations. The minimum ensiling period was 20 d, when pH was reasonably low and LAB and yeast populations were greatest. In conclusion, molasses and microbial inoculation improved silage quality of SMS.  相似文献   

5.
Canine intestinal lactic acid bacterium (LAB) population in four fistulated dogs was cultured and enumerated using MRS agar. LAB levels ranging from 1.4x10(6) to 1.5x10(7) CFU ml(-1) were obtained in jejunal chyme. In the fecal samples 7.0x10(7) and 2.0x10(8) CFU g(-1) were detected. Thirty randomly selected isolates growing in the highest sample dilutions were identified to species level using numerical analysis of 16S and 23S rDNA restriction fragment length polymorphism patterns (ribotyping) and 16S rDNA sequence analysis. According to these results, Streptococcus alactolyticus was the dominant culturable LAB species in both feces and jejunal chyme. In addition, Lactobacillus murinus and Lactobacillus reuteri were detected.  相似文献   

6.
苜蓿青贮用乳酸菌复合系Al2的组成多样性   总被引:2,自引:0,他引:2  
苜蓿是高蛋白的饲料作物,青贮是保存青草过冬的主要手段,但苜蓿是难青贮的作物,添加乳酸菌制剂是解决苜蓿青贮难的有效措施。本研究室通过连续的限制性培养筛选到苜蓿青贮用乳酸菌复合系Al2,用变性梯度凝胶电泳(DGGE)、平板分离及建立16S rDNA克隆文库3种手段相结合分析Al2的组成多样性,确认Al2复合菌系由7株菌组成,全部属于Lactobacillus。其中3株菌Al2-1i,Al2-2i,Al2-3i通过平板分离得到,分别属于L.plantarum(99.9%)、L.kimchii(99.4%)、L.farciminis(100%)。在Al2复合菌系的16S rDNA克隆文库中,上述7种菌的组成比例分别为55.21%、19.79%、14.58%、3.13%、3.13%、3.13%、1.03%。  相似文献   

7.
There has been growing interest to develop forage rice as a new feed resource for livestock. This study was to characterize the natural population of lactic acid bacteria (LAB) and select potentially excellent strains for paddy rice silage preparation in China. One hundred and twenty-six strains were isolated and screened from paddy rice silage prepared using a small-scale fermentation system, and ninety-nine of these isolates were considered to be LAB based on their Gram-positive and catalase-negative morphology and the production of most of their metabolic products as lactic acid. These isolates were divided into eight groups (A-H) on the basis of their morphological and biochemical characteristics. The Group A to H strains were identified as Lactobacillus (L.) plantarum subsp. plantarum (species ratio: 8.1%), L. casei (5.1%), Leuconostoc (Ln.) pseudomesenteroides (11.1%), Pediococcus (P.) pentosaceus (24.2%), Enterococcus (E.) mundtii (12.1%), Lactococcus (Lc.) garvieae (15.2%), E. faecium (9.1%) and Lc. lactis subsp. lactis (15.2%) based on sequence analyses of their 16S rRNA and recA genes. P. pentosaceus was the most abundant member of the LAB population in the paddy rice silage. A selected strain, namely L. casei R 465, was found to be able to grow under low pH conditions and to improve the silage quality with low pH and a relatively high content of lactic acid. This study demonstrated that forage paddy rice silage contains abundant LAB species and its silage can be well preserved by inoculation with LAB, and that strain R 465 can be a potentially excellent inoculant for paddy rice silage.  相似文献   

8.
Ensiling plant material with the aid of lactic acid bacteria (LAB) is a common agricultural practice for conserving forages independently of the time point of harvest. Despite ensiling being a natural process, it can be improved by the treatment of the harvested forage with starter cultures before storage. Within this context, Lactobacillus plantarum (L. plantarum) is the most frequently used LAB in commercially available starter cultures. In order to enable the monitoring of the population dynamics of L. plantarum in silage, methods for species-specific detection based on the 16S ribosomal DNA (rDNA) sequence were developed by applying a quantitative real-time polymerase chain reaction (QRT-PCR) approach. The QRT-PCR assay was also applied to estimate the development of the L. plantarum population within experimental grass silages. In addition, a multiplex QRT-PCR assay was developed to estimate the amount of L. plantarum 16S rDNA in relation to total bacterial 16S rDNA. This multiplex QRT-PCR assay was applied to monitor the influence of different silage additives on the L. plantarum population.  相似文献   

9.
The 8,000 biogas plants currently in operation in Germany are mainly fed with biomass from annual crops. However, feedstock from perennial crops such as miscanthus is expected to be more environmentally benign. If miscanthus is to be used in greater amounts as a substrate for anaerobic digestion, storage will become a relevant topic, as a continuous supply of biomass throughout the year is necessary. The objective of this study was to identify the miscanthus harvest time that best balances the simultaneous achievement of high silage quality, high digestibility and high methane hectare yields. For this purpose, biomass from four miscanthus genotypes with varying senescence characteristics was harvested on three different dates in autumn 2017. Part of the biomass was ensiled, and the methane yield of both ensiled and non‐ensiled biomass was analysed in a biogas batch test to assess the effect of ensiling on the methane hectare yield and digestion velocity. The ensiled biomass was found to have an up to 7% higher substrate‐specific methane yield and also showed a higher digestion velocity than the non‐ensiled biomass. The silage quality was best when miscanthus was harvested in mid‐October, due to highest lactic acid content (average: 3.0% of DM) and lowest pH (average: 4.39) compared to the harvests in mid‐September and beginning of October. Mass losses during ensiling (as high as 7.6% of fresh matter for the M. sinensis genotype Sin55) were compensated for by a higher substrate‐specific methane yield (up to 353 Nml CH4 (g oDM)?1) in ensiled miscanthus. This resulted in non‐significantly different methane hectare yields for non‐ensiled (average: 4.635 Nm3 CH4/ha) and ensiled miscanthus biomass (4.803 Nm3 CH4/ha). A comparison of the four genotypes suggests that Miscanthus x giganteus is the most suitable genotype for ensiling as it had the best silage quality.  相似文献   

10.
Lactic acid bacteria (LAB) play pivotal roles in the preservation and fermentation of forage crops in spontaneous or inoculated silages. Highlights of silage LAB over the past decades include the discovery of the roles of LAB in silage bacterial communities and metabolism and the exploration of functional properties. The present article reviews published literature on the effects of LAB on the succession, structure, and functions of silage microbial communities involved in fermentation. Furthermore, the utility of functional LAB in silage preparation including feruloyl esterase-producing LAB, antimicrobial LAB, lactic acid bacteria with high antioxidant potential, pesticide-degrading LAB, lactic acid bacteria producing 1,2-propanediol, and low-temperature-tolerant LAB have been described. Compared with conventional LAB, functional LAB produce different effects; specifically, they positively affect animal performance, health, and product quality, among others. In addition, the metabolic profiles of ensiled forages show that plentiful probiotic metabolites with but not limited to antimicrobial, antioxidant, aromatic, and anti-inflammatory properties are observed in silage. Collectively, the current knowledge on the roles of LAB in crop silage indicates there are great opportunities to develop silage not only as a fermented feed but also as a vehicle of delivery of probiotic substances for animal health and welfare in the future.  相似文献   

11.
This study examines the influence of ensiled sugar beets (Beta vulgaris ssp. vulgaris) on preference and short-time dry matter (DM) intake of goats. Whole sugar beets were ensiled either without any silage additive (sugar beet silage (SBS)) or with a chemical additive (6 l/t) containing 85% formic and propionic acids (treated sugar beet silage (TBS)) and were chopped after ensiling. The influence of different proportions of SBS (0%, 6.25%, 12.5%, 18.75% and 25% of dietary DM) and TBS (0%, 5%, 10%, 15% and 20% of DM) in partial mixed rations on short-time DM intake by goats (adult Saanen type wethers; n = 10) was studied in two separate, independent trials. Preference behaviour was investigated by offering the goats two different experimental diets per day and offer each possible combination of them (n = 10) once throughout the trial. On this basis, the mean DM intake (within 30 min and 3 h) of each experimental diet was determined. Both sugar beet silages showed good fermentation quality with low pH. By using the chemical silage additive, the production of ethanol was reduced and considerable amounts of sugar were preserved. In the short-term preference experiment, increasing concentrations of sugar beet silage in the ration increased DM intake (p < 0.05) in a linear way with a strong preference for those diets containing high amounts of sugar beet silage. Initial DM intake after 30 min was 4–5 fold increased for diets containing the highest beet concentration. It is assumed that the preference was positively influenced by sugar and sweet taste or the associated higher concentration of metabolisable energy.  相似文献   

12.
The objective of this experiment was to determine the ensiling characteristics and in situ degradation of barley tea grounds (BTG) treated with contrasting additives. The BTG was ensiled without additive (control), or with mixtures of lactic acid bacteria and Acremonium cellulase (LAB + AUS), formic acid (FA), and sodium hydroxide (NaOH) for a period of 60 days. Three ruminal-fistulated steers were used to determine in situ degradabilities of dry matter (DM), crude protein (CP) in the BTG and its silages. In the LAB + AUS treated silage, the pH value (P<0.001) and ammonia-N content (P=0.007) were lower and the lactic acid content (P<0.001) was higher than the control. The FA and NaOH treated silages were well preserved as indicated by low ammonia-N content (P=0.007), no propionic acid and butyric acid. The LAB + AUS treated silage had higher rapidly degradable fraction of DM and CP than the control and BTG (P<0.001). The NaOH treated silage had higher contents of rapidly degradable fraction, slowly degradable fraction and effective degradability of DM and CP than control and BTG (P<0.01).  相似文献   

13.
A rifampicin-resistant variant of two strains of Lactobacillus plantarum, one strain of Pediococcus acidilactici, and one strain of Enterococcus faecium were used for the experimental production of lucerne silage. Laboratory silage without inoculants served as a control. Counts of total anaerobes, total lactic acid bacteria (LAB), lactobacilli, pediococci, and enterococci were determined on days 14, 21, 30, 49, and 60 of lucerne fermentation. LAB dominated in silage microflora, reaching a percentage between 59 and 95 % of total anaerobes. Lactobacilli were found as a predominant group of LAB during the whole study. Lactobacilli reached numbers 8.74 log CFU/g in treated silage and 8.89 log CFU/g in the control at the first observation. Their counts decreased to 4.23 and 4.92 log CFU/g in treated silage and the control, respectively, on day 63 of fermentation. Similar decreases were observed in all bacterial groups. The treated silage samples possessed lower pH (4.2 vs. 4.5 in control samples) and contained more lactic acid compared to control silage. The identity of re-isolated rifampicin-resistant bacteria with those inoculated to the lucerne was evaluated by fingerprinting techniques. The fingerprint profiles of re-isolated bacteria corresponded to the profiles of strains used for the treatment. It could be concluded that supplemented LAB dominated in laboratory silage and overgrew naturally occurring LAB.  相似文献   

14.
Grass was field-dried to 3 different dry matter (DM) levels (200, 430 and 540 g/kg) and inoculated with 106–107 cfu/g of a Listeria monocytogenes strain sharing a phagovar occasionally involved in food-borne outbreaks of listeriosis. Formic acid (3 ml/kg) or lactic acid bacteria (8·105/g) with cellulolytic enzymes were applied only to forages with low and intermediate DM levels. Forages were ensiled in laboratory silos (1700 ml) and were stored at 25°C for 30 or 90 days. After 90 days of storage, L. monocytogenes could not be detected in any silo, except one with the high dry matter grass without additive. After 30 days of storage, between 102 and 106 cfu L. monocytogenes/g silage were isolated from the untreated silages. Increasing the DM content from 200 to 540 g/kg did not reduce listeria counts possibly because of the lower production of fermentation acids (higher pH). In silages treated with additives, counts of L. monocytogenes were always lower than in silages without additive. In wet silages (DM 200 g/kg) both additives were effective, but in the wilted silages (DM 430 g/kg) only the bacterial additive reduced listeria counts below detection level. Listeria counts were highly correlated to silage pH (r = 0.92), the concentration of lactic acid (r = -0.80) and the pooled amount of undissociated acids (r = -0.83).  相似文献   

15.
Coffee contamination by ochratoxigenic fungi affects both coffee quality as well as coffee price with harmful consequences on the economy of the coffee exporting countries for whom which is their main source of income. Fungal strains were isolated from coffee beans and identified as black Aspergilli. Ochratoxigenic moulds like Aspergillus carbonarius were screened and selected for detailed studies. Also lactic acid bacteria (LAB) were isolated from silage coffee pulp and their antifungal activity was tested on dual-culture agar plate. Ten of the isolated LAB demonstrated antifungal effect against A. carbonarius. API 50 CH and APIZYM were used to perform phenotypic identification. 16S rDNA sequencing was made to confirm the results.  相似文献   

16.
Silages are important feedstuffs. Homofermentative lactic acid bacterial inoculants are often used to control silage fermentation. However, some research pointed out those homofermentative lactic acid bacteria (LAB) impaired the aerobic stability of wheat, sorghum, and corn silages. Adding heterofermentative LAB can produce more acetic acid, thereby stabilizing silages during aerobic exposure. Alfalfa is difficult to ensile. The present work was to study the effects of L. buchneri (heterofermentative LAB), alone or in combination with L. plantarum (homofermentative LAB) on the fermentation, aerobic stability, bacteria diversity and ruminal degradability of alfalfa silage. After 90 days ensiling, the pH, NH3-N/TN, butyric acid content and molds counts of control were the highest. The inoculated silages had more lactic acid, acetic acid content and more lactic acid bacteria than the control. Inoculating LAB inhibited harmful microorganisms, such as Enterobacterium and Klebsiella pneumoniae. The L. buchneri L. plantarum-inoculated silage had more acetic acid and less yeasts than other three treatments (P < 0.05), and lower NH3-N/TN than control (< 0.05). The CO2 production of L. buchneri L. plantarum-inoculated silage was less than that of L. plantarum-inoculated silage (P < 0.05). Inoculating LAB in alfalfa silages can decrease pH, increase the production of lactic and acetic acids, reduce the number of yeasts and molds, and inhibit Enterobacterium and K. pneumoniae. Inoculating with L. buchneri or L. buchneri L. plantarum can improve aerobic stability of alfalfa silages. A combination of L. buchneri and L. plantarum is preferable because it enhanced alfalfa silage quality and aerobic stability.  相似文献   

17.
The effects of temperature, aerobic and anaerobic conditions in the silo and plant characteristics [water-soluble carbohydrate (WSC) contents, growing season] on the fermentation characteristics of a tropical forage species, Sorghum bicolor cv. sugar-drip, were investigated. Silages fermented in oxygen-impermeable bags were well preserved and had low pH (3.7), high lactic acid [72 g kg–1 dry matter (DM) 80% of total acids], and low butyric acid (0.12 g kg–1 DM) and ammonia nitrogen (NH3–N) (57 g kg–1 total nitrogen contents. Conversely, the use of oxygen-permeable bags as silos allowed aerobic decomposition of the ensiled forages. Increasing the incubation temperature lowered the population of lactic acid bacteria, reduced lactic acid production and caused the pH to rise. The heterofermentative Leuconostoc spp. predominated on fresh forages but homofermentative Lactobacillus plantarum began to dominate after 5 and 8 days of fermentation. Heterofermentative lactobacilli, notably Lactobacillus brevis, were dominant among the isolates obtained from 100-day silages. Varying the WSC contents, by crushing and/or chopping the forage, and growing season did not significantly affect the fermentation quality of the resulting silages. It was concluded that the maintenance of anaerobic conditions is essential if good quality silage is to be produced from tropical forage species.  相似文献   

18.
To comprehensively evaluate the fermentation performance and microbial community of corn stalks (CS) silage mixed with Neolamarckia cadamba leaves (NCL), CS were ensiled with four levels (0%, 10%, 30% and 50% of fresh weight) of NCL for 1, 7, 14, 30, 60 days in two trials. The results showed that all silages were well preserved with low pH (3.60–3.88) and ammonia nitrogen content (0.08–0.19% DM). The silage samples with NCL displayed lower (< 0.05) acetic acid, propionic acid and ammonia nitrogen contents and lactic acid bacteria population during ensiling than control silages (100% CS). The addition of NCL also influenced the distribution of bacterial and fungal communities. Fungal diversity (Shannon’s indices were 5.15–5.48 and 2.85–4.27 in trial 1 and trial 2 respectively) increased while the relative abundances of Lactobacillus, Leuconostocs, Acetobacter and two moulds (Aspergillus and Fusarium) decreased after added NCL. In summary, mixing NCL is a promising effective approach to preserve protein of CS silage and inhibit the growth of undesirable bacteria and mould, thus to improve the forage quality to some extent.  相似文献   

19.
Culture-based technique was used to study the population dynamics of the bacteria and determine the dominant lactic acid bacteria (LAB) during cassava fermentation. LAB was consistently isolated from the fermented mash with an initial viable count of 6.00 log c.f.u. g−1 observed at 12 h. The aerobic viable count of amylolytic lactic acid bacteria (ALAB) was higher than other group of LAB throughout the fermentation up to 96 h with the highest viable count of 8.08 log c.f.u. g−1. Combination of phenotypic parameters and 16S rDNA gene sequencing identified the dominant group of LAB as Lactobacillus plantarum, L. fermentum and Leuconostoc mesenteroides while the pulse field gel electrophoresis determined that the strains were genotypically heterogeneous. The sugar fermentation profile of the isolates showed that indigestible sugars such as raffinose and stachyose can be fermented by the strains. Information was also generated about the functional properties of the strains. Only strain L. plantarum 9st0 isolate at 0 h of the fermentation produced bacteriocin with antagonism against closely related indicator strains. Quantitatively, the highest amylase activity was produced by strain L. plantarum 7st12, while appreciable amylase was also produced by L. fermentum 1st96. The result of this work showed that selection of mixed starter cultures of bacteriocin- and amylase-producing L. plantarum and L. fermentum will be highly relevant as starter cultures during the intermediate and large scale gari production.  相似文献   

20.
AIMS: To evaluate the effect of Lactobacillus buchneri, heterofermentative lactic acid bacteria (LAB), on the fermentation, aerobic stability and ruminal degradability of whole-crop maize silages under laboratory conditions. Two homofermentative LAB were tested for the purpose of comparison. METHODS AND RESULTS: Maize was harvested at early dent [290 g kg(-1) dry matter (DM)] and one-half milk line (355 g kg(-1) DM) stages. Both homofermentative LAB were applied at 1 x 10(5) CFU g(-1) of fresh forage. Lactobacillus buchneri was applied at 1 x 10(5), 5 x 10(5) and 1 x 10(6) CFU g(-1) of fresh forage. Silages with no additives served as control. After treatment, the chopped forages were ensiled in 1.5-l anaerobic jars. Three jars per treatment were sampled on day 60. After 60 days of storage, silages were subjected to an aerobic stability test lasting for 5 days, in which CO(2) production, as well as chemical and microbiological parameters, was measured to determine the extent of aerobic deterioration. Both homofermentative LAB increased the concentration of lactic acid and the numbers of yeasts, and decreased the concentration of acetic acid and impaired the aerobic stability of silages. In contrast, applying L. buchneri decreased the concentration of lactic acid and increased the concentration of acetic acid of the silages. Under aerobic conditions, silages treated with 5 x 10(5) and 1 x 10(6) CFU g(-1) of L. buchneri, had lower pH, CO(2) production and the numbers of yeasts than the silages treated with 1 x 10(5) CFU g(-1) of L. buchneri (P < 0.05). However, all doses of L. buchneri and both homofermentative LAB did not affect in situ rumen DM, organic matter and neutral detergent fibre degradability of the silages. CONCLUSIONS: Lactobacillus buchneri was very effective in protecting maize silages exposed to air under laboratory conditions. All doses of L. buchneri, especially 5 x 10(5) CFU g(-1) or more, markedly decreased the numbers of yeasts and improved the aerobic stability of silages. SIGNIFICANCE AND IMPACT OF THE STUDY: The use of L. buchneri, as a silage inoculant, can improve the aerobic stability of maize silages by inhibition of yeast activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号