首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Herpesviruses have evolved numerous strategies to subvert host immune responses so they can coexist with their host species. These viruses 'co-opt' host genes for entry into host cells and then express immunomodulatory genes, including mimics of members of the tumour-necrosis factor (TNF) superfamily, that initiate and alter host-cell signalling pathways. TNF superfamily members have crucial roles in controlling herpesvirus infection by mediating the direct killing of infected cells and by enhancing immune responses. Despite these strong immune responses, herpesviruses persist in a latent form, which suggests a dynamic relationship between the host immune system and the virus that results in a balance between host survival and viral control.  相似文献   

2.
Vinay DS  Kwon BS 《Cytokine》2012,57(3):305-312
Rheumatoid arthritis (RA) is an inflammatory disease is one of the most serious medical problems, affecting ~1% of all people worldwide, irrespective of race. The disease is autoimmune in nature and characterized by chronic inflammation of the synovial tissues in multiple joints that leads to joint destruction. Although T cells are central players in RA development, B cells are required for full penetrance of disease largely via their production of autoantibodies against Fc domain of IgG rheumatoid factor (RF). Treatment options for RA are limited and if any, are inadequate due to associated side effects. Members of the tumor necrosis factor (TNF) superfamily play important roles in a number of autoimmune diseases, including RA. In this review, we briefly summarize key features of the superfamily, we will consider how the well-characterized members concerned with immune regulation are coordinated and their roles in rheumatoid arthritis.  相似文献   

3.
4.
5.
T‐cell responses to infections and cancers are regulated by co‐signalling receptors grouped into the binary categories of co‐stimulation or co‐inhibition. The co‐stimulation TNF receptor superfamily (TNFRSF) members 4‐1BB, CD27, GITR and OX40 have similar signalling mechanisms raising the question of whether they have similar impacts on T‐cell responses. Here, we screened for the quantitative impact of these TNFRSFs on primary human CD8+ T‐cell cytokine production. Although both 4‐1BB and CD27 increased production, only 4‐1BB was able to prolong the duration over which cytokine was produced, and both had only modest effects on antigen sensitivity. An operational model explained these different phenotypes using shared signalling based on the surface expression of 4‐1BB being regulated through signalling feedback. The model predicted and experiments confirmed that CD27 co‐stimulation increases 4‐1BB expression and subsequent 4‐1BB co‐stimulation. GITR and OX40 displayed only minor effects on their own but, like 4‐1BB, CD27 could enhance GITR expression and subsequent GITR co‐stimulation. Thus, different co‐stimulation receptors can have different quantitative effects allowing for synergy and fine‐tuning of T‐cell responses.  相似文献   

6.
The oxidative cleavage of heme by heme oxygenases (HOs) to form biliverdin IXalpha (BV) is the committed step in the biosynthesis of the phytochrome (phy) chromophore and thus essential for proper photomorphogenesis in plants. Arabidopsis (Arabidopsis thaliana) contains four possible HO genes (HY1, HO2-4). Genetic analysis of the HY1 locus showed previously that it is the major source of BV with hy1 mutant plants displaying long hypocotyls and decreased chlorophyll accumulation consistent with a substantial deficiency in photochemically active phys. More recent analysis of HO2 suggested that it also plays a role in phy assembly and photomorphogenesis but the ho2 mutant phenotype is more subtle than that of hy1 mutants. Here, we define the functions of HO3 and HO4 in Arabidopsis. Like HY1, the HO3 and HO4 proteins have the capacity to synthesize BV from heme. Through a phenotypic analysis of T-DNA insertion mutants affecting HO3 and HO4 in combination with mutants affecting HY1 or HO2, we demonstrate that both of the encoded proteins also have roles in photomorphogenesis, especially in the absence of HY1. Disruption of HO3 and HO4 in the hy1 background further desensitizes seedlings to red and far-red light and accelerates flowering time, with the triple mutant strongly resembling seedlings deficient in the synthesis of multiple phy apoproteins. The hy1/ho3/ho4 mutant can be rescued phenotypically and for the accumulation of holo-phy by feeding seedlings BV. Taken together, we conclude that multiple members of the Arabidopsis HO family are important for synthesizing the bilin chromophore used to assemble photochemically active phys.  相似文献   

7.
8.
Vascular endothelial cells are primary targets of cytokine-induced cell death leading to tissue injury. We previously reported that TNF in combination with LY294002, a PI3K inhibitor, activates caspase-independent cell death initiated by cathepsin B (Cat B) in HUVEC. We report that TNF in the presence of IFN-gamma activates Cat B as well as a caspase death pathway in both HUVEC and human dermal microvascular endothelial cells, but only activates caspase-mediated death in HeLa cells and human embryonic kidney (HEK)293 cells. Like LY294002, IFN-gamma triggers Cat B release from lysosomes in HUVEC. Cat B-triggered death involves mitochondria, indicated by release of cytochrome c, loss of mitochondrial membrane potential and inhibition of death by overexpressed Bcl-2. Cat B effects on mitochondria do not depend upon Bid cleavage. Unexpectedly, overexpression of a dominant negative mutated form of Fas-associated death domain protein (FADD), which blocks caspase activation by TNF, potentiates TNF activation of Cat B and cell death in HUVEC. Similarly, mutant Jurkat cells lacking FADD also show increased susceptibility to TNF-induced Cat B-dependent cell death. These observations suggest that the Cat B death pathway is cell type-specific and may contribute to cytokine-mediated human tissue injury and to the embryonic lethality of FADD gene disruption in mice.  相似文献   

9.
The main function of the corpus luteum (CL) is the production of progesterone. Adequate luteal progesterone is crucial for determining the physiological duration of the estrous cycle and for achieving a successful pregnancy. The CL is regulated not only by hypophyseal gonadotropin, but also by a number of cytokines that are locally produced. Tumor necrosis factor-α (TNF) and its specific receptors (TNFR) are present in the CL of many species. TNF plays multiple and likely important roles in CL function throughout the estrous cycle. TNF appears to have luteotropic and luteolytic roles in the CLs. In contrast, Fas ligand (Fas L), another member of TNF super family (TNF-SF), is primarily recognized for its apoptotic actions. Presumably, Fas L binds its cognate receptor (Fas) to induce structural luteolysis. This review is designed to focus on recent studies documenting the expression of TNF and Fas L, their receptors, and intracellular signaling mechanisms in the CL.  相似文献   

10.
Resistance to the mouse pneumonitis (MoPn) strain of Chlamydia trachomatis has been mapped to MHC class II-restricted, IL-12-dependent CD4+ T cells that secrete a type 1 profile of proinflammatory cytokines, which includes IFN-gamma and TNF-alpha. The relative contribution of IFN-gamma is controversial, however, due to variation in results presented by different laboratories. To determine whether C. trachomatis strain differences contributed to this apparent conflict, the relative resistance of IFN-gamma-deficient mice to murine and human strains of C. trachomatis was compared. All human serovars were much more sensitive to the direct inhibitory actions of IFN-gamma than the MoPn strain. Furthermore, genital clearance of human serovar D in the C57BL/6 mouse was mediated by class II-independent mechanisms that probably involved local production of IFN-gamma by cells of the innate immune system. TNF-alpha also contributed indirectly to host resistance against all strains tested. The differential susceptibility of distinct C. trachomatis strains to effector cytokines such as IFN-gamma could not have been predicted by interstrain biologic variation or by the profile of cytokines stimulated during infection. These findings indicate that strain variation should be considered in situations where related isolates of a given parasite produce conflicting data in models of infection and immunity. They also suggest that stimulation of mucosal IFN-gamma activity is a relevant goal for a human chlamydial vaccine.  相似文献   

11.
The molecular architecture of the TNF superfamily.   总被引:31,自引:0,他引:31  
Ligands of the TNF (tumour necrosis factor) superfamily have pivotal roles in the organization and function of the immune system, and are implicated in the aetiology of several acquired and genetic diseases. TNF ligands share a common structural motif, the TNF homology domain (THD), which binds to cysteine-rich domains (CRDs) of TNF receptors. CRDs are composed of structural modules, whose variation in number and type confers heterogeneity upon the family. Protein folds reminiscent of the THD and CRD are also found in other protein families, raising the possibility that the mode of interaction between TNF and TNF receptors might be conserved in other contexts.  相似文献   

12.
Members of the TGFbeta superfamily of growth and differentiation factors, including the TGFbeta, BMP, activin and nodal families, play important signaling roles throughout development. This paper summarizes some of the functions of these ligands in lens development. Targeted deletion of the genes encoding one of the BMP receptors, Alk3 (BMP receptor-1A), showed that signaling through this receptor is essential for normal lens development. Lenses lacking Alk3 were smaller than normal, with thin epithelial layers. The fiber cells of Alk3 null lenses became vacuolated and degenerated within the first week after birth. Lenses lacking Alk3 function were surrounded by abnormal mesenchymal cells, suggesting that the lenses provided inappropriate signals to surrounding tissues. Lens epithelial and fiber cells contained endosomes that were associated with activated (phosphorylated) SMAD1 and SMAD2. Endosomal localization of pSMAD1 was reduced in the absence of Alk3 signaling. The presence of pSMAD2 in lens fiber cell nuclei and the observation that the activin antagonist follistatin inhibited lens cell elongation suggested that an activin-like molecule participates in lens fiber cell differentiation. Lenses deficient in type II TGFbeta receptors were clear and had fiber cells of normal morphology. This suggests that TGFbeta signaling is not essential for the normal differentiation of lens fiber cells. The targeted deletion of single or multiple receptors of the TGFbeta superfamily in the lens should further characterize the role of these signaling molecules in lens development. This approach may also provide a useful way to define the downstream pathways that are activated by these receptors during the development of the lens and other tissues.  相似文献   

13.
Dendritic cells (DC) constitute the most potent antigen presenting cells of the immune system, playing a key role bridging innate and adaptive immune responses. Specialized DC subsets differ depending on their origin, tissue location and the influence of trophic factors, the latter remain to be fully understood. Myeloid-associated lymphotoxin-beta receptor (LTbetaR) signaling is required for the local proliferation of lymphoid tissue DC. This review focuses on the LTbetaR signaling cascade as a crucial positive trophic signal in the homeostasis of DC subsets. The noncanonical coreceptor pathway comprised of the immunoglobulin (Ig) superfamily member, B and T lymphocyte attenuator (BTLA) and TNFR superfamily member, herpesvirus entry mediator (HVEM) counter regulates the trophic signaling by LTbetaR. Together both pathways form an integrated signaling circuit achieving homeostasis of DC subsets.  相似文献   

14.
An expression cloning approach was employed to identify the receptor for B-lymphocyte stimulator (BLyS) and identified the tumor necrosis factor receptor superfamily member TACI as a BLyS-binding protein. Expression of TACI in HEK293T cells confers on the cells the ability to bind BLyS with subnanomolar affinity. Furthermore, a TACI-Fc fusion protein recognizes both the cleaved, soluble form of BLyS as well as the membrane BLyS present on the cell surface of a recombinant cell line. TACI mRNA is found predominantly in B-cells and correlates with BLyS binding in a panel of B-cell lines. We also demonstrate that TACI interacts with nanomolar affinity with the BLyS-related tumor necrosis factor homologue APRIL for which no clear in vivo role has been described. BLyS and APRIL are capable of signaling through TACI to mediate NF-kappaB responses in HEK293 cells. We conclude that TACI is a receptor for BLyS and APRIL and discuss the implications for B-cell biology.  相似文献   

15.
The inflammatory cytokine tumor necrosis factor (TNF), as well as most other ligand members of the TNF superfamily, exist both as classical soluble cytokines, but also in the form of type II transmembrane proteins. Both forms possess bioactivity, although some effects are distinct. In addition, an increasing body of evidence suggests that the membrane integrated ligands can receive signals, i.e. act as receptors which can transmit positive and negative feedback signals into the ligand bearing cell. Thus, reverse signaling enables a two-way communication in cell-to-cell signaling, and it is conceivable that this bi-directional signal exchange contributes to the plasticity of the ligand-receptor systems. Reverse signaling mainly has been observed in the immune system and within the TNF superfamily. Its function is only beginning to emerge warranting additional investigation, especially when it comes to therapeutic strategies involving cytokine modulation. This review provides an update of the literature about reverse signaling of transmembrane TNF family members and discusses its potential biological and clinical impact.  相似文献   

16.
17.
The host immune responses that mediate Chlamydia-induced chronic disease sequelae are incompletely understood. The role of TNF-α, TNF receptor 1 (TNFR1), and TNF receptor 2 (TNFR2), in Chlamydia pneumoniae (CPN)-induced atherosclerosis was studied using the high-fat diet-fed male C57BL/6J mouse model. Following intranasal CPN infection, TNF-α knockout (KO), TNFR1 KO, TNFR2 KO, and TNFR 1/2 double-knockout, displayed comparable serum anti-chlamydial antibody response, splenic antigen-specific cytokine response, and serum cholesterol profiles compared to wild type (WT) animals. However, atherosclerotic pathology in each CPN-infected KO mouse group was reduced significantly compared to WT mice, suggesting that both TNFR1 and TNFR2 promote CPN-induced atherosclerosis.  相似文献   

18.
The binding, internalization, and inhibition of transmitter release by botulinum neurotoxin (BoNT) was investigated using the intact toxin, its heavy (HC) or light (LC) chains, and a proteolytic fragment thereof. In Aplysia neurons, blockade of acetylcholine release upon external application of BoNT types A or E was prevented by reducing the temperature to 10 degrees C, due to arresting intoxication at the membrane binding step. At this low temperature, type A HC, H2 (comprised of the N-terminal of HC), or H2L (H2 disulfide-linked to LC) antagonized the neuroparalytic action of BoNT A or E, indicating that the latter bind saturably to common ecto-acceptor via the H2 region. In contrast, H2L was unable to counteract BoNT-induced paralysis at the murine neuromuscular junction. In accordance with this species difference, unlike native BoNT, saturable binding of 125I-labeled H2L could not be detected in mammalian peripheral or central nerve terminals. Possibly, more stringent structural requirements form the basis of the toxin's greater effectiveness in inhibiting neurotransmission at mouse nerve muscle synapses than Aplysia nerve terminals. In further identification of functional domains in the toxin, an unprocessed single-chain form of BoNT type E was found to be ineffective when applied extra- or intracellularly to Aplysia neurons. Notably, bath application of the latter to a neuron preinjected with HC, but not H2L or LC, resulted in a blockade of release. This shows that the single-chain species can become internalized and requires, not only LC, but also processed HC for its inhibitory action; consistently, the proteolyzed form of BoNT E was active.  相似文献   

19.
Signalling pathways of the TNF superfamily: a double-edged sword   总被引:1,自引:0,他引:1  
Two different tumour-necrosis factors (TNFs), first isolated in 1984, were found to be cytotoxic to tumour cells and to induce tumour regression in mice. Research during the past two decades has shown the existence of a superfamily of TNF proteins consisting of 19 members that signal through 29 receptors. These ligands, while regulating normal functions such as immune responses, haematopoiesis and morphogenesis, have also been implicated in tumorigenesis, transplant rejection, septic shock, viral replication, bone resorption, rheumatoid arthritis and diabetes; so indicating their role as 'double-edged swords'. These cytokines either induce cellular proliferation, survival, differentiation or apoptosis. Blockers of TNF have been approved for human use in treating TNF-linked autoimmune diseases in the United States and other countries.  相似文献   

20.
Four new members expand the interleukin-1 superfamily   总被引:4,自引:0,他引:4  
We report here the cloning and characterization of four new members of the interleukin-1 (IL-1) family (FIL1delta, FIL1epsilon, FIL1zeta, and FIL1eta, with FIL1 standing for "Family of IL-1"). The novel genes demonstrate significant sequence similarity to IL-1alpha, IL-1beta, IL-1ra, and IL-18, and in addition maintain a conserved exon-intron arrangement that is shared with the previously known members of the family. Protein structure modeling also suggests that the FIL1 genes are related to IL-1beta and IL-1ra. The novel genes form a cluster with the IL-1s on the long arm of human chromosome 2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号