首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Coated microvesicle fractions isolated from ox forebrain cortex by the ultracentrifugation procedure of Pearse (1) and by the modified, less time consuming method of Keen et al (2) had comparable Ca2+ +Mg2+ dependent ATPase activities (about 9 mumol/h per mg protein). The Na+ +K+ +Mg2+ dependent ATPase activity was 3.2 mumol/h per mg (+/- 1.0, S.D., n = 3) when microvesicles were prepared according to (1) and 1.5 mumol/h per mg (+/- 1.0, S.D., n = 3) when prepared according to (2). Oligomycin, ruthenium red, and trifluoperazine, inhibitors of Ca2+ transport in mitochondria and erythrocyte membranes had no effect on Ca2+ +Mg2+ dependent ATPase from any of the preparations. As demonstrated both by ATPase assays and electron microscopy, coated microvesicles could be bound to immunosorbents prepared with poly-specific antibodies against a coated microvesicle fraction obtained by the method of Pearse (1). The binding could be inhibited by dissolved coat protein using partially purified clathrin. The fraction of coated vesicles eluted from the immunosorbent was purified relative to the starting material as judged by electron microscopy. The Ca2+ +Mg2+ ATPase activity and calmodulin content was copurified with the coated microvesicles and the specific activity of Na+ +K+ +Mg2+ ATPase was decreased. Na+ +K+ +Mg2+ dependent ATPase activity in the coated microvesicle fraction could be ascribed to membranes with the appearance of microsomes. These membranes were also bound to the immunosorbents, but the binding was not influenced by clathrin. The capacity of the immunosorbents for these membranes was less than for the coated microvesicles, resulting in a decrease of Na+ +K+ +Mg2+ dependent ATPase activity in the eluted coated microvesicle fraction. It was concluded that Ca2+ +Mg2+ ATPase activity is not a contamination from plasma membrane vesicles or mitochondrial membranes but seems to be an integral part of the coated vesicle membrane.  相似文献   

2.
The hepatic microsomal fraction contains tightly bound calmodulin as demonstrated by affinity chromatography. When this calmodulin was partially removed by EGTA treatment (0.5 mM-EGTA), the uptake of 45Ca2+ by the microsomal vesicles was stimulated by added calmodulin and inhibited by trifluoperazine (TFP). The Ca2+-dependent ATPase was partially purified on a calmodulin column. This partial purification resulted in a 500-fold increase in the specific activity of the enzyme when measured in the presence of added calmodulin. Antibodies prepared against calmodulin prevented this stimulatory effect. The fraction eluted from the calmodulin column contained several protein bands indicating that the specific activity of the Ca2+-dependent ATPase is probably still underestimated. There are likely to be other calmodulin-sensitive processes present in the hepatic microsomal fraction.  相似文献   

3.
The effect of Mg2+ on hepatic microsomal Ca2+ and Sr2+ transport   总被引:2,自引:0,他引:2  
The ATP-dependent uptake of Ca2+ by rat liver microsomal fraction is dependent upon Mg2+. Studies of the Mg2+ requirement of the underlying microsomal Ca2+-ATPase have been hampered by the presence of a large basal Mg2+-ATPase activity. We have examined the effect of various Mg2+ concentrations on Mg2+-ATPase activity, Ca2+ uptake, Ca2+-ATPase activity and microsomal phosphoprotein formation. Both Mg2+-ATPase activity and Ca2+ uptake were markedly stimulated by increasing Mg2+ concentration. However, the Ca2+-ATPase activity, measured concomitantly with Ca2+ uptake, was apparently unaffected by changes in the Mg2+ concentration. In order to examine the apparent paradox of Mg2+ stimulation of Ca2+ uptake but not of Ca2+-ATPase activity, we examined the formation of the Ca2+-ATPase phosphoenzyme intermediate and formation of a Mg2+-dependent phosphoprotein, which we have proposed to be an attribute of the Mg2+-ATPase activity. We found that Ca2+ apparently inhibited formation of the Mg2+-dependent phosphoprotein both in the absence and presence of exogenous Mg2+. This suggests that Ca2+ may inhibit (at least partially) the Mg2+-ATPase activity. However, inclusion of the Ca2+ inhibition of Mg2+-ATPase activity in the calculation of Ca2+-ATPase activity reveals that this effect is insufficient to totally account for the stimulation of Ca2+ uptake by Mg2+. This suggests that Mg2+, in addition to stimulation of Ca2+-ATPase activity, may have a direct stimulatory effect on Ca2+ uptake in an as yet undefined fashion. In an effort to further examine the effect of Mg2+ on the microsomal Ca2+ transport system of rat liver, the interaction of this system with Sr2+ was examined. Sr2+ was sequestered into an A23187-releasable space in an ATP-dependent manner by rat liver microsomal fraction. The uptake of Sr2+ was similar to that of Ca2+ in terms of both rate and extent. A Sr2+-dependent ATPase activity was associated with the Sr2+ uptake. Sr2+ promoted formation of a phosphoprotein which was hydroxylamine-labile and base-labile. This phosphoprotein was indistinguishable from the Ca2+-dependent ATPase phosphoenzyme intermediate. Sr2+ uptake was markedly stimulated by exogenous Mg2+, but the Sr2+-dependent ATPase activity was unaffected by increasing Mg2+ concentrations. Sr2+ uptake and Sr2+-dependent ATPase activity were concomitantly inhibited by sodium vanadate. In contrast to Ca2+, Sr2+ had no effect on Mg2+-dependent phosphoprotein formation. Taken together, these data indicate that Mg2+ stimulated Ca2+ and Sr2+ transport by increasing the Ca2+ (Sr2+)/ATP ratio.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
Although acute alterations in Ca2+ fluxes may mediate the skeletal responses to certain humoral agents, the processes subserving those fluxes are not well understood. We have sought evidence for Ca2+-dependent ATPase activity in isolated osteoblast-like cells maintained in primary culture. Two Ca2+-dependent ATPase components were found in a plasma membrane fraction: a high affinity component (half-saturation constant for Ca2+ of 280 nM, Vmax of 13.5 nmol/mg per min) and a low affinity component, which was in reality a divalent cation ATPase, since Mg2+ could replace Ca2+ without loss of activity. The high affinity component exhibited a pH optimum of 7.2 and required Mg2+ for full activity. It was unaffected by potassium or sodium chloride, ouabain or sodium azide, but was inhibited by lanthanum and by the calmodulin antagonist trifluoperazine. This component was prevalent in a subcellular fraction which was also enriched in 5'-nucleotidase and adenylate cyclase activities, suggesting the plasma membrane as its principal location. Osteosarcoma cells, known to resemble osteoblasts in their biological characteristics and responses to bone-seeking hormones, contained similar ATPase activities. Inclusion of purified calmodulin in the assay system caused small non-reproducible increases in the Ca2+-dependent ATPase activity of EGTA-washed membranes. Marked, consistent calmodulin stimulation was demonstrated in membranes exposed previously to trifluoperazine and then washed in trifluoperazine-free buffer. These results indicate the presence of a high affinity, calmodulin-sensitive Ca2+-dependent ATPase in osteoblast-like bone cells. As one determinant of Ca2+ fluxes in bone cells, this enzyme may participate in the hormonal regulation of bone cell function.  相似文献   

5.
Antibodies directed against the purified calmodulin-binding (Ca2+ + Mg2+)-ATPase [(Ca2+ + Mg2+)-dependent ATPase] from pig erythrocytes and from smooth muscle of pig stomach (antral part) were raised in rabbits. Both the IgGs against the erythrocyte (Ca2+ + Mg2+)-ATPase and against the smooth-muscle (Ca2+ + Mg2+)-ATPase inhibited the activity of the purified calmodulin-binding (Ca2+ + Mg2+)-ATPase from smooth muscle. Up to 85% of the total (Ca2+ + Mg2+)-ATPase activity in a preparation of KCl-extracted smooth-muscle membranes was inhibited by these antibodies. The (Ca2+ + Mg2+)-ATPase activity and the Ca2+ uptake in a plasma-membrane-enriched fraction from this smooth muscle were inhibited to the same extent, whereas in an endoplasmic-reticulum-enriched membrane fraction the (Ca2+ + Mg2+)-ATPase activity was inhibited by only 25% and no effect was observed on the oxalate-stimulated Ca2+ uptake. This supports the hypothesis that, in pig stomach smooth muscle, two separate types of Ca2+-transport ATPase exist: a calmodulin-binding ATPase located in the plasma membrane and a calmodulin-independent one present in the endoplasmic reticulum. The antibodies did not affect the stimulation of the (Ca2+ + Mg2+)-ATPase activity by calmodulin.  相似文献   

6.
Antibodies against purified Ca2+-transport ATPase from human erythrocytes were raised in rabbits. Immunodiffusion experiments revealed that precipitating antibodies had been developed. The immunoglobulin fraction inhibited solely the calmodulin-dependent fraction of erythrocyte Ca2+-transport ATPase activity, whereas the basal (in the absence of added calmodulin) activity of the enzyme was not significantly affected by the antibodies. The antibodies produced similar doseresponse curves for the calmodulin- and the oleic acid-stimulated enzyme. However, the immunoglobulin fraction was considerably less effective in inhibiting Ca2+-transport ATPase activated by limited proteolysis. The results obtained with our antibodies are compatible with the interpretation that at least one subpopulation of the antibodies attacks the enzyme at or close to the calmodulin-binding site of the ATPase. The antibodies also inhibited the calmodulin-regulated Ca2+-transport ATPase from pig smooth-muscle plasma membrane, though with lower potency. However, the immunoglobulin fraction failed to suppress pig cardiac sarcoplasmicreticulum Ca2+-transport ATPase activity in the concentration range investigated. In addition, the activity of phosphodiesterase from rat brain, another enzyme modulated by calmodulin, was not at all affected by the immunoglobulin fraction.  相似文献   

7.
(CaMg)ATPase [(Ca2+ + Mg2+)-dependent ATPase] was partially purified from a microsomal fraction of the smooth muscle of the pig stomach (antrum). Membranes were solubilized with deoxycholate, followed by removal of the detergent by dialysis. The purified (CaMg)ATPase has a specific activity (at 37 degrees C) of 157 +/- 12.1 (7)nmol.min-1.mg-1 of protein, and it is stimulated by calmodulin to 255 +/- 20.9 (7)nmol.min.mg-1. This purification of the (CaMg)ATPase resulted in an increase of the specific activity by approx. 18-fold and in a recovery of the total enzyme activity of 55% compared with the microsomal fraction. The partially purified (CaMg)ATPase still contains some Mg2+-and (Na+ + K+)-dependent ATPase activities, but their specific activities are increased relatively less than that of the (CaMg)ATPase. The ratios of the (CaMg)ATPase to Mg2+- and (Na+ + K+)-dependent ATPase activities increase from respectively 0.14 and 0.81 in the crude microsomal fraction to 1.39 and 9.07 in the purified preparation. During removal of the deoxycholate by dialysis, vesicles were reconstituted which were capable of ATP-dependent Ca2+ transport.  相似文献   

8.
Plasma membrane enriched fraction isolated from the fundus smooth muscle of rat stomach displayed Ca2+-stimulated ATPase activity in the absence of Mg2+. The Ca2+ dependence of such an ATPase activity can be resolved into two hyperbolic components with a high affinity (Km = 0.4 microM) and a low affinity (Km = 0.6 mM) for Ca2+. Distribution of these high-affinity and low-affinity Ca2+-ATPase activities parallels those of several plasma membrane marker enzyme activities but not those of endoplasmic reticulum and mitochondrial membrane marker enzyme activities. Mg2+ also stimulates the ATPase in the absence of Ca2+. Unlike the Mg2+-ATPase and low-affinity Ca2+-ATPase, the plasmalemmal high-affinity Ca2+-ATPase is not sensitive to the inhibitory effect of sodium azide or Triton X-100 treatment. The high-affinity Ca2+-ATPase is noncompetitively inhibited by Mg2+ with respect to Ca2+ stimulation. Such an inhibitory effect of Mg2+ is potentiated by Triton X-100 treatment of the membrane fraction. Calmodulin has little effect on the high-affinity Ca2+-ATPase activity of the plasma membrane enriched fraction with or without EDTA pretreatment. Findings of this novel, Mg2+-independent, high-affinity Ca2+-ATPase activity in the rat stomach smooth muscle plasma membrane are discussed with those of Mg2+-dependent, high-affinity Ca2+-ATPase activities previously reported in other smooth muscle plasma membrane preparations in relation to the plasma membrane Ca2+-pump.  相似文献   

9.
ATP-dependent Ca2+ uptake by subfractions of skeletal muscle sarcoplasmic reticulum (SR) was studied with the Ca2+ indicator dye, antipyrylazo III. Ca2+ uptake by heavy SR showed two phases, a slow uptake phase and a fast uptake phase. By contrast, Ca2+ uptake by light SR exhibited a monophasic time course. In both fractions a steady state of Ca2+ uptake was observed when the concentration of free Ca2+ outside the vesicles was reduced to less than 0.1 microM. In the steady state, the addition of 5 microM Ca2+ to the external medium triggered rapid Ca2+ release from heavy SR but not from light SR, indicating that the heavy fraction contains a Ca2+-induced Ca2+ release channel. During Ca2+ uptake, heavy SR showed a constant Ca2+-dependent ATPase activity (1 mumol/mg protein X min) which was about 150 times higher than the rate of Ca2+ uptake in the slow uptake phase. Ruthenium red, an inhibitor of Ca2+-induced Ca2+ release, enhanced the rate of Ca2+ uptake during the slow phase without affecting Ca2+-dependent ATPase activity. Adenine nucleotides, activators of Ca2+ release, reduced the Ca2+ uptake rate. These results suggest that the rate of Ca2+ accumulation by heavy SR is not proportional to ATPase activity during the slow uptake phase due to the activation of the channel for Ca2+-induced Ca2+ release. In addition, they suggest that the release channel is inactivated during the fast Ca2+ uptake phase.  相似文献   

10.
The effect of calmodulin on the formation and decomposition of the Ca2+-dependent phosphoprotein intermediate of the (Mg2+ + Ca2+)-dependent ATPase in erythrocyte membranes was investigated. In the presence of 60 microM-Ca2+ and 25 microM-MgCl2, calmodulin (0.5-1.5 microgram) did not alter the steady-state concentration of the phosphoprotein, but increased its rate of decomposition. Higher calmodulin concentrations significantly decreased the steady-state concentration of phosphoprotein. Calmodulin (0.5-1.7 microgram) increased Ca2+-transport ATPase activity by increasing the turnover rate of its phosphoprotein intermediate. Increasing the MgCl2 concentration from 25 microM to 250 microM increased the (Mg2+ + Ca2+)-dependent ATPase activity, but decreased the concentration of the phosphoprotein intermediate. Similarly to calmodulin, MgCl2 increased the turnover rate of the Ca2+-transport ATPase complex (about 3-fold). At the higher MgCl2 concentration calmodulin did not further affect the decomposition of the phosphoprotein intermediate. It was concluded that both calmodulin and MgCl2 increase the turnover of the Ca2+-pump by enhancing the decomposition of the Ca2+-dependent phosphoprotein intermediate.  相似文献   

11.
C Y Kwan 《Enzyme》1982,28(4):317-327
Studies of ATP hydrolysis by various subcellular fractions isolated from rat mesenteric arteries and veins indicate that an apparent ATPase activity, which can be activated by Mg2+ or Ca2+, is primarily associated with the plasma membranes. Although both Mg2+-activated and Ca2+-activated ATPase activities under the optimal condition are substantially lower in venous than in arterial plasma membrane fraction, their dependence on the concentration of Mg2+ and Ca2+ are quite similar in arterial as well as venous plasma membrane fractions. No synergistic effect on ATP hydrolysis was observed in the presence of both Mg2+ and Ca2+. In addition, Mg2+-activated and Ca2+-activated ATPase activities show similar pH dependence, inhibition by deoxycholate, stability toward heat inactivation and substrate specificity. Furthermore, Mg2+-activated and Ca2+-activated ATPase activities were similarly reduced in vascular smooth muscles of spontaneously hypertensive rats. These results suggest that the activation of ATP hydrolysis by Mg2+ or Ca2+ may represent a single enzyme moiety in the plasma membrane of vascular smooth muscle. The possible involvement of such ATPase in the Ca2+ transport function of vascular smooth muscle is discussed.  相似文献   

12.
Rabbit antiserum was prepared against a partially purified Ca2+, Mg2+-dependent ATPase [EC 3.6.1.3] of the SR isolated from chicken skeletal muscle. The gamma-globulin fraction of antiserum contained antibodies which combined with the purified ATPase and the SR vesicles. Binding of the antibodies strongly inhibited active transport of Ca2+ ions into the SR, but not passive leakage of Ca2+ ions from the SR. The antibodies scarcely affected the ATPase activity.  相似文献   

13.
1. The heavy microsomal fraction from rat liver apparently has very little Ca2+-stimulated ATPase activity, although it has an active, ATP-driven Ca2+ accumulation system. 2. The addition of ionophore A23187 to the ATPase assay, to allow continuous Ca2+ recycling during the assay time, reveals the presence of a substantial Ca2+-stimulated ATPase with Vmax. 160 nmol of Pi/10 min per mg of protein and Km for Ca2+ 0.19 microM. 3. The Ca2+-stimulated ATPase, but not the basal Mg2+-stimulated ATPase, is potently inhibited by orthovanadate. Both the Ca2+-stimulated ATPase and the vanadate inhibition are enhanced by the presence of Mg2+. 4. Ca2+-stimulated ATPase activity is not responsive to calmodulin or the calmodulin antagonist trifluoperazine.  相似文献   

14.
The behaviour of Ca2+ ATPase activity in relation to Ca2+ transport process was studied under different experimental conditions in canine cardiac microsomal fraction predominantly containing sarcoplasmic reticulum. The total Ca2+ concentration required for half maximal activation (Ka) of microsomal Ca2+ ATPase and Ca2+ uptake did not differ significantly, unless 0.1 mmol/l EGTA was present in the incubation media. Pretreatment of cardiac microsomes with membrane disruptive agents like phospholipase A, trypsin as well as deoxycholate strongly increased (2-3 fold) Ca2+ ATPase activity but uptake rate of Ca2+ declined. Only in phospholipase C and beta-glucuronidase pretreatment, a parallel decrease of Ca2+ ATPase and uptake was observed. In presence of excess (free)Ca2+ (greater than 10 mumol/l) both Ca2+ ATPase as well as Ca2+ uptake were inhibited, however, Ca2+ binding process remained unaltered. Likewise, low pH completely altered the relation between Ca2+ binding and ATPase activity; whereas Ca2+ ATPase was inhibited, Ca2+ binding did not change. Our present data provide evidence for some cellular factors that may be involved in producing uncoupling of microsomal Ca2+ ATPase from Ca2+ accumulation process that was previously observed in various pathological situations.  相似文献   

15.
The purified calmodulin dependent (Ca2+ + Mg2+)-ATPase (CaMg ATPase) from porcine antral smooth muscle transports Ca2+ after reconstitution in lipid vesicles indicating that this enzyme is indeed a Ca2+-transport ATPase. For CaMg ATPase reconstituted in asolectin vesicles a good correlation was found between the time course of Ca2+ accumulation and the corresponding changes in CaMg ATPase activity. The ATPase activity was stimulated 8-fold by A23187, which further indicates a tight coupling between ATP hydrolysis and Ca2+ transport. Asolectin vesicles with incorporated enzyme accumulated Ca2+ with a ratio approaching one Ca2+ ion transported for each ATP hydrolyzed. For CaMg ATPase reconstituted in phosphatidylcholine vesicles on the other hand, Ca2+ transport and CaMg ATPase were poorly coupled as is shown by the approximately 3.5 fold stimulation by A23187. The activity of the CaMg ATPase when reconstituted in asolectin vesicles was stimulated 1.25 fold by calmodulin while in phosphatidylcholine a value of 4.25 was obtained. The CaMg ATPase activity of the enzyme reconstituted either in asolectin or phosphatidylcholine was, after its stimulation by A23187, still further stimulated by detergent by a factor of 5.  相似文献   

16.
1. Dynein proteins were solubilized from demembranated cilia of Paramecium by extraction at high ionic strength. 2. Mg2+-dependent ATPase (EC 3.6.1.3) activity of crude dynein extracts was inhibited by micromolar concentrations of Ca2+ ions. 3. Sepharose 4B chromatography of the crude extracts yields three dynein fractions. The major fraction contains a single protein and is insensitive to Ca2+ ions. Two other fractions, both heterogeneous in composition, show opposing Ca2+ ion sensitivity expressed as a Ca2+ dependent alteration in MgATP2- dependent ATPase activity. The Ca2+ ion sensitive forms show altered electrophoretic mobility on native polyacrylamide gels in the presence and absence of Ca2+ ions. 4. The data provides evidence for a Ca2+ ion dependent concomitant alteration in both molecular form and hydrolytic activity of the dyneins. The results are discussed in terms of a possible molecular mechanism for Ca ion regulation of ciliary activity in terms of the sliding microtubule model.  相似文献   

17.
Purified perigranular and plasma membranes isolated from rat peritoneal mast cells were examined for Ca2+- and Mg2+-dependent ATPase activity. Isolated perigranular membranes contained only a low-affinity Ca2+- or Mg2+-dependent ATPase (Km greater than 0.5 mM). The plasma membranes contained both a low-affinity Ca2+- or Mg2+-dependent ATPase (Km = 0.4 mM, Vmax. = 20 nmol of Pi/min per mg), as well as a high-affinity Ca2+- and Mg2+-dependent ATPase (Km = 0.2 microM, Vmax. = 6 nmol of Pi/min per mg).  相似文献   

18.
ATPase activity in highly purified rat liver lysosome preparations was evaluated in the presence of other membrane cellular ATPase inhibitors, and compared with lysosome ATP-driven proton translocating activity. Replacement of 5 mM Mg2+ with equimolar Ca2+ brought about a 50% inhibition in divalent cation-dependent ATPase activity, and an 80% inactivation of ATP-linked lysosomal H+ pump activity. In the presence of optimal concentrations of Ca2+ and Mg2+, ATPase activity was similar to that seen in an Mg2+ medium. Mg2+-dependent ATPase activity was greatly inhibited (from 70 to 80%) by the platinum complexes; cis-didimethylsulfoxide dichloroplatinum(II) (CDDP) at approximately 90 microM and cis-diaminedichloroplatinum(II) at twofold higher concentrations. Less inhibition, about 30 and 45%, was obtained with N,N'-dicyclohexylcarbodiimide and N-ethylmaleimide, and the maximal effect occurred in the 50-100 microM and 0.1-1.5 mM ranges, respectively. The concentration dependence of inhibition by the above drugs was determined for both proton pumping and ATPase activities, and half-maximal inhibition concentration of each activity was found at nearly similar values. A micromolar concentration of carbonylcyanide p-trifluoromethoxyphenylhydrazone (FCCP) prevented ATP from setting up a pH gradient across the lysosomal membranes, but stimulated Mg2+-ATPase activity significantly. ATPase activity in Ca2+ medium was also inhibited by CDDP and stimulated by FCCP, but both effects were two- to threefold less than those observed in Mg2+ medium. FCCP failed to stimulate ATPase activity in a CDDP-supplemented medium, thus suggesting that the same ATPase activity fraction was sensitive to both CDDP and FCCP. Mg2+-ATPase activity, like the proton pump, was anion dependent. The lowest activity was recorded in a F-medium, and increased in the order of F- less than SO2-4 less than Cl- approximately equal to Br-. The CDDP-sensitive ATPase activity observed, supported by Mg2+ and less so by Ca2+, may be related to lysosome proton pump activity.  相似文献   

19.
High affinity Ca2+-stimulated Mg2+-dependent ATPase activity of nerve ending particles (synaptosomes) from rat brain tissue appears to be associated primarily with isolated synaptic plasma membranes. The synaptic membrane (Ca2+ + Mg2+)-ATPase activity was found to exhibit strict dependence on Mg2+ for the presence of the activity, a high affinity for Ca2+ (K0.5 = 0.23 microM), and relatively high affinities for both Mg2+ and ATP (K0.5 = 6.0 microM for Mg2+ and KM = 18.9 microM for ATP). These kinetic constants were determined in incubation media that were buffered with the divalent cation chelator trans-cyclohexane-1,2-diamine-N,N,N',N'-tetraacetic acid. The enzyme activity was not inhibited by ouabain or oligomycin but was sensitive to low concentrations of vanadate. The microsomal membrane subfraction was the other brain subcellular fraction with a high affinity (Ca2+ + Mg2+)-ATPase activity which approximated that of the synaptic plasma membranes. The two membrane-related high affinity (Ca2+ + Mg2+)-ATPase activities could be distinguished on the basis of their differential sensitivity to vanadate at concentrations below 10 microM. Only the synaptic plasma membrane (Ca2+ + Mg2+)-ATPase was inhibited by 0.25-10 microM vanadate. The studies described here indicate the possible involvement of both the microsomal and the neuronal plasma membrane (Ca2+ + Mg2+)-ATPase in high affinity Ca2+ transport across membranes of brain neurons. In addition, they suggest a means by which the relative contributions of each transport system might be evaluated based on their differential sensitivity to inhibition by vanadate.  相似文献   

20.
A plasma membrane fraction was isolated from lysates of Bacillus Calmette-Guérin-induced alveolar macrophages of rabbit. On the basis of morphological and biochemical criteria this fraction appeared to be minimally contaminated by other subcellular organelles. Concentrations of Ca2+, but not of Mg2+, from 6.10(-8) to 1.10(-5) M markedly stimulated the basal ATPase (EC 3.6.1.3) activity of the plasma membrane, with an apparent Km (Ca2+) of 1.10(-6) M. The specific activity of the Ca2+-ATPase assayed at pCa = 5.5 was enriched about 8-fold in the plasma membrane fraction over the macrophage lysate. In contrast, the specific activity of the K+, EDTA-activated ATPase, associated to macrophage myosin, increased only 1.3-fold. Oligomycin and -SH group reagents exerted no influence on the Ca2+-ATPase activity, which was on the contrary inhibited by detergents such as Triton X-100 and deoxycholate. The activity of the Ca2+-ATPase was maximal at pH 7, and was decreased by 50 mM Na+ and 5 mM K+. On the contrary, the activity of Mg2+-ATPase, also present in the plasma membrane fraction, had a peak at about pH 7.8, and was stimulated by Na+ plus K+. On account of its properties, it is suggested that the Ca2+-ATPase is a component of the plasma membrane of the alveolar macrophage, and that its function may be that of participating in the maintenance of low free Ca2+ concentrations in the macrophage cytosol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号