首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Fanconi anaemia (FA) is a cancer-prone genetic disorder that is characterised by cytogenetic instability and redox abnormalities. Although rare subtypes of FA (B, D1 and D2) have been implicated in DNA repair through links with BRCA1 and BRCA2, such a role has yet to be demonstrated for gene products of the common subtypes. Instead, these products have been strongly implicated in xenobiotic metabolism and redox homeostasis through interactions of FANCC with cytochrome P-450 reductase and with glutathione S-transferase, and of FANCG with cytochrome P-450 2E1, as well as redox-dependent signalling through an interaction between FANCA and Akt kinase. We hypothesise that FA proteins act directly (via FANCC and FANCG) and indirectly (via FANCA, BRCA2 and FANCD2) with the machinery of cellular defence to modulate oxidative stress. The latter interactions may co-ordinate the link between the response to DNA damage and oxidative stress parameters (3, 6-12).  相似文献   

2.
3.
There is some anecdotal evidence that oxygen-ozone therapy may be beneficial in some human diseases. However so far only a few biochemical and pharmacodynamic mechanisms have been elucidated. On the basis of preliminary data we postulated that controlled ozone administration would promote an oxidative preconditioning preventing the hepatocellular damage mediated by free radicals. Six groups of rats were classified as follows: (1) negative control, using intraperitoneal sunflower oil; (2) positive control using carbon tetrachloride (CCl4) as an oxidative challenge; (3) oxygen-ozone, pretreatment via rectal insufflation (15 sessions) and after it, CCl4; (4) oxygen, as group 3 but using oxygen only; (5) control oxygen-ozone, as group 3, but without CCl4; group (6) control oxygen, as group 5, but using oxygen only. We have evaluated critical biochemical parameters such as levels of transaminase, cholinesterase, superoxide dismutase, catalase, phospholipase A, calcium dependent ATPase, reduced glutathione, glucose 6 phosphate dehydrogenase and lipid peroxidation. Interestingly, in spite of CCl4 administration, group 3 did not differ from group 1, while groups 2 and 4 showed significant differences from groups 1 and 3 and displayed hepatic damage. To our knowledge these are the first experimental results showing that repeated administration of ozone in atoxic doses is able to induce an adaptation to oxidative stress thus enabling the animals to maintain hepatocellular integrity after CCl4 poisoning.  相似文献   

4.
One of the mechanisms plants have developed for chloroplast protection against oxidative damage involves a 2-Cys peroxiredoxin, which has been proposed to be reduced by ferredoxin and plastid thioredoxins, Trx x and CDSP32, the FTR/Trx pathway. We show that rice (Oryza sativa) chloroplast NADPH THIOREDOXIN REDUCTASE (NTRC), with a thioredoxin domain, uses NADPH to reduce the chloroplast 2-Cys peroxiredoxin BAS1, which then reduces hydrogen peroxide. The presence of both NTR and Trx-like domains in a single polypeptide is absolutely required for the high catalytic efficiency of NTRC. An Arabidopsis thaliana knockout mutant for NTRC shows irregular mesophyll cell shape, abnormal chloroplast structure, and unbalanced BAS1 redox state, resulting in impaired photosynthesis rate under low light. Constitutive expression of wild-type NTRC in mutant transgenic lines rescued this phenotype. Moreover, prolonged darkness followed by light/dark incubation produced an increase in hydrogen peroxide and lipid peroxidation in leaves and accelerated senescence of NTRC-deficient plants. We propose that NTRC constitutes an alternative system for chloroplast protection against oxidative damage, using NADPH as the source of reducing power. Since no light-driven reduced ferredoxin is produced at night, the NTRC-BAS1 pathway may be a key detoxification system during darkness, with NADPH produced by the oxidative pentose phosphate pathway as the source of reducing power.  相似文献   

5.
Oxidative stress is characterized by excessive production of various free radicals and reactive species among which, peroxynitrite is most frequently produced in several pathological conditions. Peroxynitrite is the product of the superoxide anion reaction with nitric oxide, which is reported to take place in the intravascular compartment. Several studies have reported that peroxynitrite targets red blood cells, platelets and plasma proteins, and induces various forms of oxidative damage. This in vitro study was designed to further characterize the types of oxidative damage induced in platelets and plasma proteins by peroxynitrite. This study also determined the ability of tempol to protect blood plasma and platelets against peroxynitrite-induced oxidative damage. The ability of various concentrations of tempol (25, 50, 75, and 100 µM) to antagonize peroxynitrite-induced oxidation was evaluated by measuring the levels of protein carbonyl groups and thiobarbituric-acid-reactive substances in experimental groups. Exposure of platelets and plasma to 100 µM peroxynitrite resulted in an increased levels of carbonyl groups and lipid peroxidation (P < 0.05). Tempol significantly inhibited carbonyl group formation in plasma and platelet proteins (P < 0.05). In addition, tempol significantly reduced the levels of lipid peroxidation in both plasma and platelet samples (P < 0.05). Thus, tempol has antioxidative properties against peroxynitrite-induced oxidative damage in blood plasma and platelets.  相似文献   

6.
Asthma is characterized by the influx of inflammatory cells, especially of eosinophils as well as reactive oxygen species (ROS) production, driven by the release of the T helper 2 (Th2)-cell-associated cytokines. The cholinergic anti-inflammatory pathway (CAP) inhibit cytokines production and controls inflammation. Thus, we investigated the effects of pharmacological activation of CAP by neostigmine on oxidative stress and airway inflammation in an allergic asthma model. After the OVA challenge, mice were treated with neostigmine. We showed that CAP activation by neostigmine reduced the levels of pro-inflammatory cytokines (IL-4, IL-5, IL-13, IL-1β, and TNF-α), which resulted in a decrease of eosinophils influx. Furthermore, neostigmine also conferred airway protection against oxidative stress, attenuating ROS production through the increase of antioxidant defense, evidenced by the catalase (CAT) activity. We propose, for the first time, that pharmacological activation of the CAP can lead to new possibilities in the therapeutic management of allergic asthma.  相似文献   

7.
Summary. The polyamines spermidine and spermine have been hypothesized to possess different functions in the protection of DNA from reactive oxygen species. The growth and survival of mouse fibroblasts unable to synthesize spermine were compared to their normal counterparts in their native and polyamine-depleted states in response to oxidative stress. The results of these studies suggest that when present at normal or supraphysiological concentrations, either spermidine or spermine can protect cells from reactive oxygen species. However, when polyamine pools are pharmacologically manipulated to produce cells with low levels of predominately spermine or spermidine, spermine appears to be more effective. Importantly, when cells are depleted of both glutathione and endogenous polyamines, they exhibit increased sensitivity to hydrogen peroxide as compared to glutathione depletion alone, suggesting that polyamines not only play a role in protecting cells from oxidative stress but this role is distinct from that played by glutathione.  相似文献   

8.
The effect of gamma irradiation on liposomes in the presence of a large number of commercially available proteins has been studied. Experiments were designed to demonstrate that the configuration of both acyl chain and cis C = C bonds created by lipid-protein associations are crucial in autocatalyzed radiation-induced lipid peroxidation. Raman spectroscopy was used to characterize these states. Raman spectra in the C-C stretching region show three prominent bands at 1064, 1090, and 1125 cm-1, assigned to trans, gauche, and trans C-C bonds, respectively. A single symmetrical C = C stretching band assigned to the cis isomer occurs at 1660 cm-1. The intensity ratios (I1064/I1090) and (I1660/I1440) are used as Raman probes to define the conformational states of acyl chains and C = C bonds, respectively. Our data show that the ratio (I1064/I1090) decreases in the presence of proteins, indicating that these proteins induce more gauche structures. Upon irradiation, the ratio (I1064/I1090) increases by about 30% in the absence of proteins and by about 15% in the presence of proteins. This shows that proteins retain the gauche structures in irradiated samples. The ratio (I1660/I1440) decreases in liposomes containing proteins, showing that proteins modify the configuration of cis C = C bonds. Upon irradiation, this ratio decreases by about 45-50% in samples without proteins and by about 10% in samples with proteins. These data show that proteins inhibit the radiation-induced configurational changes in the cis C = C bonds. The determination of radiation-induced peroxides (as malondialdehyde equivalents) in liposomes reveals that proteins inhibit the formation of peroxide products at low molar ratio and that the preventive capacity of different proteins is different. We conclude that proteins alter the conformation of both acyl chains and cis C = C bonds in liposomes and that these altered states are less sensitive to radiation-induced peroxidation.  相似文献   

9.
Ischemic preconditioning increases the heart's tolerance to a subsequent longer ischemic period. The aim of this study was to investigate the effect of early and delayed preconditioning on gap junction communication, connexin abundance, and phosphorylation in cultured neonatal rat cardiac myocytes. Prolonged ischemia followed 5 minutes after preconditioning in the early protocol, whereas 20 hours separated preconditioning and prolonged ischemia in the delayed preconditioning protocol. Gap junctional intercellular communication (GJIC) was assessed by Lucifer yellow dye transfer. An initial reduction in communication in response to sublethal ischemia was observed. This may be one mechanism whereby neighboring cells are protected from damaging substances produced during the first phase of subsequent regional ischemia in early preconditioning protocols. With respect to delayed preconditioning, the transient decrease in GJIC disappeared prior to prolonged ischemia, indicating that other mechanisms are responsible for delayed protection. Both early and delayed preconditioning preserved intercellular coupling after prolonged ischemia and this correlated with presence of less connexin43 dephosphorylation assessed by immunoblot.  相似文献   

10.
Garlic has been widely recognized as a cardioprotective agent. However, the molecular mechanism of its cardioprotective effects is not well established. Here we hypothesized that aqueous garlic homogenate may mediate cardioprotection via nitric oxide (NO). Mice were fed with saline and aqueous garlic homogenate (250 and 500 mgkg(-1)day(-1) orally) for 30 days. In another set of experiment, mice were pre-treated with saline, aqueous garlic homogenate (AGH) (250 mgkg(-1)day(-1) for 30 days), and AGH (30 days) along with L-NAME (20 mgkg(-1)day(-1) i.p. for last 7 days) before inducing acute myocardial infarction by isoproterenol (s.c. injection of isoproterenol 150 mgkg(-1)day(-1) for 2 days) and sacrificed after 48 h. Dose dependent increase in serum NO level was observed after garlic 250 and 500 mgkg(-1) dose feeding. While no change in serum SGPT and SGOT level, a significant decrease in serum LDH level was observed after garlic feeding. Garlic-induced NO formation was further confirmed in human aortic endothelial cells (HAEC). Administration of isoproterenol caused a significant decrease in endogenous antioxidants i.e., myocardial catalase, GSH and GPx activity, and mitochondrial enzyme activities like citrate synthase and β hydroxyacyl CoA dehydrogenase. All those deleterious cardiac changes induced by isoproterenol were significantly attenuated by garlic homogenate. However this beneficial effect of garlic was blunted when garlic was administered with L-NAME, a nonspecific inhibitor of nitric oxide synthase (NOS). Further, a significant increase in myocardial TBARS and decrease in total antioxidant activity was observed in L-NAME treated group compared to isoproterenol treated group. Administration of L-NAME in mice from control group lowered serum and cardiac NO levels without any change of oxidative stress parameters. In conclusion, our study provides novel evidence that garlic homogenate is protective in myocardial infarction via NO-signaling pathway in mice.  相似文献   

11.
Glutaredoxins (Grxs) are ubiquitous small heat-stable disulfide oxidoreductases and members of the thioredoxin (Trx) fold protein family. In bacterial, yeast, and mammalian cells, Grxs appear to be involved in maintaining cellular redox homeostasis. However, in plants, the physiological roles of Grxs have not been fully characterized. Recently, an emerging subgroup of Grxs with one cysteine residue in the putative active motif (monothiol Grxs) has been identified but not well characterized. Here we demonstrate that a plant protein, AtGRXcp, is a chloroplast-localized monothiol Grx with high similarity to yeast Grx5. In yeast expression assays, AtGRXcp localized to the mitochondria and suppressed the sensitivity of yeast grx5 cells to H2O2 and protein oxidation. AtGRXcp expression can also suppress iron accumulation and partially rescue the lysine auxotrophy of yeast grx5 cells. Analysis of the conserved monothiol motif suggests that the cysteine residue affects AtGRXcp expression and stability. In planta, AtGRXcp expression was elevated in young cotyledons, green tissues, and vascular bundles. Analysis of atgrxcp plants demonstrated defects in early seedling growth under oxidative stresses. In addition, atgrxcp lines displayed increased protein carbonylation within chloroplasts. Thus, this work describes the initial functional characterization of a plant monothiol Grx and suggests a conserved biological function in protecting cells against protein oxidative damage.  相似文献   

12.
Both regular physical exercise and low levels of H(2)O(2) administration result in increased resistance to oxidative stress. We measured the accumulation of reactive carbonyl derivatives and the activities of proteasome complex and DT-diaphorase in cardiac muscle of trained and untrained rats after chronic i.p. administration of 1 ml t-butyl H(2)O(2) (1 mmol/kg for 3 weeks every second day). Twenty-four rats were randomly assigned to a control group administered with saline, control administered with H(2)O(2), and exercised administered either saline or H(2)O(2). The activity of DT-diaphorase significantly increased in H(2)O(2) administered and exercised groups, indicating that an increase in H(2)O(2) levels stimulate the activity of this enzyme. The cardiac muscle of H(2)O(2) administered nonexercised animals accumulated significantly more carbonyl than control group (P < 0.05). The exercise and H(2)O(2) administration resulted in less oxidatively modified protein than found in nonexercised groups (P < 0.05). The peptide-like activity of proteasome complex was induced by the treatment of H(2)O(2) and exercise and exercise potentiate the effect of H(2)O(2). On the other hand, the chymotrypsin-like and trypsin-like activities were stimulated only by physical training and H(2)O(2) administration. The data suggest that chronic administration of H(2)O(2) after exercise training decreases the accumulation of carbonyl groups below the steady-state level and induces the activity of proteasome and DT-diaphorase. Hence, the stimulating effect of physical exercise on free radical generation is an important phenomenon of the exercise-induced adaptation process since it increases resistance to oxidative stress. Regular exercise training is a valuable physiological means of preconditioning the myocardium to prolonged oxidative stress.  相似文献   

13.
Ferritin is a major iron storage protein involved in the regulation of iron availability. Each ferritin molecule comprises 24 subunits. Various combinations of H-subunits and L-subunits make up the 24-subunit protein structure and these ferritin isoforms differ in their H-subunit to L-subunit ratio, as well as in their metabolic properties. Ferritin is an acute-phase protein and its expression is up-regulated in conditions such as uncontrolled cellular proliferation, in any condition marked by excessive production of toxic oxygen radicals, and by infectious and inflammatory processes. Under such conditions ferritin up-regulation is predominantly stimulated by increased reactive oxygen radical production and by cytokines. The major function of ferritin in these conditions is to reduce the bio-availability of iron in order to stem uncontrolled cellular proliferation and excessive production of reactive oxygen radicals. Ferritin is not, however, indiscriminately up-regulated in these conditions as a marked shift towards a predominance in H-subunit rich ferritins occurs. Preliminary indications are that, while the L-subunit primarily fulfils the conventional iron storage role, the H-subunit functions primarily as rapid regulator of iron availability, and perhaps indirectly as regulator of other cellular processes. It is suggested that the optimum differential expression of the two subunits differ for different cells and under different conditions and that the expression of appropriate isoferritins offers protection against uncontrolled cellular proliferation, oxidative stress and against side effects of infectious and inflammatory conditions.  相似文献   

14.
Leucocytes are susceptible to the toxic effects of deoxynivalenol (DON), which is a trichothecene mycotoxin produced by a number of fungi including Fusarium species. One mechanism of action is mediated by reactive oxygen species (ROS). The liver is an important target for toxicity caused by foreign compounds including mycotoxins. On the other hand, little is known about the influence of the redox state on hepatocytes treated with DON. The present study investigated the effect of DON on the cytosolic redox state and antioxidative system in the human hepatoma cell line HepG2. The cell viability of human monocyte cell line THP-1 or leukemia cell line KU812 treated with 2.5 and 5???mol/l DON were significantly reduced. However, HepG2 cells showed no toxic effects under the same conditions and did not exhibit an increased oxidative state. Further experiments showed that thioredoxin-1 (Trx-1) protein levels but not glutathione increased in the cells treated with 10???mol/l DON. In addition, the enhancement of Trx-1 content was repressed by antioxidants. These results suggest that DON-induced accumulation of Trx-1 in HepG2 cells plays one of the key roles in protection against cytotoxicity caused by DON and that the mechanism may be mediated by the antioxidant properties of Trx-1.  相似文献   

15.
The present review deals with the chemical properties of selenium in relation to its antioxidant properties and its reactivity in biological systems. The interaction of selenite with thiols and glutathione and the reactivity of selenocompounds with hydroperoxides are described. After a short survey on distribution, metabolism and organification of selenium, the role of this element as a component of the two seleno-dependent glutathione peroxidases is described. The main features of glutathione peroxidase and phospholipid hydroperoxide glutathione peroxidase are also reviewed. Both enzymes reduce different hydroperoxides to the corresponding alcohols and the major difference is the reduction of lipid hydroperoxides in membrane matrix catalyzed only by the phospholipid hydroperoxide glutathione peroxidase. However, in spite of the different specificity for the peroxidic substrates, the kinetic mechanism of both glutathione peroxidase and phospholipid hydroperoxide glutathione peroxidase seems identical and proceeds through a tert-uni ping pong mechanism. In the reaction cycle, indeed, as supported by the kinetic data, the oxidation of the ionized selenol by the hydroperoxide yields a selenenic acid that in turn is reduced back by two reactions with reduced glutathione. Special emphasis has been given to the role of selenium-dependent glutathione peroxidases in the prevention of membrane lipid peroxidation. While glutathione peroxidase is able to reduce hydrogen peroxide and other hydroperoxides possibly present in the soluble compartment of the cell, this enzyme fails to inhibit microsomal lipid peroxidation induced by NADPH or ascorbate and iron complexes. On the other hand, phospholipid hydroperoxide glutathione peroxidase, by reducing the phospholipid hydroperoxides in the membranes, actively prevents lipid peroxidation, provided a normal content of vitamin E is present in the membranes. In fact, by preventing the free radical generation from lipid hydroperoxides, phospholipid hydroperoxide glutathione peroxidase decreases the vitamin E requirement necessary to inhibit lipid peroxidation. Finally, the possible regulatory role of the selenoperoxidases on the arachidonic acid cascade enzymes (cyclooxygenase and lipoxygenase) is discussed.  相似文献   

16.
Carcinogenesis is believed to be induced through the oxidative damage of DNA, and antioxidants are expected to suppress it. So, the polyphenolic antioxidants in daily foods were investigated to see whether they protect against genetic damage by active oxygen. In the evaluation, we used a bioassay and a chemical determination, a Salmonella mutagenicity test for mutation by a N-hydroxyl radical from one of the dietary carcinogens 3-amino-1-methyl-5H-pyrido[4,3-b]indole and the formation of 8-hydroxyl (8-OHdG) from 2'-deoxyguanosine (2'-dG) in a Fenton OH-radical generating system. Thirty-one antioxidants including flavonoids were compared in terms of radical-trapping activity with bacterial DNA and 2'-dG. Antioxidants inhibited the mutation but the IC50 values were in the mM order. Against 8-OHdG formation, only alpha-tocopherol had a suppressive effect with an IC50 of 1.5 microM. Thus, except alpha-tocopherol, the dietary antioxidants did not scavenge the biological radicals faster than bacterial DNA and intact 2'-dG, indicating that they failed to prevent oxidative gene damage and probably carcinogenesis.  相似文献   

17.
Glutaredoxins are members of a superfamily of thiol disulfide oxidoreductases involved in maintaining the redox state of target proteins. In Saccharomyces cerevisiae, two glutaredoxins (Grx1 and Grx2) containing a cysteine pair at the active site had been characterized as protecting yeast cells against oxidative damage. In this work, another subfamily of yeast glutaredoxins (Grx3, Grx4, and Grx5) that differs from the first in containing a single cysteine residue at the putative active site is described. This trait is also characteristic for a number of glutaredoxins from bacteria to humans, with which the Grx3/4/5 group has extensive homology over two regions. Mutants lacking Grx5 are partially deficient in growth in rich and minimal media and also highly sensitive to oxidative damage caused by menadione and hydrogen peroxide. A significant increase in total protein carbonyl content is constitutively observed in grx5 cells, and a number of specific proteins, including transketolase, appear to be highly oxidized in this mutant. The synthetic lethality of the grx5 and grx2 mutations on one hand and of grx5 with the grx3 grx4 combination on the other points to a complex functional relationship among yeast glutaredoxins, with Grx5 playing a specially important role in protection against oxidative stress both during ordinary growth conditions and after externally induced damage. Grx5-deficient mutants are also sensitive to osmotic stress, which indicates a relationship between the two types of stress in yeast cells.  相似文献   

18.
Oxidative stress has been postulated as one of the mechanisms underlying the estrogen carcinogenic effect in breast cancer. Estrogens are known to increase mitochondrial-derived reactive oxygen species (ROS) by an unknown mechanism. Given that uncoupling proteins (UCPs) are key regulators of mitochondrial energy efficiency and ROS production, our aim was to check the presence and activity of UCPs in estrogen receptor (ER)-positive and ER-negative breast cancer cells and tumors, as well as their relation to oxidative stress. Estrogen (1 nM) induced higher oxidative stress in the ER-positive MCF-7 cell line, showing increased mitochondrial membrane potential, H2O2 levels, and DNA and protein damage compared to ER-negative MDA-MB-231 cells. All isoforms of uncoupling proteins were highly expressed in ER-positive breast cancer cells and tumors compared to negative ones. ROS production in mitochondria isolated from MCF-7 was increased by inhibition of UCPs with GDP, but not in mitochondria from MDA-MB-231. Estrogen treatment decreased uncoupling protein and catalase levels in MCF-7 and decreased GDP-dependent ROS production in isolated mitochondria. On the whole, these results suggest that estrogens, through an ER-dependent mechanism, may increase mitochondrial ROS production by repressing uncoupling proteins, which offers a new perspective on the understanding of why estrogens are a risk factor for breast cancer.  相似文献   

19.
Oxidative stress, vascular inflammation, endothelial dysfunction plays a crucial role in the pathogenesis of cardiovascular diseases. The aim of our in vitro study was to examine the antioxidative properties of grape seed extract, and its potential protective effect on the haemostatic function of human fibrinogen under oxidative stress conditions, induced by peroxynitrite (100 μM). The preincubation of plasma with the tested extract (0.5-50 μg/ml or 0.5-300 μg/ml) reduced the formation of 3-nitrotyrosine and diminished oxidation of thiol groups in plasma proteins. The low concentrations (0.5-50 μg/ml) of grape seed extract also decreased the level of carbonyl groups, however at higher concentrations (100-300 μg/ml) this effect was not observed. Furthermore, grape seed extract counteracted the inhibitory effect of peroxynitrite on human plasma clotting. The results obtained in this study indicate that components of the grape seed extract posses antioxidative properties and may be promising substances for the creation of new dietary supplements.  相似文献   

20.
NO对盐胁迫下苜蓿根系生长抑制及氧化损伤的缓解效应   总被引:7,自引:0,他引:7  
周万海  冯瑞章  师尚礼  寇江涛 《生态学报》2015,35(11):3606-3614
以"甘农4号"苜蓿品种为材料,采用水培法,用NO供体硝普钠(SNP)、硝普钠类似物亚铁氰化钠(不产生NO)、NO特异清除剂c-PTIO、一氧化氮合酶(NOS)活性抑制剂N-硝基-L-精氨酸甲脂(L-NAME)、硝酸还原酶(NR)活性抑制剂钨酸盐处理苜蓿植株,研究NO对盐胁迫下苜蓿幼苗根系生长、根系活力、根系中渗透调节物质、膜脂过氧化、活性氧含量及抗氧化酶活性等的影响,探讨NO调控苜蓿幼苗根系耐盐性的生理机制。结果表明:盐胁迫下SNP处理提高了根系活力,促进了苜蓿幼苗根系生长,降低游离脯氨酸含量,促进可溶性蛋白含量增加;增强超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、愈创木酚过氧化物酶(GPX)、抗坏血酸过氧化物酶(APX)和谷胱甘肽还原酶(GR)活性,提高还原型抗坏血酸(As A)和还原型谷胱甘肽(GSH)含量,降低过氧化氢(H2O2)、羟自由基(OH·)含量、超氧阴离子(O·-2)产生速率和膜脂过氧化产物丙二醛(MDA)含量;同时,SNP处理显著促进了苜蓿幼苗根系内源NO的积累。NO供体SNP的类似物亚铁氰化钠对盐胁迫下苜蓿根系各项生理生化指标无明显影响;盐胁迫下添加c-PTIO、L-NAME和钨酸盐进一步降低了苜蓿幼苗根系活力和根系生长,抑制了根系抗氧化系统活性,加剧了根系膜脂过氧化作用,降低了内源NO积累,添加SNP则能缓解该抑制效应;表明外源SNP处理能明显缓解盐胁迫对苜蓿幼苗根系生长的抑制和氧化损伤,且通过NOS和NR途径产生的内源NO也可能在苜蓿根系适应盐胁迫的调节中起关键作用;该研究结果为苜蓿耐盐机制及NO在苜蓿耐盐育种、化学调控和盐碱地栽培利用等提供了理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号