首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Agricultural intensification has caused drastic declines in the area and species richness of semi-natural grasslands across Europe. Novel habitats, such as power line clearings, provide alternative habitats and niches for grassland species, and might therefore mitigate these declines. However, it is not fully understood which environmental factors determine the occurrence of grassland species in the clearings. Identifying the most important drivers for grassland species occurrence would help understand the value of the clearings for grassland conservation and target enhanced management into clearings with most potential as grassland habitat. We studied the effects of local environmental conditions, and past and present connectivity to semi-natural grasslands, on the species richness of grassland plants and butterflies in 43 power line clearings in Finland. The results of generalized linear models and hierarchical partitioning showed that increasing time since clear-cut and amount of clearing residue decreased the species richness of both species groups, while the cover of mesic habitats increased it. However, the two species groups showed also divergent responses. Present-day local environmental conditions appeared to be the sole driver of grassland butterfly species richness, whereas the richness of grassland plants was related both to current conditions and historical connectivity to grasslands in 1870–1880s. This suggests the presence of an extinction debt in the studied grassland plant communities, emphasizing the need for enhanced management to increase suitable grassland habitat in the clearings. This would diminish the potential future losses of grassland plant species in the clearings and create valuable habitat for grassland butterflies as well.  相似文献   

2.
Ockinger E  Smith HG 《Oecologia》2006,149(3):526-534
During the last 50 years, the distribution and abundance of many European butterfly species associated with semi-natural grasslands have declined. This may be the result of deteriorating habitat quality, but habitat loss, resulting in decreasing area and increasing isolation of remaining habitat, is also predicted to result in reduced species richness. To investigate the effects of habitat loss on species richness, we surveyed butterflies in semi-natural grasslands of similar quality and structure, but situated in landscapes of different habitat composition. Using spatially explicit habitat data, we selected one large (6–10 ha) and one small (0.5–2 ha) grassland site (pasture) in each of 24 non-overlapping 28.2 km2 landscapes belonging to three categories differing in the proportion of the area that consisted of semi-natural grasslands. After controlling for local habitat quality, species richness was higher in grassland sites situated in landscapes consisting of a high proportion of grasslands. Species richness was also higher in larger grassland sites, and this effect was more pronounced for sedentary than for mobile species. However, the number of species for a given area did not differ between large and small grasslands. There was also a significant relationship between butterfly species richness and habitat quality in the form of vegetation height and abundance of flowers. In contrast, butterfly density was not related to landscape composition or grassland size. When species respond differently to habitat area or landscape composition this leads to effects on community structure, and nestedness analysis showed that depauperate communities were subsets of richer ones. Both grassland area and landscape composition may have contributed to this pattern, implying that small habitat fragments and landscapes with low proportions of habitat are both likely to mainly contain common generalist species. Based on these results, conservation efforts should aim at preserving landscapes with high proportions of the focal habitat.  相似文献   

3.
A widespread decline in biodiversity in agro-ecosystems has been reported for several groups of organisms in Western Europe. The butterfly fauna was studied in 60 selected semi-natural grasslands in a coniferous-dominated boreal landscape in south-eastern Sweden. The aim was to investigate how butterfly assemblages were affected by the amount of semi-natural grasslands in the surrounding landscape. Furthermore, we wanted to determine if semi-natural grasslands in boreal landscapes harboured species otherwise declining in other parts of Europe. For each study site, the amounts of semi-natural grasslands in the landscape within radii of 500, 2,000 and 5,000 m were studied. Nine local habitat factors were also recorded. Only the amount of semi-natural grasslands within a 5,000 m radius could explain a significant part of the variation in butterfly composition, but there was no clear relationship between the amount of semi-natural grassland and butterfly diversity. Instead, this study showed that local habitat quality was very important for butterfly diversity at individual sites. Flower abundance, sward height and herb composition were the most important local factors. Patches surrounded by a small amount of semi-natural grasslands had high butterfly diversity, contrary to expectations. This may be explained by the fact that forest habitat provides a matrix with several features suitable for butterflies. The butterfly fauna was rich in species representative of low-productivity grasslands, species that are declining in other countries in Western Europe.  相似文献   

4.
Land-use intensification and loss of semi-natural habitats have induced a severe decline of bee diversity in agricultural landscapes. Semi-natural habitats like calcareous grasslands are among the most important bee habitats in central Europe, but they are threatened by decreasing habitat area and quality, and by homogenization of the surrounding landscape affecting both landscape composition and configuration. In this study we tested the importance of habitat area, quality and connectivity as well as landscape composition and configuration on wild bees in calcareous grasslands. We made detailed trait-specific analyses as bees with different traits might differ in their response to the tested factors. Species richness and abundance of wild bees were surveyed on 23 calcareous grassland patches in Southern Germany with independent gradients in local and landscape factors. Total wild bee richness was positively affected by complex landscape configuration, large habitat area and high habitat quality (i.e. steep slopes). Cuckoo bee richness was positively affected by complex landscape configuration and large habitat area whereas habitat specialists were only affected by the local factors habitat area and habitat quality. Small social generalists were positively influenced by habitat area whereas large social generalists (bumblebees) were positively affected by landscape composition (high percentage of semi-natural habitats). Our results emphasize a strong dependence of habitat specialists on local habitat characteristics, whereas cuckoo bees and bumblebees are more likely affected by the surrounding landscape. We conclude that a combination of large high-quality patches and heterogeneous landscapes maintains high bee species richness and communities with diverse trait composition. Such diverse communities might stabilize pollination services provided to crops and wild plants on local and landscape scales.  相似文献   

5.
The preservation of remaining semi-natural grasslands in Europe has a high conservation priority. Previously, the effects of artificial fertilisation and grazing intensity on grassland animal and plant taxa have been extensively investigated. In contrast, little is known of the effects of tree and shrub cover within semi-natural grasslands and composition of habitats in the surrounding landscape on grassland taxa. We evaluated the effect that each of these factors has on species richness and community structure of vascular plants, butterflies, bumble bees, ground beetles, dung beetles and birds surveyed simultaneously in 31 semi-natural pastures in a farmland landscape in south-central Sweden. Partial correlation analyses showed that increasing proportion of the pasture area covered by shrubs and trees had a positive effect on species richness on most taxa. Furthermore, species richness of nectar seeking butterflies and bumble bees were negatively associated with grazing intensity as reflected by grass height. At the landscape level, species richness of all taxa decreased (butterflies and birds significantly so) with increasing proportion of urban elements in a 1-km2 landscape area centred on each pasture, while the number of plant and bird species were lower in landscapes with large proportion of arable fields. Our results differed markedly depending on whether the focus was on species richness or community structure. Canonical correspondence analyses (CCA) showed that the abundance of most taxa was ordered along a gradient describing tree cover within pastures and proportion of arable fields in the landscape. However, subsets of grassland birds and vascular plants, respectively, showed markedly different distribution patterns along axis one of the CCA. In contrast to current conservation policy of semi-natural pastures in Sweden, our results strongly advise against using a single-taxon approach (i.e., grassland vascular plants) to design management and conservation actions in semi-natural pastures. Careful consideration of conservation values linked to the tree and shrub layers in grasslands should always precede decisions to remove trees and shrubs on the grounds of promoting richness of vascular plants confined to semi-natural grasslands. Finally, the importance of landscape composition for mobile organisms such as birds entails that management activities should focus on the wider countryside and not exclusively on single pastures.  相似文献   

6.
Empirical studies have suggested that species richness of grassland insects usually decreases under grazing management. By contrast, grazing has been shown to increase the species density and richness of vascular plants, especially on productive soils. In order to test the suggested differences in response to management between plants and insects, we simultaneously studied species richness of vascular plants and their insect herbivores, butterflies and moths, in 68 semi-natural grasslands with varying grazing intensity and frequency in SW Finland. Species richness of plants and insects was for the first time related to a quantitative measure of disturbance intensity and successional age, mean vegetation height, by using generalized additive models (GAM). The effects of soil nutrients on vegetation height were accounted for by using phosphorus concentration as a productivity surrogate.
The results showed that species richness of butterflies and moths peaked in taller vegetation compared with vascular plants, corresponding to a lower disturbance intensity and increasing time since abandonment. These patterns are discussed in the light of two hypotheses, the "structural diversity hypothesis" and "dynamic equilibrium model" of Huston, both suggesting a weaker disturbance tolerance of insects compared with plants. Butterflies and moths which are specialists in their larval host-plant use (monophagous and oligophagous species) preferred lower vegetation (higher disturbances) compared with generalists (polyphagous species), as predicted by Huston's model. This difference indicates a stronger relationship with plant species richness for specialist than for generalist butterflies and moths. Our results support the application of regionally and temporally varying grazing intensities in grassland conservation management.  相似文献   

7.
Semi-natural grasslands can support diverse faunal and floral communities, including grassland birds, beneficial insects, and native wildflowers. Monitoring biodiversity of this type of ecosystem is important to assess abundance and richness of grassland-associated species, evaluate success of establishing grasslands, and to assess overall ecosystem health. We tested butterflies as surrogates for birds and plants to assess establishment success of semi-natural grassland buffers in north-central Mississippi using Spearman rank correlation (Spearman’s ρ). Disturbance and grassland butterfly guilds were generally not suitable surrogates for grassland bird metrics, non-grassland bird metrics, or nest density metrics. Butterflies did have consistent positive correlations with plant species richness and forb metrics, as well as consistent negative correlations with grass metrics, but these correlations were generally smaller than what is considered suitable to serve as surrogates. In general, butterflies were not suitable surrogates for birds or plants in semi-natural grassland buffers.  相似文献   

8.
Increasing landscape complexity can mitigate negative effects of agricultural intensification on biodiversity by offering resources complementary to those provided in arable fields. In particular, grazed semi-natural grasslands and woody elements support farmland birds, but little is known about their relative effects on bird diversity and community composition. In addition, the relative importance of local habitat versus landscape composition remains unclear. We investigated how the presence of semi-natural grasslands, the number of woody elements and the composition of the wider agricultural landscape affect bird species richness, true diversity (exponential Shannon diversity) and species composition. Bird communities were surveyed four times on 16 paired transects of 250 m each with 8 transects placed between a crop field and a semi-natural grassland and 8 transects between two crop fields with no semi-natural grasslands in the vicinity. The number of woody elements around transects was selected as an important predictor in all models, having a positive effect on species richness and true diversity, while the local presence of semi-natural grasslands was not selected in the best models. However, species richness and true diversity increased with increasing cover of ley and semi-natural grasslands, whereas species composition was modified by the coverage of winter wheat at the landscape scale. Furthermore, bird species richness, true diversity and species composition differed between sampling dates. As bird diversity benefited from woody elements, rather than from the local presence of semi-natural grasslands as such, it is important to maintain woody structures in farmland. However, the positive effect of grassland at the landscape scale highlights the importance of habitat variability at multiple scales. Because species richness and true diversity were affected by different landscape components compared to species composition, a mosaic of land-use types is needed to achieve multiple conservation goals across agricultural landscapes.  相似文献   

9.
Recent loss of plant species richness in Swedish semi-natural grasslands has led to an increase in grassland recreation and restoration. To increase the establishment of declining species favoured by grazing and to re-establish original species richness, seed sowing has been discussed as a conservation tool. In this study, I examined to what extent seed sowing in former arable fields increases species richness and generates a species composition typical of semi-natural grasslands. Six grassland species favoured by grazing (target species) and six generalist species favoured by ceased grazing, were studied in a seed-addition experiment. Four different seed densities were used on four different grassland categories, two grazed former arable fields, one continuously grazed grassland and one abandoned grassland. Target and generalist species emerged in all grassland categories, but seedling emergence was higher in the grazed than in the abandoned grassland. Target species had higher emergence in the two grasslands with the longest grazing continuity. Seedling emergence and frequency of established plants of each target species were positively associated. The largest fraction of seeds germinated at an intermediate sowing density, 20–50 seeds/dm2, suggesting that aggregation of seeds positively affects emergence up to a certain threshold. In conclusion, artificial seed sowing may induce the recreation of typical grassland communities on former arable fields, which may be an important contribution to increase the total grassland area and species richness in the landscape.  相似文献   

10.
Using species and environmental data from an extensive grassland area in south-western Finland, we investigated the effect of patch area and connectivity, management and local habitat variables on the occurrence of spring-flowering vascular plants and their richness in boreal agricultural landscapes. Generalized linear models (GLM) and variation partitioning were used to study the explanatory power of the three groups of variables and their combined contributions on the richness and occurrence of six spring-flowering plant species. Generalized additive models (GAMs) and associated cross-validation tests were used to evaluate the predictability of the species occurrence and richness patterns. Present-day grassland patch area and connectivity were important predictors for occurrence and richness of the studied plant species. In addition, local habitat factors, especially radiation, accounted for major fractions of occurrence patterns of the studied species. Hybrid models including variables from all three variable groups had higher explanatory power and predictive capability than partial models. However, performance of the separate single-species models varied considerably between the six study species. Exclusion of radiation or connectivity from the hybrid models decreased their predictive performance, suggesting that these factors are of particular importance for grassland plant species at their northern range margins. When developing conservation and management planning for grassland plant species in Northern Europe, attention should be paid to well-connected networks of grassland patches including large, steeply-sloped patches with a favorable microclimate.  相似文献   

11.
Question: We asked how landscape configuration and present management influence plant species richness and abundance of habitat specialists in grasslands in a ‘modern’(much exploited and transformed) agricultural Swedish landscape. Location: Selaön, south‐eastern Sweden (59°24’ N, 17°10’ E). Methods: Present and past (150 and 50 years ago) landscape pattern was analysed in a 25 km2 area. Species richness was investigated in 63 different grassland patches; grazed and abandoned semi‐natural grasslands, and grazed ex‐arable fields. Influence of landscape variables; area, past and present grassland connectivity, present management on total species richness, density and abundance of 25 grassland specialists was analysed. Results: Semi‐natural grasslands (permanent unfertilised pastures or meadows formed by traditional agricultural methods) had declined from 60% 150 years ago to 5% today. There was a significant decline in species richness and density in abandoned semi‐natural grasslands. Total species richness was influenced by present management, size and connectivity to present and past grassland pattern. Landscape variables did not influence species density in grazed semi‐natural grassland suggesting that maintained grazing management makes grassland patches independent of landscape context. The abundance of 16 grassland specialists was mainly influenced by management and to some extent also by landscape variables. Conclusion: Although species richness pattern reflect management and to some extent landscape variables, the response of individual species may be idiosyncratic. The historical signal from past landscapes is weak on present‐day species richness in highly transformed, agricultural landscapes. Generalizations of historical legacies on species diversity in grasslands should consider also highly transformed landscapes and not only landscapes with a high amount of diversity hotspots left.  相似文献   

12.
Wide-spread fragmentation and isolation of habitats with high nature conservation value lends increasing importance to a better understanding of the factors which determine species richness in isolated habitat patches. Using data of one of the most abundant invertebrate groups in grasslands, Orthoptera, we analysed how species richness and distribution in 60 isolated semi-natural grassland remnants in Austria were affected by five environmental variables (altitude, habitat and land use diversity within each patch, habitat diversity of areas adjacent to each patch, patch size), and related to diversity of their main food source, i.e. vascular plants. We found a significant positive correlation between Orthoptera and vascular plant species richness, with threatened Orthoptera species having the lowest correlation coefficients. Life form diversity of plants was only moderately positively correlated with Orthoptera species richness. Habitat diversity within and adjacent to the grassland patch had by far the highest loadings on the first two axes of the principal component analysis, which jointly explained 99?% of the variance, and proved to be significant for total, threatened and not threatened Orthoptera, as well as for the two Orthoptera orders occurring in Central Europe (Caelifera, Ensifera). Additionally, the distribution of the majority of those 14 Orthoptera species analysed individually was mainly correlated with habitat diversity within and adjacent to the grassland patch. However, the distribution of a significant proportion of species was associated with other factors: five species were closely related to on-site land use diversity and patch size, and the distribution of three Ensifera species was not significantly correlated to any of the explanatory variables. We conclude that a surrogate taxa approach, i.e. the use of well-known taxonomic groups (e.g. vascular plants), may indeed deliver good results for capturing total, but less so for threatened, Orthoptera species richness in semi-natural grassland remnants. Small scale habitat diversity may be crucial to allow for the co-existence of a large number of Orthoptera species and has to be taken equally into account as patch size in nature conservation.  相似文献   

13.
Eighty-five patches of semi-natural grassland of varying size scattered in a agricultural landscape were investigated for their flora of vascular plants. Relationships between species richness and patch area, spatial isolation and local habitat conditions including heterogeneity were examined. Differences between single species and among groups of species defined by life-history traits were also investigated.
Area was shown to be an important determinant of species richness irrespective of habitat heterogeneity. Isolation in space and habitat heterogeneity also play significant roles. These results are consistent with results from a multitude of studies on fragments of ancient deciduous woodland in northern Europe, They are, however, contradictory to results from previous studies in grasslands within the same region. Seed mass and dispersal syndrome were poor predictors of the degree to which the species were affected by isolation of grassland patches. Seed mass deviation from community median could explain a small percentage of the variation in regional abundance. Logistic regression on species occurrences showed that few species are associated with large patches, and less than half seem to avoid isolated patches.  相似文献   

14.
In fragmented landscapes, mobility is an important trait for population persistence but the predictions on the relationship between habitat fragmentation and extinction risk are contradictory. Here, we test the effects of the two main aspects of fragmentation, patch area and isolation, on the species richness of groups of butterflies associated with semi-natural grasslands, differing in mobility. Total species richness increased with increasing patch area and with decreasing isolation, but the strength of these effects differed between mobility classes. The effect of patch area was strongest for the sedentary species, while the effect of isolation was only statistically significant for the mobile species. We interpret these results as evidence for a predominant influence of local processes on sedentary species, and an increasing influence of regional compared to local processes with increasing mobility. When groups of species respond differently to habitat loss and fragmentation this affects community composition, with potential implications for ecosystem processes. Similar effects can be expected for other traits than mobility, and this should be an important question for future studies.  相似文献   

15.
Pollinating insect populations, essential for maintaining wild plant diversity and agricultural productivity, rely on (semi)natural habitats. An increasing human population is encroaching upon and deteriorating pollinator habitats. Thus the population persistence of pollinating insects and their associated ecosystem services may depend upon on man-made novel habitats; however, their importance for ecosystem services is barely understood. We tested if man-made infrastructure (railway embankments) in an agricultural landscape establishes novel habitats that support large populations of pollinators (bees, butterflies, hoverflies) when compared to typical habitats for these insects, i.e., semi-natural grasslands. We also identified key environmental factors affecting the species richness and abundance of pollinators on embankments. Species richness and abundance of bees and butterflies were higher for railway embankments than for grasslands. The occurrence of bare (non-vegetated) ground on embankments positively affected bee species richness and abundance, but negatively affected butterfly populations. Species richness and abundance of butterflies positively depended on species richness of native plants on embankments, whereas bee species richness was positively affected by species richness of non-native flowering plants. The density of shrubs on embankments negatively affected the number of bee species and their abundance. Bee and hoverfly species richness were positively related to wood cover in a landscape surrounding embankments. This is the first study showing that railway embankments constitute valuable habitat for the conservation of pollinators in farmland. Specific conservation strategies involving embankments should focus on preventing habitat deterioration due to encroachment of dense shrubs and maintaining grassland vegetation with patches of bare ground.  相似文献   

16.
The Influence of Landscape Grain Size on Butterfly Diversity in Grasslands   总被引:6,自引:0,他引:6  
The relationship between butterfly diversity and both habitat and landscape variables was studied in two areas of southern Sweden. The habitat quality of the grasslands was similar in the two study areas but the landscape pattern differed in grain size and amount of grassland and forest. Using a transect survey method, a total of 3341 butterflies were observed and 30 taxa identified. We found that both habitat and landscape variables influenced the butterfly diversity of the investigated grasslands. Species composition differed markedly between the two study areas. A study area with a fine-grained landscape pattern, a high cover of semi-natural grassland and many forest edges had twice as many butterfly species but half the number of individuals compared with a coarser-grained study area with larger grasslands widely spread in a matrix of arable fields. The results of our study indicate that both habitat quality and landscape pattern have to be considered when developing conservation strategies for grassland butterflies.  相似文献   

17.
Habitat loss and fragmentation affect species richness in fragmented habitats and can lead to immediate or time‐delayed species extinctions. Asynchronies in extinction and extinction debt between interacting species may have severe effects on ecological networks. However, these effects remain largely unknown. We evaluated the effects of habitat patch and landscape changes on antagonistic butterfly larvae–plant trophic networks in Mediterranean grasslands in which previous studies had shown the existence of extinction debt in plants but not in butterflies. We sampled current species richness of habitat‐specialist and generalist butterflies and vascular plants in 26 grasslands. We assessed the direct effects of historical and current patch and landscape characteristics on species richness and on butterfly larvae–plant trophic network metrics and robustness. Although positive species‐ and interactions–area relationships were found in all networks, structure and robustness was only affected by patch and landscape changes in networks involving the subset of butterfly specialists. Larger patches had more species (butterflies and host plants) and interactions but also more compartments, which decreased network connectance but increased network stability. Moreover, most likely due to the rescue effect, patch connectivity increased host‐plant species (but not butterfly) richness and total links, and network robustness in specialist networks. On the other hand, patch area loss decreased robustness in specialist butterfly larvae–plant networks and made them more prone to collapse against host plant extinctions. Finally, in all butterfly larvae–plant networks we also detected a past patch and landscape effect on network asymmetry, which indicates that there were different extinction rates and extinction debts for butterflies and host plants. We conclude that asynchronies in extinction and extinction debt in butterfly–plant networks provoked by patch and landscape changes caused changes in species richness and network links in all networks, as well as changes in network structure and robustness in specialist networks.  相似文献   

18.
Agricultural intensification and loss of semi-natural grassland have contributed to biodiversity decline, including pollinator species, in pastures around the world. To reverse the decline, agri-environmental schemes have been implemented, varying widely in effectiveness. In addition, many countries, including the Netherlands, have established nature reserves in which semi-natural grasslands are restored and are often managed for specific groups of species, e.g. meadow birds or plants. The effects of such measures on insect biodiversity are not well known but recent reports on the dramatic decline of insect biomass in nature reserves have put even more attention to the impact of land use and management on biodiversity. This study compares pollinator abundance and species richness in three common semi-natural grassland management types in the Netherlands: (1) hay meadows, (2) herb-rich grasslands and (3) meadow bird grasslands. Pollinator abundance and species richness were assessed in eleven study areas, each with all three management types present. Standardized transects, insect sampling within a standard 20 min time frame and plot-based flower surveys were used in spring and summer to assess the relationships between management regime, floral abundance and diversity and pollinator communities. The results show that meadow bird grasslands have lower pollinator abundance and diversity and a less unique pollinator assemblage than both other types. Moreover, flower abundance has a positive effect on pollinator abundance and flower diversity has a positive effect on pollinator species richness. These results indicate that meadow-bird grasslands are a comparatively unfavourable habitat for bees, hoverflies and butterflies, which may be explained by a lack of flowers as well as unsuitable mowing practices. Measures benefitting both insectivorous birds and flower-visiting insects, such as rotational mowing, could remediate this imbalance.  相似文献   

19.
The creation of cities, towns and farms following European settlement of Australia has fragmented the original vegetation. Many native species that were previously widespread are now found only within isolated remnants of their original habitat. These relictual populations are at increased risk of decline and local extinction, so identifying the factors that determine their persistence is important for ongoing management and conservation. I compared the effects of site area, connectivity, vegetation condition and habitat resources on the presence, abundance and total number of species of butterflies and day-flying moths within 46 urban fragments of remnant vegetation in south-west Western Australia. Site area and vegetation condition were the dominant determinants of species presence: large sites with more undisturbed vegetation favoured 16 of 20 native species and only one (Geitoneura minyas) benefited from disturbance. Another nine species that were not sufficiently widespread or abundant to enable individual analysis were collectively more prevalent in larger sites. Resource quality and quantity dominated the patterns of site occupancy, consistent with habitat resources, not metapopulation effects, determining current distribution patterns. The total number of species at each site reflected the collective responses of the individual species: increasing with area and declining with vegetation disturbance. The effects of area and vegetation condition were not simply additive: disturbance had a far greater impact on small remnants. Restoration or maintenance of high vegetation condition will be essential to maintain regional species diversity and to prevent local extinctions of butterflies and day-flying moths, especially in small remnants.  相似文献   

20.
Size-related deterioration of semi-natural grassland fragments in Sweden   总被引:2,自引:0,他引:2  
Abstract. One of the most dramatic landscape changes during the 20th century in Sweden, like in most of Europe, has been the reduction and fragmentation of semi-natural grasslands. Using a set of remnant semi-natural grasslands, chosen to be as similar as possible, but differing in size, we have examined whether size of remnant fragments of traditionally managed semi-natural grasslands in Sweden is related to patterns of species richness and composition. We focused on edge-to-interior relationships, since we expected that a possible impact from invasive habitat generalists would be manifested in a gradient from the edge of fragments to their interior. We found no relationship between size of grassland fragments and (a) overall species richness, (b) species richness at different spatial scales, and (c) abundance of some typical invader species or species characteristic of semi-natural grasslands. However, the results indicated that larger grasslands have a comparatively larger number of species in the edges, whereas the opposite pattern was found in smaller grasslands. The similarity in species composition between the edge and the interior of the pastures also increased with grassland size. Thus, even though the overall species richness is still unaffected by reduction in grassland fragment size, the edges of smaller grasslands show signs of degradation, i.e. reduction in species richness and a decreased similarity to the grassland interior. We suggest that these kinds of effects may be early signs of fragmentation effects that in the future will result in species loss even if the present distribution of semi-natural grasslands is maintained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号