首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Francis Minvielle 《Genetics》1980,94(4):989-1000
A quantitative character controlled at one locus with two alleles was submitted to artificial (mass) selection and to three modes of opposing natural selection (directional selection, overdominance and underdominance) in a large random-mating population. The selection response and the limits of the selective process were studied by deterministic simulation. The lifetime of the process was generally between 20 and 100 generations and did not appear to depend on the mode of natural selection. However, depending on the values of the parameters (initial gene frequency, selection intensity, ratio of the effect of the gene to the environmental standard deviation, fitness values) the following outcomes of selection were observed: fixation of the allele favored by artificial selection, stable nontrivial equilibrium, unstable equilibrium and loss of the allele favored by artificial selection. Finally, the results of the simulation were compared to the results of selection experiments.  相似文献   

2.
Most models of Fisherian sexual selection assume haploidy. However, analytical models that focus on dynamics near fixation boundaries and simulations show that the resulting behavior depends on ploidy. Here we model sexual selection in a diploid to characterize behaviour away from fixation boundaries. The model assumes two di-allelic loci, a male-limited trait locus subject to viability selection, and a preference locus that determines a female's tendency to mate with males based on their genotype at the trait locus. Using a quasi-linkage equilibrium (QLE) approach, we find a general equation for the curves of quasi-neutral equilibria, and the conditions under which they are attracting or repelling. Unlike in the haploid model, the system can move away from the internal curve of equilibria in the diploid model. We show that this is the case when the combined forces of natural and sexual selection induce underdominance at the trait locus.  相似文献   

3.
Zhang XS  Hill WG 《Genetics》2005,169(1):411-425
The pattern of response to artificial selection on quantitative traits in laboratory populations can tell us something of the genetic architecture in the natural population from which they were derived. We modeled artificial selection in samples drawn from natural populations in which variation had been maintained by recurrent mutation, with genes having an effect on the trait, which was subject to real stabilizing selection, and a pleitropic effect on fitness (the joint-effect model). Natural selection leads to an inverse correlation between effects and frequencies of genes, such that the frequency distribution of genes increasing the trait has an extreme U-shape. In contrast to the classical infinitesimal model, an early accelerated response and a larger variance of response among replicates were predicted. However, these are reduced if the base population has been maintained in the laboratory for some generations by random sampling prior to artificial selection. When multiple loci and linkage are also taken into account, the gametic disequilibria generated by the Bulmer and Hill-Robertson effects are such that little or no increase in variance and acceleration of response in early generations of artificial selection are predicted; further, the patterns of predicted responses for the joint-effect model now become close to those of the infinitesimal model. Comparison with data from laboratory selection experiments shows that, overall, the analysis did not provide clear support for the joint-effect model or a clear case for rejection.  相似文献   

4.
It is pointed out that the standard selection models in population genetics all require some form of heterozygote advantage in fitness in order to guarantee the maintenance or stability of genetic polymorphisms. Even more recent results demonstrating the existence of stable two-locus polymorphisms with marginal underdominance at both loci are based on certain epistatically acting heterosis assumptions. This raises the question as to whether heterozygote advantage in fitness is indeed a generally valid principle of maintaining polymorphisms. To avoid ambiguity in definition of heterozygote advantage (overdominance) as it appears in multiallele or multilocus systems, a one-locus-two-allele model is considered. This model allows for sexually asymmetric selection and random mating. It is shown that the model produces globally stable polymorphisms exhibiting underdominance in fitness for a considerable and biologically reasonable range of selection values. Having thus properly refuted the general validity of the common overdominance principle, a modified version is suggested which covers the classical viability selection model and its extension to arbitrary, sexually asymmetric viability and fertility selection. This modified overdominance principle is based on the notion of fractional fitnesses and relates protectedness of biallelic polymorphisms to the extent to which each genotype reproduces its own type. The fact that the model treated displays frequency dependent fitnesses which may change in ranking while approaching equilibrium is discussed in relation to problems of the evolution of overdominance and underdominance.  相似文献   

5.
Summary Effects of truncation selection of a primary trait upon genetic correlation between the primary trait and an unselected secondary trait were observed during 30 generations. Populations were 24 male and 24 female parents per generation randomly mated with replacement, the number of offspring set by intensity of selection. Each trait was controlled by genes with equal effects and complete dominance segregating independently from starting frequencies of 0.5 at each of 48 loci. Three levels each of genetic correlation, selection, and environmental variation were simulated.Genetic correlation decreased faster under more intense selection by lower than by upper truncation but behaved similarly in both by remaining near initial level when as many as one-half of the offspring were saved for parents. Truncation selection decreased genetic correlation in the offspring selected to be parents whether selection was by upper or lower truncation. Estimates of genetic correlation from covariances between phenotypes of parent and offspring were erratic for both directions of selection.Michigan Agricultural Experiment Station Journal Article4841. Part of North Central Regional Project NC-2.  相似文献   

6.
7.
We present an individual-based, spatial implementation of an existing two-locus population genetic model of niche construction. Our analysis reveals that, across a broad range of conditions, niche-construction traits can drive themselves to fixation by simultaneously generating selection that favours ‘recipient’ trait alleles and linkage disequilibrium between niche-construction and recipient trait alleles. The effect of spatiality is key, since it is the local, resource-mediated interaction between recipient and niche-constructing loci which gives rise to gene linkage. Spatial clustering effects point to a possible mechanism by which an initially rare recipient trait whose selection depends on niche construction could establish in an otherwise hostile environment. The same mechanism could also lead to the spread of an established niche-constructing colony. Similar phenomena are observed in the spatial modelling of two species ‘engineering webs’. Here, the activities of two niche-constructing species can combine to drive a particular recipient trait to fixation, or in certain circumstances, maintain the presence of polymorphisms through the preservation of otherwise deleterious alleles. This may have some relevance to ecosystem stability and the maintenance of genetic variation, where the frequencies of key resources are affected by the niche-constructing activities of more than one species. Our model suggests that the stability of multi-species webs in natural populations may increase as the complexity of species–environment interactions increases.  相似文献   

8.
Evolutionary biologists commonly seek explanations for how selection drives the emergence of novel traits. Although trait loss is also predicted to occur frequently, few contemporary examples exist. In Hawaii, the Pacific field cricket (Teleogryllus oceanicus) is undergoing adaptive sexual signal loss due to natural selection imposed by eavesdropping parasitoids. Mutant male crickets (“flatwings”) cannot sing. We measured the intensity of sexual selection on wing phenotype in a wild population. First, we surveyed the relative abundance of flatwings and “normal‐wings” (nonmutants) on Oahu. Then, we bred wild‐mated females’ offspring to determine both female genotype with respect to the flatwing mutation and the proportion of flatwing males that sired their offspring. We found evidence of strong sexual selection favoring the production of song: females were predominantly homozygous normal‐wing, their offspring were sired disproportionately by singing males, and at the population level, flatwing males became less common following a single sexual selection event. We report a selection coefficient describing the total (pre‐ and postcopulatory) sexual selection favoring normal‐wing males in nature. Given the maintenance of the flatwing phenotype in Hawaii in recent years, this substantial sexual selection additionally suggests an approximate strength of opposing natural selection that favors silent males.  相似文献   

9.
We present an individual-based, spatial implementation of an existing two-locus population genetic model of niche construction. Our analysis reveals that, across a broad range of conditions, niche-construction traits can drive themselves to fixation by simultaneously generating selection that favours 'recipient' trait alleles and linkage disequilibrium between niche-construction and recipient trait alleles. The effect of spatiality is key, since it is the local, resource-mediated interaction between recipient and niche-constructing loci which gives rise to gene linkage. Spatial clustering effects point to a possible mechanism by which an initially rare recipient trait whose selection depends on niche construction could establish in an otherwise hostile environment. The same mechanism could also lead to the spread of an established niche-constructing colony. Similar phenomena are observed in the spatial modelling of two species 'engineering webs'. Here, the activities of two niche-constructing species can combine to drive a particular recipient trait to fixation, or in certain circumstances, maintain the presence of polymorphisms through the preservation of otherwise deleterious alleles. This may have some relevance to ecosystem stability and the maintenance of genetic variation, where the frequencies of key resources are affected by the niche-constructing activities of more than one species. Our model suggests that the stability of multi-species webs in natural populations may increase as the complexity of species-environment interactions increases.  相似文献   

10.
Summary The effect of simulated opposing natural selection on the response to mass selection for 18-day pupa weight of Tribolium castaneum was studied for 10 generations of selection. Natural selection was simulated in replicated treatment lines by imposing a negative relationship between mid-parent genetic value for pupa weight and fertility. Responses to selection and realized heritabilities were smaller (P < 0.05 and P < 0.10, respectively) for the treatment lines than for control lines under selection for pupa weight only. One treatment, line E3G1, reached an intermediate selection plateau by generation 10, and responded linearly to 4 generations of artificial selection after natural selection had been discontinued. Possible explanations for the different behaviors of the replicate lines E3G1 and E3G2 were also discussed.  相似文献   

11.
Quantitative traits are shaped by networks of pleiotropic genes . To understand the mechanisms that maintain genetic variation for quantitative traits in natural populations and to predict responses to artificial and natural selection, we must evaluate pleiotropic effects of underlying quantitative trait genes and define functional allelic variation at the level of quantitative trait nucleotides (QTNs). Catecholamines up (Catsup), which encodes a negative regulator of tyrosine hydroxylase , the rate-limiting step in the synthesis of the neurotransmitter dopamine, is a pleiotropic quantitative trait gene in Drosophila melanogaster. We used association mapping to determine whether the same or different QTNs at Catsup are associated with naturally occurring variation in multiple quantitative traits. We sequenced 169 Catsup alleles from a single population and detected 33 polymorphisms with little linkage disequilibrium (LD). Different molecular polymorphisms in Catsup are independently associated with variation in longevity, locomotor behavior, and sensory bristle number. Most of these polymorphisms are potentially functional variants in protein coding regions, have large effects, and are not common. Thus, Catsup is a pleiotropic quantitative trait gene, but individual QTNs do not have pleiotropic effects. Molecular population genetic analyses of Catsup sequences are consistent with balancing selection maintaining multiple functional polymorphisms.  相似文献   

12.
Cherry JL 《Genetics》2003,163(4):1511-1518
The interplay between population structure and natural selection is an area of great interest. It is known that certain types of population subdivision do not alter fixation probabilities of selected alleles under genic, frequency-independent selection. In the presence of dominance for fitness or frequency-dependent selection these same types of subdivision can have large effects on fixation probabilities. For example, the barrier to fixation of a fitter allele due to underdominance is reduced by subdivision. Analytic results presented here relate a subdivided population that conforms to a finite island model to an approximately equivalent panmictic population. The size of this equivalent population is different from (larger than) the actual size of the subdivided population. Selection parameters are also different in the hypothetical equivalent population. As expected, the degree of dominance is lower in the equivalent population. The results are not limited to dominance but cover any form of polynomial frequency dependence.  相似文献   

13.
V A Ratner  A Ia Iudanin 《Genetika》1999,35(6):853-861
Common features of the equations describing dynamics of the additive polygenic system under truncation selection are summarized. A combination of parameters playing the role of the effective selective pressure on the ith polygenic locus was revealed. The product of mean relative fitnesses of the individual polygenic loci, [formula: see text], was shown to play the role of relative mean fitness of the polygenic population. This value depends on the measurable parameters of the character distribution in the population: [formula: see text]. It was shown that under the constant population number during truncation selection, the characteristic of the best genotype increases, [formula: see text]; which is also a product of the frequencies of preferable genotypes at individual polygenic loci. This value plays the role of the proportion of the number of the best ("champion") genotype in the population. In fact, this is the champion genotype polygene consensus pattern frequency, which a priori indicates the possibility of the champion pattern fixation. The analogue of Haldane's dilemma for the polygenic system which restrict the number of polygenes simultaneously subjected to adaptive evolution [formula: see text] was obtained for the case of constant effective population number (Ne = const).  相似文献   

14.
The study of microbial communities often leads to arguments for the evolution of cooperation due to group benefits. However, multilevel selection models caution against the uncritical assumption that group benefits will lead to the evolution of cooperation. We analyze a microbial social trait to precisely define the conditions favoring cooperation. We combine the multilevel partition of the Price equation with a laboratory model system: swarming in Pseudomonas aeruginosa. We parameterize a population dynamics model using competition experiments where we manipulate expression, and therefore the cost‐to‐benefit ratio of swarming cooperation. Our analysis shows that multilevel selection can favor costly swarming cooperation because it causes population expansion. However, due to high costs and diminishing returns constitutive cooperation can only be favored by natural selection when relatedness is high. Regulated expression of cooperative genes is a more robust strategy because it provides the benefits of swarming expansion without the high cost or the diminishing returns. Our analysis supports the key prediction that strong group selection does not necessarily mean that microbial cooperation will always emerge.  相似文献   

15.
The "Secondary Theorem of Natural Selection," an extension of Fisher's fundamental theorem, states that the rate of change in the mean of an arbitrary character in response to selection is proportional to the additive genetic covariance between the character and fitness. Here I derive an expression for the change in the mean value of a trait subject to both genetic and cultural transmission. I start with the one-locus case under generalized mating and cultural transmission from parents to offspring, then proceed to the two-locus case. My results support previous work on the effects of nongenetic inheritance by showing that (i) cultural transmission introduces a timelag in the population response to selection; (ii) with cultural transmission the effects of selection persist even after selection is relaxed; and (iii) cultural transmission can either enhance or retard phenotypic evolution relative to that obtained under purely genetic transmission.  相似文献   

16.
Temporal patterns of natural and sexual selection on male badge size and body traits were studied in a population of house sparrows, Passer domesticus. Badge size was a heritable trait as revealed by a significant father-son regression. Survival during autumn dispersal and winter was not related to badge size or body traits in yearling male house sparrows. Badges that signal dominance status were affected positively by directional selection for mating. Adult male house sparrows suffered an opposing selection pressure on badge size during autumn. Contrary to males, female house sparrows did not experience significant directional or stabilizing selection on any body trait. Directional sexual selection on male badge size due to female choice moves male sparrows away from their survival optimum. Opposing directional natural selection on badge size due to autumn mortality caused by predation maintains a stable badge size.  相似文献   

17.
More on the efficiency of marker-assisted selection   总被引:26,自引:0,他引:26  
 Computer simulations were used to study the efficiency of marker-assisted selection (MAS) based on an index combining the phenotypic value and the molecular score of individuals. The molecular score is computed from the effects attributed to markers by multiple regression of phenotype on marker genotype. The results show that in the first generation the ratio RE of the expected efficiency of MAS over the expected efficiency of purely phenotypic selection generally increases when considering: (1) larger population sizes, (2) lower heritability values of the trait, and (3) a higher type-I error risk of the regression. This is consistent with previously published results. However, at low heritabilities our results point out that response to MAS is more variable than response to phenotypic selection. Hence, when the difference of genetic gains is considered instead of their ratio, RE, the heritability values corresponding to maximal advantage of using MAS rather than phenotypic selection are still low, but higher than predicted based on RE. The study over several successive generations of the rate of fixation of QTLs shows that the higher efficiency of MAS on QTLs with large effects in early generations is balanced by a higher rate of fixation of unfavourable alleles at QTLs with small effects in later generations. This explains why MAS may become less efficient than phenotypic selection in the long term. MAS efficiency therefore depends on the genetic determinism of the trait. Finally, we investigate a modified MAS method involving an alternation of selection on markers with and without phenotypic evaluation. Our results indicate that such a selection method could at low cost, provide an important increase in the genetic gain per unit of time in practical breeding programs. Received: 11 July 1997 / Accepted: 4 August 1997  相似文献   

18.
The form of Darwinian selection has important ecological and management implications. Negative effects of harvesting are often ascribed to size truncation (i.e. strictly directional selection against large individuals) and resultant decrease in trait variability, which depresses capacity to buffer environmental change, hinders evolutionary rebound and ultimately impairs population recovery. However, the exact form of harvest-induced selection is generally unknown and the effects of harvest on trait variability remain unexplored. Here we use unique data from the Windermere (UK) long-term ecological experiment to show in a top predator (pike, Esox lucius) that the fishery does not induce size truncation but disruptive (diversifying) selection, and does not decrease but rather increases variability in pike somatic growth rate and size at age. This result is supported by complementary modelling approaches removing the effects of catch selectivity, selection prior to the catch and environmental variation. Therefore, fishing most likely increased genetic variability for somatic growth in pike and presumably favoured an observed rapid evolutionary rebound after fishery relaxation. Inference about the mechanisms through which harvesting negatively affects population numbers and recovery should systematically be based on a measure of the exact form of selection. From a management perspective, disruptive harvesting necessitates combining a preservation of large individuals with moderate exploitation rates, and thus provides a comprehensive tool for sustainable exploitation of natural resources.  相似文献   

19.
Genki Sahashi  Kentaro Morita 《Oikos》2018,127(2):239-251
Partial migration, in which a portion of the population migrates while the rest of the population remains as residents, is a common form of migration. Alternative migratory tactics (AMTs) of partial migration are often determined by polygenic threshold traits. However, the ultimate mechanisms that drive inter‐population variations in threshold traits are not well understood. We present a simple schematic model to explain how the threshold trait changes with fitness consequences under opposing natural and artificial selection forces. We conducted a field test to evaluate the effects of migration difficulty (as a natural selective force) and selective captive breeding (as an artificial selective force) on threshold traits of a partially migratory fish. Male masu salmon Oncorhynchus masou in the Shari River system have AMTs divided into three population categories of hatchery, wild/above the waterfall, and wild/below the waterfall (control). The wild/above the waterfall salmon live in a high‐migration‐cost situation, and the threshold trait changed in a direction that promoted residency. In hatchery salmon, which are produced by migrant‐selective captive breeding, the threshold trait changed in a direction that promoted migration. In contrast, Dolly Varden charr Salvelinus malma displayed only resident tactics, and the threshold trait did not differ between the populations above and below the waterfall, indicating that environment did not explain the variation in the threshold trait. Our results support the model and suggest that opposing natural and artificial selection forces drive variations in the threshold traits and migratory patterns in the studied species. Our conceptual framework for the ultimate mechanism may help to better understand adoption of AMTs and production of diverse intraspecific traits in migratory animals.  相似文献   

20.
Understanding the genetic basis of local adaptation requires insight in the fitness effects of individual loci under natural field conditions. While rapid progress is made in the search for genes that control differences between plant populations, it is typically unknown whether the genes under study are in fact key targets of habitat-specific natural selection. Using a quantitative trait loci (QTL) approach, we show that a QTL associated with flowering-time variation between two locally adapted wild barley populations is an important determinant of fitness in one, but not in the other population's native habitat. The QTL mapped to the same position as a habitat-specific QTL for field fitness that affected plant reproductive output in only one of the parental habitats, indicating that the genomic region is under differential selection between the native habitats. Consistent with the QTL results, phenotypic selection of flowering time differed between the two environments, whereas other traits (growth rate and seed weight) were under selection but experienced no habitat-specific differential selection. This implies the flowering-time QTL as a driver of adaptive population divergence. Our results from phenotypic selection and QTL analysis are consistent with local adaptation without genetic trade-offs in performance across environments, i.e. without alleles or traits having opposing fitness effects in contrasting environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号