首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recently a family X DNA polymerase (PolXDr) was identified in the radioresistant bacterium Deinococcus radiodurans. Knockout cells show a delay in double-strand break repair (DSBR) and an increased sensitivity to gamma-irradiation. Here we show that PolXDr possesses 3'-->5' exonuclease activity that stops cutting close to a loop. PolXDr consists of a DNA polymerase X domain (PolXc) and a Polymerase and Histidinol Phosphatase (PHP) domain. Deletion of the PHP domain abolishes only the structure-modulated but not the canonical 3'-->5' exonuclease activity. Thus, the exonuclease resides in the PolXc domain, but the structure-specificity requires additionally the PHP domain. Mutation of two conserved glycines in the PolXc domain leads to a specific loss of the structure-modulated exonuclease activity but not the exonuclease activity in general. The PHP domain itself does not show any activity. PolXDr is the first family X DNA polymerase that harbours an exonuclease activity. The wild-type protein, the glycine mutant and the two domains were expressed separately in DeltapolXDr cells. The wild-type protein could restore the radiation resistance, whereas intriguingly the mutant proteins showed a significant negative effect on survival of gamma-irradiated cells. Taken together our in vivo results suggest that both PolXDr domains play important roles in DSBR in D. radiodurans.  相似文献   

2.
DNA exonucleases are critical for DNA replication, repair, and recombination. In the bacterium Escherichia coli there are 14 DNA exonucleases including exonucleases I-IX (including the two DNA polymerase I exonucleases), RecJ exonuclease, SbcCD exonuclease, RNase T, and the exonuclease domains of DNA polymerase II and III. Here we report the discovery and characterization of a new E. coli exonuclease, exonuclease X. Exonuclease X is a member of a superfamily of proteins that have homology to the 3'-5' exonuclease proofreading subunit (DnaQ) of E. coli DNA polymerase III. We have engineered and purified a (His)(6)-exonuclease X fusion protein and characterized its activity. Exonuclease X is a potent distributive exonuclease, capable of degrading both single-stranded and duplex DNA with 3'-5' polarity. Its high affinity for single-strand DNA and its rapid catalytic rate are similar to the processive exonucleases RecJ and exonuclease I. Deletion of the exoX gene exacerbated the UV sensitivity of a strain lacking RecJ, exonuclease I, and exonuclease VII. When overexpressed, exonuclease X is capable of substituting for exonuclease I in UV repair. As we have proposed for the other single-strand DNA exonucleases, exonuclease X may facilitate recombinational repair by pre-synaptic and/or post-synaptic DNA degradation.  相似文献   

3.
In this report we present the alignment of one of the most conserved segments (Exo III) of the 3'-5' exonuclease domain in 39 DNA polymerase sequences, including prokaryotic and eukaryotic enzymes. Site-directed substitutions of the two most conserved residues, which form the Exo III motif Tyr-(X)3-Asp of phi 29 DNA polymerase, did not affect single-stranded DNA binding, DNA polymerization, processivity or protein-primed initiation. In contrast, substitution of the highly conserved Tyr residue by Phe or Cys decreased the 3'-5' exonuclease activity to 7.5 and 4.1%, respectively, of the wild-type activity. Change of the highly conserved Asp residue into Ala resulted in almost complete inactivation (0.1%) of the 3'-5' exonuclease. In accordance with the contribution of the 3'-5' exonuclease to the fidelity of DNA replication, the three mutations in the Exo III motif (Y165F, Y165C and D169A) produced enzymes with an increased frequency of misinsertion and extension of DNA polymerization errors. Surprisingly, the three mutations in the Exo III motif strongly decreased (80- to 220-fold) the ability to replicate phi 29 DNA, this behaviour being due to a defect in the strand displacement activity, an intrinsic property of phi 29 DNA polymerase required for this process. Taking these results into account, we propose that the strand displacement activity of phi 29 DNA polymerase resides in the N-terminal domain, probably overlapping with the 3'-5' exonuclease active site.  相似文献   

4.
Most DNA polymerases are multifunctional proteins that possess both polymerizing and exonucleolytic activities. For Escherichia coli DNA polymerase I and its relatives, polymerase and exonuclease activities reside on distinct, separable domains of the same polypeptide. The catalytic subunits of the alpha-like DNA polymerase family share regions of sequence homology with the 3'-5' exonuclease active site of DNA polymerase I; in certain alpha-like DNA polymerases, these regions of homology have been shown to be important for exonuclease activity. This finding has led to the hypothesis that alpha-like DNA polymerases also contain a distinct 3'-5' exonuclease domain. We have introduced conservative substitutions into a 3'-5' exonuclease active site homology in the gene encoding herpes simplex virus DNA polymerase, an alpha-like polymerase. Two mutants were severely impaired for viral DNA replication and polymerase activity. The mutants were not detectably affected in the ability of the polymerase to interact with its accessory protein, UL42, or to colocalize in infected cell nuclei with the major viral DNA-binding protein, ICP8, suggesting that the mutation did not exert global effects on protein folding. The results raise the possibility that there is a fundamental difference between alpha-like DNA polymerases and E. coli DNA polymerase I, with less distinction between 3'-5' exonuclease and polymerase functions in alpha-like DNA polymerases.  相似文献   

5.
6.
The Klenow fragment of DNA polymerase I from Escherichia coli has two enzymatic activities: DNA polymerase and 3'-5' exonuclease. The crystal structure showed that the fragment is folded into two distinct domains. The smaller domain has a binding site for deoxynucleoside monophosphate and a divalent metal ion that is thought to identify the 3'-5' exonuclease active site. The larger C-terminal domain contains a deep cleft that is believed to bind duplex DNA. Several lines of evidence suggested that the large domain also contains the polymerase active site. To test this hypothesis, we have cloned the DNA coding for the large domain into an expression system and purified the protein product. We find that the C-terminal domain has polymerase activity (albeit at a lower specific activity than the native Klenow fragment) but no measurable 3'-5' exonuclease activity. These data are consistent with the hypothesis that each of the three enzymatic activities of DNA polymerase I from E. coli resides on a separate protein structural domain.  相似文献   

7.
F W Perrino  L A Loeb 《Biochemistry》1990,29(22):5226-5231
Purified DNA polymerase alpha, the major replicating enzyme found in mammalian cells, lacks an associated 3'----5' proofreading exonuclease that, in bacteria, contributes significantly to the accuracy of DNA replication. Calf thymus DNA polymerase alpha cannot remove mispaired 3'-termini, nor can it extend them efficiently. We designed a biochemical assay to search in cell extracts for a putative proofreading exonuclease that might function in concert with DNA polymerase alpha in vivo but dissociates from it during purification. Using this assay, we purified a 3'----5' exonuclease from calf thymus that preferentially hydrolyzes mispaired 3'-termini, permitting subsequent extension of the correctly paired 3'-terminus by DNA polymerase alpha. This exonuclease copurifies with a DNA polymerase activity that is biochemically distinct from DNA polymerase alpha and exhibits characteristics described for a second replicative DNA polymerase, DNA polymerase delta. In related studies, we showed that the 3'----5' exonuclease of authentic DNA polymerase delta, like the purified exonuclease, removes terminal mispairs, allowing extension by DNA polymerase alpha. These data suggest that a single proofreading exonuclease could be shared by DNA polymerases alpha and delta, functioning at the site of DNA replication in mammalian cells.  相似文献   

8.
Human DNA apurinic/apyrimidinic endonuclease 1 (APE1) is involved in the DNA base excision repair process. In addition to its AP (apurinic/apyrimidinic) endonucleolytic function, APE1 possesses 3' phosphodiesterase and 3'-5' exonuclease activities. The 3'-5' exonuclease activity is considered important in proofreading of DNA synthesis catalyzed by DNA polymerase beta. Here, we examine the removal of matched and mismatched dNMP from the 3' terminus of the 3'-recessed and nicked DNA by the APE1 activity using two different reaction buffers. To investigate whether the ability of APE1 to excise nucleotides from the 3' terminus depends on the thermal stability of the DNA duplex, we studied this characteristic of the DNAs that were used in the exonuclease assays in these two buffers. Our data confirm that APE1 removes mismatched nucleotides from the 3' terminus of DNA more efficiently than matched pairs. Both the efficiency of the 3'-5' exonuclease activity of APE1 and the thermal stability of DNA duplexes varied depending on the nature of the flanking group at the 5' margin of the nick. The 3'-5' exonuclease activity of APE1 shows a preference for substrates with a hydroxyl group at the 5' margin of the nick as well as for flapped and recessed DNAs.  相似文献   

9.
M de Vega  J M Lazaro  M Salas    L Blanco 《The EMBO journal》1996,15(5):1182-1192
By site-directed mutagenesis in phi29 DNA polymerase, we have analyzed the functional importance of two evolutionarily conserved residues belonging to the 3'-5' exonuclease domain of DNA-dependent DNA polymerases. In Escherichia coli DNA polymerase I, these residues are Thr358 and Asn420, shown by crystallographic analysis to be directly acting as single-stranded DNA (ssDNA) ligands at the 3'-5' exonuclease active site. On the basis of these structural data, single substitution of the corresponding residues of phi29 DNA polymerase, Thr15 and Asn62, produced enzymes with a very reduced or altered capacity to bind ssDNA. Analysis of the residual 3'-5' exonuclease activity of these mutant derivatives on ssDNA substrates allowed us to conclude that these two residues do not play a direct role in the catalysis of the reaction. On the other hand, analysis of the 3'-5' exonuclease activity on either matched or mismatched primer/template structures showed a critical role of these two highly conserved residues in exonucleolysis under polymerization conditions, i.e. in the proofreading of DNA polymerization errors, an evolutionary advantage of most DNA-dependent DNA polymerases. Moreover, in contrast to the dual role in 3'-5' exonucleolysis and strand displacement previously observed for phi29 DNA polymerase residues acting as metal ligands, the contribution of residues Thr15 and Asn62 appears to be restricted to the proofreading function, by stabilization of the frayed primer-terminus at the 3'-5' exonuclease active site.  相似文献   

10.
F Bernges  E Holler 《Biochemistry》1988,27(17):6398-6402
The effects of the reaction of cis- and trans-diamminedichloroplatinum(II) with DNA have been measured with regard to DNA synthesis, 3'-5' exonuclease (proofreading), and 5'-3' exonuclease (repair) activities of Escherichia coli DNA polymerase I. Both isomers inhibit DNA synthetic activity of the polymerase through an increase in Km values and a decrease in Vmax values for platinated DNA but not for the nucleoside 5'-triphosphates as the varied substrates. The inhibition is a consequence of lowered binding affinity between platinated DNA and DNA polymerase, and of a platination-induced separation of template and primer strands. Strand separation enhances initial rates of 3'-5' excision of [3H]dCMP from platinated DNA (proofreading), while total excision levels of nucleotides are decreased. In contrast to proofreading activity, the 5'-3' exonuclease activity (repair) discriminates between DNA which had reacted with cis- and with trans-diamminedichloroplatinum(II). While both initial rates and total excision are inhibited for the cis isomer, they are almost not affected for the trans isomer. This differential effect could explain why bacterial growth inhibition requires much higher concentrations of trans- than cis-diamminedichloroplatinum(II).  相似文献   

11.
DNA damage, such as abasic sites and DNA strand breaks with 3'-phosphate and 3'-phosphoglycolate termini present cytotoxic and mutagenic threats to the cell. Class II AP endonucleases play a major role in the repair of abasic sites as well as of 3'-modified termini. Human cells contain two class II AP endonucleases, the Ape1 and Ape2 proteins. Ape1 possesses a strong AP-endonuclease activity and weak 3'-phosphodiesterase and 3'-5' exonuclease activities, and it is considered to be the major AP endonuclease in human cells. Much less is known about Ape2, but its importance is emphasized by the growth retardation and dyshematopoiesis accompanied by G2/M arrest phenotype of the APE2-null mice. Here, we describe the biochemical characteristics of human Ape2. We find that Ape2 exhibits strong 3'-5' exonuclease and 3'-phosphodiesterase activities and has only a very weak AP-endonuclease activity. Mutation of the active-site residue Asp 277 to Ala in Ape2 inactivates all these activities. We also demonstrate that Ape2 preferentially acts at mismatched deoxyribonucleotides at the recessed 3'-termini of a partial DNA duplex. Based on these results we suggest a novel role for human Ape2 as a 3'-5' exonuclease.  相似文献   

12.
Three different mutations were introduced in the polA gene of Streptococcus pneumoniae by chromosomal transformation. One mutant gene encodes a truncated protein that possesses 5' to 3' exonuclease but has lost polymerase activity. This mutation does not affect cell viability. Other mutated forms of polA that encode proteins with only polymerase activity or with no enzymatic activity could not substitute for the wild-type polA gene in the chromosome unless the 5' to 3' exonuclease domain was encoded elsewhere in the chromosome. Thus, it appears that the 5' to 3' exonuclease activity of the DNA polymerase I is essential for cell viability in S. pneumoniae. Absence of the polymerase domain of DNA polymerase I slightly diminished the ability of S. pneumoniae to repair DNA lesions after ultraviolet irradiation. However, the polymerase domain of the pneumococcal DNA polymerase I gave almost complete complementation of the polA5 mutation in Escherichia coli with respect to resistance to ultraviolet irradiation.  相似文献   

13.
DNA polymerase I (pol I) from Escherichia coli has three well-defined activities: DNA polymerase, 3'-5' exonuclease, and 5'-3' exonuclease. We have raised monoclonal antibodies to pol I which selectively neutralize each of these three activities, thus supporting the model of separate active sites for each activity, heretofore exclusively demonstrated with proteolytic fragments of pol I. Antibodies from each class could bind pol I in the presence of antibodies of another class, indicating the existence of significant spatial separation between each of the three sites. In addition, several of the neutralizing antibodies were able to distinguish particular activities of the 5'-3' exonuclease. One of them, for example, inhibited the RNase H activity but not the DNase activity. Two other antibodies could, in addition to inhibiting the polymerase and the 3'-5' exonuclease, either stimulate or inhibit the 5'-3' exonuclease depending upon the assay conditions, particularly the ionic strength.  相似文献   

14.
Wang CX  Zakharova E  Li J  Joyce CM  Wang J  Konigsberg W 《Biochemistry》2004,43(13):3853-3861
DNA polymerases from the A and B families with 3'-5' exonucleolytic activity have exonuclease domains with similar three-dimensional structures that require two divalent metal ions for catalysis. B family DNA polymerases that are part of a replicase generally have a more potent 3'-5' exonuclease (exo) activity than A family DNA polymerases that mainly function in DNA repair. To investigate the basis for these differences, we determined pH-activity profiles for the exonuclease reactions of T4, RB69, and phi29 DNA polymerases as representatives of B family replicative DNA polymerases and the Klenow fragment (KF) as an example of a repair DNA polymerase in the A family. We performed exo assays under single-turnover conditions and found that excision rates exhibited by the B family DNA polymerases were essentially independent of pH between pH 6.5 and 8.5, whereas the exo activity of KF increased 10-fold for each unit increase in pH. Three exo domain mutants of RB69 polymerase had much lower exo activities than the wild-type enzyme and exhibited pH-activity profiles similar to that of KF. On the basis of pH versus activity data and elemental effects obtained using short double-stranded DNA substrates terminating in phosphorothioate linkages, we suggest that the rate of the chemical step is reduced to the point where it becomes limiting with RB69 pol mutants K302A, Y323F, and E116A, in contrast to the wild-type enzyme where chemistry is faster than the rate-determining step that precedes it.  相似文献   

15.
Human DNA polymerase delta (pol delta) is required for the synthesis of leading strand of simian virus 40 (SV40) DNA replication in vitro. Pol delta requires the accessory factors, proliferating cell nuclear antigen (PCNA), activator 1 (A1; also known as replication factor C [RF-C]), human single-stranded DNA binding protein (HSSB; also known as replication protein A [RP-A]) for the elongation of primed template DNA. Since pol delta has an associated 3'-5' exonuclease activity, the effect of pol delta accessory factors on the exonuclease activity was examined. The 3'-5' exonuclease activity was stimulated 8-10 fold by the addition of HSSB, and this stimulatory effect was preferential to HSSB since other SSBs from E. coli, T4 or adenovirus, had a little or no effect. The stimulatory effect of HSSB was markedly inhibited by the combined action of A1 and PCNA. Furthermore, the addition of deoxyribonucleoside triphosphates (dNTPs) completely abolished the effect of HSSB on the 3'-5' exonuclease activity even in the absence of pol delta accessory factors. These results suggest that accessory factors and dNTPs regulate both the polymerase and the 3'-5' exonuclease activities.  相似文献   

16.
Enzyme action at 3' termini of ionizing radiation-induced DNA strand breaks   总被引:13,自引:0,他引:13  
gamma-Irradiation of DNA in vitro produces two types of single strand breaks. Both types of strand breaks contain 5'-phosphate DNA termini. Some strand breaks contain 3'-phosphate termini, some contain 3'-phosphoglycolate termini (Henner, W.D., Rodriguez, L.O., Hecht, S. M., and Haseltine, W. A. (1983) J. Biol. Chem. 258, 711-713). We have studied the ability of prokaryotic enzymes of DNA metabolism to act at each of these types of gamma-ray-induced 3' termini in DNA. Neither strand breaks that terminate with 3'-phosphate nor 3'-phosphoglycolate are substrates for direct ligation by T4 DNA ligase. Neither type of gamma-ray-induced 3' terminus can be used as a primer for DNA synthesis by either Escherichia coli DNA polymerase or T4 DNA polymerase. The 3'-phosphatase activity of T4 polynucleotide kinase can convert gamma-ray-induced 3'-phosphate but not 3'-phosphoglycolate termini to 3'-hydroxyl termini that can then serve as primers for DNA polymerase. E. coli alkaline phosphatase is also unable to hydrolyze 3'-phosphoglycolate groups. The 3'-5' exonuclease actions of E. coli DNA polymerase I and T4 DNA polymerase do not degrade DNA strands that have either type of gamma-ray-induced 3' terminus. E. coli exonuclease III can hydrolyze DNA with gamma-ray-induced 3'-phosphate or 3'-phosphoglycolate termini or with DNase I-induced 3'-hydroxyl termini. The initial action of exonuclease III at 3' termini of ionizing radiation-induced DNA fragments is to remove the 3' terminal phosphate or phosphoglycolate to yield a fragment of the same nucleotide length that has a 3'-hydroxyl terminus. These results suggest that repair of ionizing radiation-induced strand breaks may proceed via the sequential action of exonuclease, DNA polymerase, and DNA ligase. The possible role of exonuclease III in repair of gamma-radiation-induced strand breaks is discussed.  相似文献   

17.
Human apurinic/apyrimidinic (AP) endonuclease 1 (APE1) is a multifunctional enzyme. In addition to its main AP endonuclease activity, the cleavage of DNA 5' to the AP site, it displays other weak enzymatic activities. One of them is 3'-5' exonuclease activity, which is most effectively pronounced for DNA duplexes containing modified or mismatched nucleotides at the 3' end of the primer chain. There is a presumption that APE1 can correct the DNA synthesis catalyzed by DNA polymerase beta during the base excision repair process. We determined the quantitative parameters of the 3'-5' exonuclease reaction in dependence on the reaction conditions to reveal the detailed mechanism of this process. The kinetic parameters of APE1 exonuclease excision of mismatched dCMP and dTMP from the 3' terminus of single-strand DNA and from photoreactive dCMP analogues applied for photoaffinity modification of proteins and DNA in recombinant systems and cell/nuclear extracts were determined. The English version of the paper: Russian Journal of Bioorganic Chemistry, 2008, vol. 34, no. 2; see also http://www.maik.ru.  相似文献   

18.
The three dimensional crystal structure of T5 5'-3' exonuclease was compared with that of two other members of the 5'-3' exonuclease family: T4 ribonuclease H and the N-terminal domain of Thermus aquaticus DNA polymerase I. Though these structures were largely similar, some regions of these enzymes show evidence of significant molecular flexibility. Previous sequence analysis had suggested the existence of a helix-hairpin-helix motif in T5 exonuclease, but a distinct, though related structure is actually found to occur. The entire T5 exonuclease structure was then compared with all the structures in the complete Protein Data Bank and an unexpected similarity with gamma-delta (gamma delta) resolvase was observed. 5'-3' exonucleases and gamma delta resolvase are enzymes involved in carrying out quite different manipulations on nucleic acids. They appear to be unrelated at the primary sequence level, yet the fold of the entire catalytic domain of gamma delta resolvase is contained within that of the 5'-3'exonuclease. Different large-scale helical structures are used by both families to form DNA binding sites.  相似文献   

19.
Orthologs of proteins SbcD (Mre11) and SbcC (Rad50) exist in all kingdoms of life and are involved in a wide variety of DNA repair and maintenance functions, including homologous recombination and nonhomologous end joining. Here, we have inactivated the sbcC and/or sbcD genes of Deinococcus radiodurans, a highly radioresistant bacterium able to mend hundreds of radiation-induced DNA double-strand breaks (DSB). Mutants devoid of the SbcC and/or SbcD proteins displayed reduced survival and presented a delay in kinetics of DSB repair and cell division following gamma-irradiation. It has been recently reported that D. radiodurans DNA polymerase X (PolX) possesses a structure-modulated 3'-to-5' exonuclease activity reminiscent of specific nuclease activities displayed by the SbcCD complex from Escherichia coli. We constructed a double mutant devoid of SbcCD and PolX proteins. The double-mutant DeltasbcCD DeltapolX(Dr) (where Dr indicates D. radiodurans) bacteria are much more sensitive to gamma-irradiation than the single mutants, suggesting that the deinococcal SbcCD and PolX proteins may play important complementary roles in processing damaged DNA ends. We propose that they are part of a backup repair system acting to rescue cells containing DNA lesions that are excessively numerous or difficult to repair.  相似文献   

20.
The intervening domain of the thermostable Thermus aquaticus DNA polymerase (TAQ: polymerase), which has no catalytic activity, has been exchanged for the 3'-5' exonuclease domain of the homologous mesophile Escherichia coli DNA polymerase I (E.coli pol I) and the homologous thermostable Thermotoga neapolitana DNA polymerase (TNE: polymerase). Three chimeric DNA polymerases have been constructed using the three-dimensional (3D) structure of the Klenow fragment of the E.coli pol I and 3D models of the intervening and polymerase domains of the TAQ: polymerase and the TNE: polymerase: chimera TaqEc1 (exchange of residues 292-423 from TAQ: polymerase for residues 327-519 of E.coli pol I), chimera TaqTne1 (exchange of residues 292-423 of TAQ: polymerase for residues 295-485 of TNE: polymerase) and chimera TaqTne2 (exchange of residues 292-448 of TAQ: polymerase for residues 295-510 of TNE: polymerase). The chimera TaqEc1 showed characteristics from both parental polymerases at an intermediate temperature of 50 degrees C: high polymerase activity, processivity, 3'-5' exonuclease activity and proof-reading function. In comparison, the chimeras TaqTne1 and TaqTne2 showed no significant 3'-5' exonuclease activity and no proof-reading function. The chimera TaqTne1 showed an optimum temperature at 60 degrees C, decreased polymerase activity compared with the TAQ: polymerase and reduced processivity. The chimera TaqTne2 showed high polymerase activity at 72 degrees C, processivity and less reduced thermostability compared with the chimera TaqTne1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号