首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Previous studies have reported that type V collagen is an anti-adhesive substrate for cultured cells in that the cells detach from culture dishes coated with type V collagen molecules or polypeptides derived from them. We have noticed that human fetal lung fibroblasts (TIG-1) initially show no reduction in adherence to and spreading on a dish coated with reconstituted type V collagen fibrils but eventually detach from the dish and form cell clumps. To determine the way in which reconstituted type V collagen fibrils are involved in cell clump formation, we have followed the fate of the fluorescence of type V collagen fibrils pre-labeled with fluorescein isothiocyanate. Essentially, all the fluorescence disappeared from the dish surface as the cells detached and was condensed in the cell clumps. The cells that were recovered from clumps and dissociated into separate cells by trypsin treatment proliferated normally after they were seeded on a bare culture dish. This result and those from gel electrophoresis, fluorescence microscopy, and a cell proliferation assay indicate that the cell detachment from the dish is not caused by cell necrosis or apoptosis but by cellular motility together with the unique features of type V collagen fibrils. Not only the adherence of type V collagen fibrils to TIG-1 cells is much stronger than that to the culture dish, but the fibrils are retained on the cellular surface. The strong adherence of type V collagen fibrils to cells plays a role in cementing TIG-1 cells together.The present study was supported in part by Grant-in-Aid for Developmental Scientific Research (07558249), by The Japan Society for the Promotion of Science, Research for the Future Program (JSPS-RFTF96I00201), by the Program for Promotion of Fundamental Studies in Health Science of the Organization for Pharmaceutical Safety and Research (OPSR), by Grant-in-Aid for the Creation of Innovations through Business-Academic-Public Sector Cooperation to T.H., and by Grant-in-Aid for Scientific Research (B) to Y.I.  相似文献   

2.
In the integrin family, the collagen receptors form a structurally and functionally distinct subgroup. Two members of this subgroup, alpha(1)beta(1) and alpha(2)beta(1) integrins, are known to bind to monomeric form of type I collagen. However, in tissues type I collagen monomers are organized into large fibrils immediately after they are released from cells. Here, we studied collagen fibril recognition by integrins. By an immunoelectron microscopy method we showed that integrin alpha(2)I domain is able to bind to classical D-banded type I collagen fibrils. However, according to the solid phase binding assay, the collagen fibril formation appeared to reduce integrin alpha(1)I and alpha(2)I domain avidity to collagen and to lower the number of putative alphaI domain binding sites on it. Respectively, cellular alpha(1)beta(1) integrin was able to mediate cell spreading significantly better on monomeric than on fibrillar type I collagen matrix, whereas alpha(2)beta(1) integrin appeared still to facilitate both cell spreading on fibrillar type I collagen matrix and also the contraction of fibrillar type I collagen gel. Additionally, alpha(2)beta(1) integrin promoted the integrin-mediated formation of long cellular projections typically induced by fibrillar collagen. Thus, these findings suggest that alpha(2)beta(1) integrin is a functional cellular receptor for type I collagen fibrils, whereas alpha(1)beta(1) integrin may only effectively bind type I collagen monomers. Furthermore, when the effect of soluble alphaI domains on type I collagen fibril formation was tested in vitro, the observations suggest that integrin type collagen receptors might guide or even promote pericellular collagen fibrillogenesis.  相似文献   

3.
Type V collagen (Col V) molecule, a minor component of kidney connective tissues, was found in adult cornea, and has been considered as a regulatory fibril-forming collagen that emerges into type I collagen to trigger the initiation of Col I fiber assembly. Col V was also found in injured, wound healing tissues or placenta, and was considered as a dysfunctional extracellular matrix (ECM). Reconstituted Col V fibril was characterized as an ECM to detach cells in vitro, and our previous study showed that the reconstituted Col V fibril facilitated the migration of glomerular endothelial cells and induced ECM remodeling, whereas Col V molecules stabilized cells. These facts suggest that not only the structure but also the function of Col V fibril are different from Col V molecule. Recently, Col V molecule has been reported existing in various developing tissues such as bone and lung, but Col V fibril has not been reported yet. In this study, we firstly explored the existence of Col V fibril in metanephroi, and found it distributed in the immature kidney tissues whereas disappeared when the tissues reached mature. It is likely that Col V fibril may form a prototype of pericellular microenvironment and the transient existence of Col V fibril may play a role as the pioneering ECM during metanephric tissue morphogenesis.  相似文献   

4.
Molecular packing in type I collagen fibrils   总被引:1,自引:0,他引:1  
Previous studies of the X-ray diffraction pattern of the crystalline regions of type I collagen fibrils yielded information on the unit cell parameters and also the orientation of the pseudo-hexagonally packed molecular segments in the overlap region. The absence of Bragg reflections at high angles attributable to the molecular segments in the gap region led to the suggestion that these segments were more mobile than those in the overlap region. We report a study of the low-angle Bragg reflections in a search for information about the nature of the orientation and packing of the molecular segments in the gap region. We conclude that the (m = 0, n = 0) helix layer plane of the molecular segments in the overlap region makes little or no contribution to the Bragg reflections at low angles, and identify three possible origins for the observed low-angle reflections in the electron density contrast associated with: (1) the "hole" created by the missing molecular segment in the gap region; (2) the telopeptides; or (3) the axial regularities in amino acid residues of a particular type, with periodicities of D/5 or D/6. Sufficient information is available to investigate the first two of these possibilities, and the results obtained suggest specific arrangements for the molecular segments in the overlap and gap regions, and specific connectivities between the molecular segments in successive overlap regions. In addition, we have examined the amino acid sequence and identified features related to the mobility of the molecular segments in the gap region and to the regions where it is thought that molecules are kinked.  相似文献   

5.
The assembly of collagen fibrils as a function of temperature and collagen concentration was studied. It was shown that temperature increases from 25 to 35 degrees C, the degree of ordering of collagen fibrils increases 1.5-fold at collagen concentration above 1 mg/ml and 2-fold at low collagen concentration. A maximum ordering of fibril structure occurs under conditions close to physiological (T approximately 35 degrees C and collagen concentration 1.2 mg/ml). As temperature is elevated from 30 to 35 degrees C, the packing of collagen molecules in fibrils becomes more ordered: the values of enthalpy and entropy of the transition of fibrils from the native to a disordered state decrease at all collagen concentrations used. At high collagen concentration, the dimensions of cooperative blocks in fibrils formed at 25 and 30 degrees C coincide with those of cooperative blocks of monomeric collagen in solution. Upon increasing the temperature to 35 degrees C, the dimensions of cooperative blocks increase.  相似文献   

6.
7.
It has been suggested that dermal collagen fibrils with 67-nm periodicity consist of hybrids of type I and type III collagens. This is based on the assumption that all these banded fibrils are coated with type III collagen regardless of their diameter. However, conclusive evidence for this form of hybridization is lacking. In order to clarify this problem dermal collagen fibrils were disrupted into microfibrils using 8 M urea. Single and double indirect immunoelectron microscopy showed type III collagen at the periphery of intact collagen fibrils but no labeling with type I collagen antibodies, suggesting that the epitopes for this collagen were masked. Disrupted collagen fibrils revealed type I collagen throughout the fibril except for the periphery which was coated with type III collagen. Almost no type III collagen was noted in the interior of the collagen fibrils. Since type III collagen is present only at the periphery it suggests that this collagen has a different role than type I collagen and may have a regulatory function in fibrillogenesis.  相似文献   

8.
Inhibition of cell adhesion by type V collagen.   总被引:1,自引:0,他引:1  
Human umbilical vein endothelial cells grew well in dishes coated with collagen types I, II, III, or IV. However, the same cells tended to detach themselves from dishes coated with type V collagen, and cell proliferation in these dishes was inhibited. Such anti-adhesive activity was partially retained by heat-denatured type V collagen or by its alpha 1 chain, but not by its alpha 2 chain. Several other cell types did not adhere to the type V collagen substratum even in the presence of 10% serum. The cell types strongly inhibited from adhering by type V collagen included Swiss mouse 3T3 cells and their MSV-transformants, BALB/c 3T3 cells and their methylcholanthrene-transformants, NIH 3T3 cells and their ras-transformants, BHK cells, CHO-9 cells, CHO-K1 cells, and mouse melanoma B16-F10 cells. Using Swiss mouse 3T3, we studied the effects of type V collagen on cell adhesion to fibronectin in serum-free medium. When the culture dishes were coated with a mixture of fibronectin with various concentrations of type V collagen, the adhesion of the cells was inhibited depending on the concentration of type V collagen. The inhibition of cell adhesion by type V collagen was competitively overcome by increased concentrations of fibronectin. The activity that interferes with the effects of fibronectin was retained mainly by the alpha 1 chain of heat-denatured type V collagen.  相似文献   

9.
Current wisdom on intermolecular interactions in the extracellular matrix assumes that small proteoglycans bind collagen fibrils on highly specific sites via their protein core, while their carbohydrate chains interact with each other in the interfibrillar space. The present study used high-resolution scanning electron microscopy to analyse the interaction of two small leucine-rich proteoglycans and several glycosaminoglycan chains with type I collagen fibrils obtained in vitro in a controlled, cell-free environment. Our results show that most ligands directly influence the collagen fibril size and shape, and their aggregation into thicker bundles. All chondroitin sulphate/dermatan sulphate glycosaminoglycans we tested, except chondroitin 4-sulphate, bound to the fibril surface in a highly specific way and, even in the absence of any protein core, formed regular, periodic interfibrillar links resembling those of the intact proteoglycan. Only intact decorin, however, was able to organize collagen fibrils into fibres compact enough to mimic in vitro the superfibrillar organization of natural tissues. Our data indicate that multiple interaction patterns may exist in vivo, may explain why decorin- or biglycan-knockout organisms show milder effects than can be expected, and may lead to the development of better, simpler engineered biomaterials.  相似文献   

10.
Normal type I collagen is a heterotrimer of two α1(I) and one α2(I) chains, but various genetic and environmental factors result in synthesis of homotrimers that consist of three α1(I) chains. The homotrimers completely replace the heterotrimers only in rare recessive disorders. In the general population, they may compose just a small fraction of type I collagen. Nevertheless, they may play a significant role in pathology; for example, synthesis of 10-15% homotrimers due to a polymorphism in the α1(I) gene may contribute to osteoporosis. Homotrimer triple helices have different stability and less efficient fibrillogenesis than heterotrimers. Their fibrils have different mechanical properties. However, very little is known about their molecular interactions and fibrillogenesis in mixtures with normal heterotrimers. Here we studied the kinetics and thermodynamics of fibril formation in such mixtures by combining traditional approaches with 3D confocal imaging of fibrils, in which homo- and heterotrimers were labeled with different fluorescent colors. In a mixture, following a temperature jump from 4 to 32 °C, we observed a rapid increase in turbidity most likely caused by formation of homotrimer aggregates. The aggregates promoted nucleation of homotrimer fibrils that served as seeds for mixed and heterotrimer fibrils. The separation of colors in confocal images indicated segregation of homo- and heterotrimers at a subfibrillar level throughout the process. The fibril color patterns continued to change slowly after the fibrillogenesis appeared to be complete, due to dissociation and reassociation of the pepsin-treated homo- and heterotrimers, but this remixing did not significantly reduce the segregation even after several days. Independent homo- and heterotrimer solubility measurements in mixtures confirmed that the subfibrillar segregation was an equilibrium property of intermolecular interactions and not just a kinetic phenomenon. We argue that the subfibrillar segregation may exacerbate effects of a small fraction of α1(I) homotrimers on formation, properties, and remodeling of collagen fibers.  相似文献   

11.
Suspensions of collagen fibrils of different size were prepared from solutions of radioactive tropocollagen type I by either differential centrifugation or differential incubation at elevated temperature. The fractions were compared with respect to their ability to stimulate human blood platelet aggregation in plasma, their binding to human platelets, and their morphology, as seen in the electron microscope. Although small particles with a sedimentation coefficient as low as 4.5 S bound to platelets, aggregation was not observed in the presence of collagen multimers and protofibrils without visible cross-bands in stained specimens. The onset of platelet-aggregating activity before the appearance of turbidity in collagen solutions incubated at elevated temperature is due to the formation of a few banded fibrils; this early onset and the fibrils do not appear in collagen solutions that have been ulctracentrifuged before incubation.  相似文献   

12.
D-periodic distribution of collagen type IX along cartilage fibrils   总被引:11,自引:8,他引:11       下载免费PDF全文
It has recently become apparent that collagen fibrils may be composed of more than one kind of macromolecule. To explore this possibility, we developed a procedure to purify fibril fragments from 17-d embryonic chicken sternal cartilage. The fibril population obtained shows, after negative staining, a uniformity in the banding pattern and diameter similar to the fibrils in situ. Pepsin digestion of this fibril preparation releases collagen types II, IX, and XI in the proportion of 8:1:1. Rotary shadowing of the fibrils reveals a d-periodic distribution of 35-40-nm long projections, each capped with a globular domain, which resemble in form and dimensions the aminoterminal globular and collagenous domains, NC4 and COL3, of type IX collagen. The monoclonal antibody (4D6) specific for an epitope close to the amino terminal of the COL3 domain of type IX collagen bound to these projections, thus confirming their identity. Type IX collagen is therefore distributed in a regular d-periodic arrangement along cartilage fibrils, with the chondroitin sulfate chain of type IX collagen in intimate contact with the fibril.  相似文献   

13.
Recent studies of the structure of Type I collagen fibrils (Piez and Trus,Biosci. Rep. 1:801–810, 1981; Fraser, MacRae, Miller and Suzuki,J. Mol. Biol. 167:497–521, 1983) suggest that the segments of the collagen molecule which comprise the gap region are more mobile than those which comprise the overlap region. We have analyzed the distribution of amino acid residues and triplet types between the two regions, and find significantly non-uniform distributions for Ala, Gln, His, Hyp, Leu, Phe, and Tyr, and for triplets containing two imino acid residues. Taken together with the lower packing density in the gap region these observations provide a basis for understanding the greater mobility of the molecular segments in the gap region. In addition, we have examined the linear distribution of residue types in the two regions and also the hydropathy profile (Kyte and Doolittle,J. Mol. Biol. 157: 105–113, 1982). These reveal a segment of the gap region comprising helical residues 165–173, 399–407, 633–641 and 867–975 which has the highest hydropathy index, is devoid of charged residues, and contains very high proportions of Ala, Hyp and Phe.  相似文献   

14.
A detailed stereochemical analysis of intermolecular interactions of collagens made with molecular models and summarized experimental data resulted in a new three-dimensional structural model for collagen fibrils. In this model collagen molecules aligned in axial register form a bunch. The bunches are aligned head to tail and penetrate by 300 A into each other, forming microfibrils; these in turn assemble into fibrils. The new model differs from all the others in that its characteristic axial regularity, with a period of 670 A, results from staggering of the adjacent microfibrils formed by unstaggered molecules rather than from the axial staggering of neighbouring collagen molecules.  相似文献   

15.
In aging and diabetes, glycation of collagen molecules leads to the formation of cross-links that could alter the surface charge on collagen fibrils, and hence affect the properties and correct functioning of a number of tissues. The electron-optical stain phosphotungstic acid (PTA) binds to positively charged amino acid side-chains and leads to the characteristic banding pattern of collagen seen in the electron microscope; any change in the charge on these side-chains brought about by glycation will affect the uptake of PTA. We found that, upon glycation, a decrease in stain uptake was observed at up to five regions along the collagen D-period; the greatest decrease in stain uptake was apparent at the c1 band. This reduction in PTA uptake indicates that the binding of fructose leads to an alteration in the surface charge at several sites along the D-period. Not all lysine and arginine residues are involved; there appear to be specific residues that suffer a loss of positive charge.  相似文献   

16.
Micromechanical bending experiments using atomic force microscopy were performed to study the mechanical properties of native and carbodiimide-cross-linked single collagen fibrils. Fibrils obtained from a suspension of insoluble collagen type I isolated from bovine Achilles tendon were deposited on a glass substrate containing microchannels. Force-displacement curves recorded at multiple positions along the collagen fibril were used to assess the bending modulus. By fitting the slope of the force-displacement curves recorded at ambient conditions to a model describing the bending of a rod, bending moduli ranging from 1.0 GPa to 3.9 GPa were determined. From a model for anisotropic materials, the shear modulus of the fibril is calculated to be 33 ± 2 MPa at ambient conditions. When fibrils are immersed in phosphate-buffered saline, their bending and shear modulus decrease to 0.07-0.17 GPa and 2.9 ± 0.3 MPa, respectively. The two orders of magnitude lower shear modulus compared with the Young's modulus confirms the mechanical anisotropy of the collagen single fibrils. Cross-linking the collagen fibrils with a water-soluble carbodiimide did not significantly affect the bending modulus. The shear modulus of these fibrils, however, changed to 74 ± 7 MPa at ambient conditions and to 3.4 ± 0.2 MPa in phosphate-buffered saline.  相似文献   

17.
Vascular smooth muscle cells (SMCs), the major cellular constituent of the medial layer of an artery, synthesize the majority of connective tissue proteins, including fibrillar collagen types I, III, and V/XI. Proper collagen synthesis and deposition, which are important for the integrity of the arterial wall, require the antioxidant vitamin C. Vitamin C serves as cofactor for the enzymes prolyl and lysyl hydroxylase, which are responsible for the proper hydroxylation of collagen. Here, the role of type V collagen in the assembly of collagen fibrils in the extracellular matrix (ECM) of cultured vascular SMCs was investigated. Treatment of SMCs with vitamin C resulted in a dramatic induction in the levels of the cell‐layer associated pepsin‐resistant type V collagen, whereas only a minor induction in the levels of types I and III collagen was detected. Of note, the deposition of type V collagen was accompanied by the formation of striated collagen fibrils in the ECM. Immunohistochemistry demonstrated that type V collagen, but not type I collagen, became masked as collagen fibrils matured. Furthermore, the relative ratio of type V to type I collagen decreased as the ECM matured as a function of days in culture, and this decrease was accompanied by an increase in the diameter of collagen fibrils. Together these results suggest that the masking of type V collagen is caused by its internalization on continuous deposition of type I collagen on the exterior of the fibril. Furthermore, they suggest that type V collagen acts as framework for the initial assembly of collagen molecules into heterotypic fibrils, regulating the diameter and architecture of these fibrils. J. Cell. Biochem. 80:146–155, 2000. © 2000 Wiley‐Liss, Inc.  相似文献   

18.
Vascular smooth muscle cells (SMCs), the major cellular constituent of the medial layer of an artery, synthesize the majority of connective tissue proteins, including fibrillar collagen types I, III, and V/XI. Proper collagen synthesis and deposition, which are important for the integrity of the arterial wall, require the antioxidant vitamin C. Vitamin C serves as cofactor for the enzymes prolyl and lysyl hydroxylase, which are responsible for the proper hydroxylation of collagen. Here, the role of type V collagen in the assembly of collagen fibrils in the extracellular matrix (ECM) of cultured vascular SMCs was investigated. Treatment of SMCs with vitamin C resulted in a dramatic induction in the levels of the cell-layer associated pepsin-resistant type V collagen, whereas only a minor induction in the levels of types I and III collagen was detected. Of note, the deposition of type V collagen was accompanied by the formation of striated collagen fibrils in the ECM. Immunohistochemistry demonstrated that type V collagen, but not type I collagen, became masked as collagen fibrils matured. Furthermore, the relative ratio of type V to type I collagen decreased as the ECM matured as a function of days in culture, and this decrease was accompanied by an increase in the diameter of collagen fibrils. Together these results suggest that the masking of type V collagen is caused by its internalization on continuous deposition of type I collagen on the exterior of the fibril. Furthermore, they suggest that type V collagen acts as framework for the initial assembly of collagen molecules into heterotypic fibrils, regulating the diameter and architecture of these fibrils.  相似文献   

19.
Cross-links in tendon collagen are essential for the biomechanical strength of healthy tissue. The nature and position of these cross-links has long been a subject for conjecture. We have approached this problem in a non-destructive manner, by studying neutron diffraction from collagen fibrils that have been specifically deuterated by reduction at keto-amine and Schiff base groups with sodium borodeuteride (NaB2H4). The intensities of the first 23 meridional reflections were recorded for both native and reduced tendons. These data were used to calculate the neutron-scattering density profile of the 67 nm (D) repeat of type I collagen fibrils in rat tail tendon. This approach not only succeeds in determining the location of the cross-linkage sites with respect to the fibril structure, as projected onto the fibre axis, but also presents a novel form of the isomorphous derivative solution to the phase problem.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号