首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract A mutant of Bacillus subtilis has been isolated which is devoid of glucose dehydrogenase. This mutant is unable to germinate on a mix of glucose, fructose, asparagine, and KCl, which is a normal germination trigger for wild-type strains. Transfer of the genotype by transformation to isogenic strains confers the same properties on these transformed strains. These observations strongly implicate glucose dehydrogenase in germination.  相似文献   

2.
3.
Variable germination and outgrowth occurred when Bacillus subtilis NCTC 8236 spores were inoculated into nutrient broth prepared with distilled water. More reproducible findings were achieved when the medium was prepared with Elgastat water and the greatest reproducibility occurred with Elgastat water as vehicle combined with a rigorous acid-washing of all glassware. This combined procedure also produced optimum and reproducible results for the synchronous growth of two B. subtilis 168 strains in casein medium supplemented with appropriate amino acids, a technique of value in monitoring the development of resistance to antibacterial agents during sporulation. The levels of aluminium in distilled water were higher than those of other elements; however, the incorporation of aluminium sulphate into broth prepared with Elgastat water had no effect on germination, and outgrowth was reduced (but not eliminated) only at high concentrations of this salt.  相似文献   

4.
Spores of a strain of Bacillus subtilis in which ftsZ was under the control of the spac promoter were allowed to germinate and grow out in the presence of increasing concentrations of isopropyl-beta-D-thiogalactopyranoside (IPTG). Over the IPTG concentration range of 0 to 10(-3) M, the level of FtsZ from the time when the first nucleoid segregations were occurring, measured in Western blot (immunoblot) transfer experiments, varied between 15 and 100% of that in the wild type. Septation was completely blocked (for at least several hours) when the amount of FtsZ was < 30% of the wild-type level. At all levels of ftsZ induction, the timing and rate of segregation of nucleoids following the first round of replication were unaltered. It is concluded that FtsZ has no direct role in nucleoid segregation in this situation.  相似文献   

5.
6.
7.
The specific activity and total activity of glucose 6-phosphate dehydrogenase (EC 1.1.1.49) under conditions of complete cell breakage fall 10-20-fold during a 3h period of spore germination and outgrowth. The spores must germinate (lose refractility), but do not have to undergo outgrowth, for the loss of activity to occur. Glucose 6-phosphate dehydrogenase activity from cells as any stage of development is completely stable in extracts at 4 degrees C or 30 degrees C. All of the enzyme activity is found in a soluble (50000g supernatant) fraction and remains completely soluble throughout development. Soluble protein and total cellular protein remain constant for about 2h. Proteinases could not be detected or protein turnover demonstrated during the morphogenetic process. Phenylmethanesuophony fluoride and o-phenanthroline, inhibitors of proteolytic enzymes, do not prevent glucose 6-phosphate dehydrogenase inactivation when added to whole cells. Mixing experiments show no inhibitor of glucose 6-phosphate dehydrogenase to be present in late-stage cells. The enzyme is not excreted into the culture medium. Chloramphenicol and rifampicine immediately stop protein synthesis and development but not the inactivation of glucose 6-phosphate dehydrogenase. NaN3, 2,4-dinitrophenol or anaerobiosis immediately stop development and prevent the loss of enzyme activity. A requirement for metabolic energy is therefore probable. Extracts of spores pre-labelled with L[14C]leucine were made at various stages of morphogenesis and subjected to polyacrylamide-gel electrophoresis. Glucose 6-phosphate dehydrogenase, which was identified by a specific stain, did not lose 14C label, and therefore may not be degraded during the inactivation process.  相似文献   

8.
After a few minutes of germination, nucleoids in the great majority of spores of Bacillus subtilis and Bacillus megaterium were ring shaped. The major spore DNA binding proteins, the alpha/beta-type small, acid-soluble proteins (SASP), colocalized to these nucleoid rings early in spore germination, as did the B. megaterium homolog of the major B. subtilis chromosomal protein HBsu. The percentage of ring-shaped nucleoids was decreased in germinated spores with lower levels of alpha/beta-type SASP. As spore outgrowth proceeded, the ring-shaped nucleoids disappeared and the nucleoid became more compact. This change took place after degradation of most of the spores' pool of major alpha/beta-type SASP and was delayed when alpha/beta-type SASP degradation was delayed. Later in spore outgrowth, the shape of the nucleoid reverted to the diffuse lobular shape seen in growing cells.  相似文献   

9.
10.
Phase intensity changes of individual germinating spores of Bacillus subtilis were determined by phase-contrast light microscopy and image analysis. Two germination phases were investigated. The length of the time period before a change in phase brightness was evident and the duration of the phase intensity change until a constant greylevel was maintained. The incubation temperature (37 and 20 °C) and heat activation (10 min at 65 °C) had a distinct effect on both phases. At 37 °C, spores of B. subtilis 604 started to show a decrease in brightness in l -alanine buffer after 3–39 min and needed 10–39 min to complete the phase change. At 20 °C, lag times of 10–100 min were observed and the spores needed 30–100 min to reach a constant greylevel. Heat activation and subsequently exposure to l -alanine buffer at 20 °C reduced the lag phase to 6–90 min and the phase change was finished after 30–60 min. Our results indicate enzymatic involvement before and during the phase intensity change of germinating spores.  相似文献   

11.
Spores of the thermophilic, acidophilic, Bacillus acidocaldarius were covered by a thick outer coat and a laminated inner coat (5.5 nm periodicity). Small membranous vesicles were present in the spore core and they disappeared as germination proceeded. After depolymerization of the cortex, and a 30% increase in spore diameter, a localized gap appeared in the laminated inner coat only. This inner coat gap was narrow and could be the whole length of the spore. The germ cell appeared to grow, or to be pushed towards the inner coat gap, at which stage the outer coat disappeared in the same localized area. As the vegetative cell grew out the spore coat fell away, with loose cortical material still attached to it. The young germ cell developed a large spherical electron dense inclusion body in the cytoplasm, at the same time as the ribosomal and nuclear areas became distinct.  相似文献   

12.
Spores of a Bacillus subtilis strain with a gerD deletion mutation (Delta gerD) responded much slower than wild-type spores to nutrient germinants, although they did ultimately germinate, outgrow, and form colonies. Spores lacking GerD and nutrient germinant receptors also germinated slowly with nutrients, as did Delta gerD spores in which nutrient receptors were overexpressed. The germination defect of Delta gerD spores was not suppressed by many changes in the sporulation or germination conditions. Germination of Delta gerD spores was also slower than that of wild-type spores with a pressure of 150 MPa, which triggers spore germination through nutrient receptors. Ectopic expression of gerD suppressed the slow germination of Delta gerD spores with nutrients, but overexpression of GerD did not increase rates of spore germination. Loss of GerD had no effect on spore germination induced by agents that do not act through nutrient receptors, including a 1:1 chelate of Ca2+ and dipicolinic acid, dodecylamine, lysozyme in hypertonic medium, a pressure of 500 MPa, and spontaneous germination of spores that lack all nutrient receptors. Deletion of GerD's putative signal peptide or change of its likely diacylglycerylated cysteine residue to alanine reduced GerD function. The latter findings suggest that GerD is located in a spore membrane, most likely the inner membrane, where the nutrient receptors are located. All these data suggest that, while GerD is not essential for nutrient germination, this protein has an important role in spores' rapid response to nutrient germinants, by either direct interaction with nutrient receptors or some signal transduction essential for germination.  相似文献   

13.
14.
15.
Late during sporulation, Bacillus subtilis produces glucose dehydrogenase (GlcDH; EC 1.1.1.47), which can react with D-glucose or 2-deoxy-D-glucose and can use nicotinamide adenine dinucleotide (NAD) or nicotinamide adenine dinucleotide phosphate (NADP) as a cofactor. This enzyme is found mainly in the forespore compartment and is present in spores; it is probably made exclusively in the forespore. The properties of GlcDH were determined both in crude cell extracts and after purification. The enzyme is stable at pH 6.5 but labile at pH 8 or higher; the pH optimum of enzyme activity is 8. After inactivation at pH 8, the activity can be recovered in crude extracts, but not in solutions of the purified enzyme, by incubation with 3 M KCl and 5 mM NAD or NADP. As determined by gel filtration, enzymatically active GlcDH has a molecular weight of about 115,000 (if the enzyme is assumed to be globular). GlcDH is distinct from a catabolite-repressible inositol dehydrogenase (EC 1.1.1.18), which can also react with D-glucose, requires specifically NAD as a cofactor, and has an electrophoretic mobility different from that of GlcDH.  相似文献   

16.
Spores of the thermophilic, acidophilic, Bacillus acidocaldarius were covered by a thick outer coat and a laminated inner coat (5.5 nm periodicity). Small membranous vesicles were present in the spore core and they disappeared as germination proceeded. After depolymerization of the cortex, and a 30% increase in spore diameter a localized gap appeared in the laminated inner coat only. This inner coat gap was narrow and could be the whole length of the spore. The germ cell appeared to grow, or to be pushed towards the inner coat gap, at which stage the outer coat disappeared in the same localized area. As the vegetative cell grew out the spore coat fell away, with loose cortical material still attached to it. The young germ cell developed a large spherical electron dense inclusion body in the cytoplasm, at the same time as the ribosomal and nuclear areas became distinct.  相似文献   

17.
Abstract To know if significant disulfide reduction was an important event during Streptomyces spore germination, the thiol-disulfide ratio was studied. Sulfhydryl and disulfide levels were determined by the quenching reactionof the fluorescence of fluorescein mercuric acetate. In the first 2 h of germination (darkening of spores), no significant changes in both levels were found. During spore swelling, the sulfhydryl content increased, whereas the disulfide content decreased. This increase in sulfhydryl groups was mainly occurring (93%) in the spore soluble fraction. Our data allowed us to discard the possibility of a major change in the thiol-disulfide ratio during initiation of Streptomyces spore germination.  相似文献   

18.
Different nutrient receptors varied in triggering germination of Bacillus subtilis spores with a pressure of 150 MPa, the GerA receptor being more responsive than the GerB receptor and even more responsive than the GerK receptor. This hierarchy in receptor responsiveness to pressure was the same as receptor responsiveness to a mixture of nutrients. The levels of nutrient receptors influenced rates of pressure germination, since the GerA receptor is more abundant than the GerB receptor and elevated levels of individual receptors increased spore germination by 150 MPa of pressure. However, GerB receptor variants with relaxed specificity for nutrient germinants responded as well as the GerA receptor to this pressure. Spores lacking dipicolinic acid did not germinate with this pressure, and pressure activation of the GerA receptor required covalent addition of diacylglycerol. However, pressure activation of the GerB and GerK receptors displayed only a partial (GerB) or no (GerK) diacylglycerylation requirement. These effects of receptor diacylglycerylation on pressure germination are similar to those on nutrient germination. Wild-type spores prepared at higher temperatures germinated more rapidly with a pressure of 150 MPa than spores prepared at lower temperatures; this was also true for spores with only one receptor, but receptor levels did not increase in spores made at higher temperatures. Changes in inner membrane unsaturated fatty acid levels, lethal treatment with oxidizing agents, or exposure to chemicals that inhibit nutrient germination had no major effect on spore germination by 150 MPa of pressure, except for strong inhibition by HgCl2.  相似文献   

19.
Spores of a Bacillus subtilis mutant temperature sensitive in deoxyribonucleic acid (DNA) replication proceeded through outgrowth at the nonpermissive temperature to the same extent as the wild-type parent spores. In contrast, the DNA synthesis inhibitor novobiocin completely prevented spore outgrowth while displaying a marginal effect on logarithmic growth during one generation time. Inhibition of outgrowth by novobiocin occurred in the absence of DNA replication, as demonstrated in an experiment with spores of the temperature-sensitive DNA synthesis mutant at the restrictive temperature. Novobiocin inhibited the initial rate of ribonucleic acid synthesis to the same extent in germinated spores and in exponentially growing cells. A novobiocin-resistant mutant underwent normal outgrowth in the presence of novobiocin. Therefore, novobiocin inhibition was independent of its effect on chromosome replication per se.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号