首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Telegdy G  Adamik A  Tóth G 《Peptides》2006,27(9):2289-2294
The actions of individual urocortins on colon temperature were studied in rats. Urocortin 1, urocortin 2 or urocortin 3 was injected into the lateral brain ventricle in conscious rats and the colon temperature was measured at different times following injection, for up to 6 h. In order to study the possible role of prostaglandins, the animals were treated with either a urocortin together with the pyrazolone derivative noraminophenazone to inhibit the action of cyclooxygenase in initiating hyperthermia, or with noraminophenazone 30 min following urocortin administration to act on existing hyperthermia. Noraminophenazone was administered intramuscularly in a dose of 50 mg/kg. Urocortin 1 caused a dose-related increase in colon temperature, maximal action being observed at a dose of 2 microg with the maximal increase in body temperature at 4 h. Noraminophenazone prevented the urocortin-induced increase in colon temperature and attenuated the already existing elevated body temperature. Somewhat similar action was observed with urocortin 2. However, following treatment with 0.5 or 1.0 microg urocortin 2, the action was already over at 2 h, whereas 2 microg increased the colon temperature steadily, with a maximum at 4 h. Noraminophenazone blocked or diminished the action of urocortin 2. Urocortin 3 in a dose of 1 microg was the most effective in increasing the colon temperature; the maximal effect was observed at 2 h. Noraminophenazone blocked the development of urocortin 3-induced hyperthermia, or attenuated it when the hyperthermia was already present. The results demonstrated that urocortin 1, 2 or 3 caused increases in body temperature when injected into the lateral brain ventricle, though the optimal dose and the duration of hyperthermia differed for the individual urocortins. The cyclooxygenase inhibitor blocked or diminished the action of these urocortins, indicating the involvement of prostaglandins in urocortin-induced hyperthermia.  相似文献   

2.
Corticotropin-releasing factor (CRF) and the urocortins (UCNs) are structurally and pharmacologically related neuropeptides which regulate the endocrine, autonomic, emotional and behavioral responses to stress. CRF and UCN1 activate both CRF receptors (CRFR1 and CRFR2) with CRF binding preferentially to CRFR1 and UCN1 binding equipotently to both receptors. UCN2 and UCN3 activate selectively CRFR2. Previously an in vitro study demonstrated that superfusion of both CRF and UCN1 elevated the GABA release elicited by electrical stimulation from rat amygdala, through activation of CRF1 receptors. In the present experiments, the same in vitro settings were used to study the actions of CRF and the urocortins on hypothalamic GABA release. CRF and UCN1 administered in equimolar doses increased significantly the GABA release induced by electrical stimulation from rat hypothalamus. The increasing effects of CRF and UCN1 were inhibited considerably by the selective CRFR1 antagonist antalarmin, but were not influenced by the selective CRFR2 antagonist astressin 2B. UCN2 and UCN3 were ineffective. We conclude that CRF1 receptor agonists induce the release of GABA in the hypothalamus as well as previously the amygdala. We speculate that CRF-induced GABA release may act as a double-edged sword: amygdalar GABA may disinhibit the hypothalamic CRF release, leading to activation of the hypothalamic-pituitary-adrenal axis, whereas hypothalamic GABA may inhibit the hypothalamic CRF release, terminating this activation.  相似文献   

3.
Intraperitoneal urocortin inhibits gastric emptying and food intake in mice. We investigated corticotropin-releasing factor receptor (CRF-R) subtypes involved in intraperitoneal urocortin actions using selective CRF-R antagonists. Gastric emptying was measured 2 h after a chow meal, and food intake was measured hourly after an 18-h fast in mice. Urocortin (3 microg/kg ip) inhibited gastric emptying by 88%. The CRF-R1/CRF-R2 antagonist astressin B (30 microg/kg ip) and the selective CRF-R2 antagonist antisauvagine-30 (100 microg/kg ip) completely antagonized urocortin action, whereas the selective CRF-R1 antagonist CP-154,526 (10 mg/kg ip) had no effect. Urocortin (1-10 microg/kg ip) dose dependently decreased the 2-h cumulative food intake by 30-62%. Urocortin (3 microg/kg)-induced hypophagia was completely antagonized by astressin B (30 microg/kg ip) and partially (35 and 31%) by antisauvagine-30 (100 or 200 microg/kg ip). The CRF-R1 antagonists CP-154,526 or DMP904 (10 mg/kg ip) had no effect. Capsaicin did not alter urocortin-inhibitory actions while blocking the satiety effect of intraperitoneal CCK. These data indicate that intraperitoneal urocortin-induced decrease in feeding is only partly mediated by CRF-R2, whereas urocortin action to delay gastric emptying of a meal involves primarily CRF-R2.  相似文献   

4.
The heptahelical receptors for corticotropin-releasing factor (CRF), CRFR1 and CRFR2, display different specificities for CRF family ligands: CRF and urocortin I bind to CRFR1 with high affinity, whereas urocortin II and III bind to this receptor with very low affinities. In contrast, all the urocortins bind with high affinities, and CRF binds with lower affinity to CRFR2. The first extracellular domain (ECD1) of CRFR1 is important for ligand recognition. Here, we characterize a bacterially expressed soluble protein, ECD1-CRFR2beta, corresponding to the ECD1 of mouse CRFR2beta. The K(i) values for binding to ECD1-CRFR2beta are: astressin = 10.7 (5.4-21.1) nm, urocortin I = 6.4 (4.7-8.7) nm, urocortin II = 6.9 (5.8-8.3) nm, CRF = 97 (22-430) nm, urocortin III = sauvagine >200 nm. These affinities are similar to those for binding to a chimeric receptor in which the ECD1 of CRFR2beta replaces the ECD of the type 1B activin receptor (ALK4). The ECD1-CRFR2beta possesses a disulfide arrangement identical to that of the ECD1 of CRFR1, namely Cys(45)-Cys(70), Cys(60)-Cys(103), and Cys(84)-Cys(118). As determined by circular dichroism, ECD1-CRFR2beta undergoes conformational changes upon binding astressin. These data reinforce the importance of the ECD1 of CRF receptors for ligand recognition and raise the interesting possibility that different ligands having similar affinity for the full-length receptor may, nevertheless, have different affinities for microdomains of the receptor.  相似文献   

5.
Corticotropin-releasing factor (CRF) mediates various aspects of the stress response. To differentiate between the roles of CRF(1) and CRF(2) receptor subtypes in monoaminergic neurotransmission, hypothalamic-pituitary-adrenocortical axis activity and behaviour we compared the effects of CRF and urocortin 1 with those of the selective CRF(2) receptor ligands urocortin 2 and urocortin 3. In vivo microdialysis in the rat hippocampus was used to assess free corticosterone, extracellular levels of serotonin (5-HT) and noradrenaline (NA), and their metabolites 5-hydroxyindoleacetic acid (5-HIAA) and 3-methoxy-4-hydroxyphenylglycol (MHPG), respectively. Intracerebroventricular (i.c.v.) injection of CRF and urocortin 1, 2 and 3 (1.0 microg) increased hippocampal levels of 5-HT and 5-HIAA. CRF and urocortin 1 increased NA and MHPG, whereas urocortin 2 and urocortin 3 elevated MHPG, but not NA levels. CRF and the urocortins induced an immediate increase in behavioural activity. CRF and urocortin 1 mainly caused grooming and exploratory behaviour. In contrast, urocortin 2 and urocortin 3 both induced exploratory behaviour, but not grooming, and increased time spent eating food pellets. All urocortins, but not CRF, suppressed food intake 4-6 h after injection. Hippocampal free corticosterone levels were elevated by CRF, urocortin 1 and 3, but not by urocortin 2. The time courses of the CRF- and urocortin 1-induced responses were significantly prolonged as compared to those of the CRF(2) receptor ligands. The stimulatory changes evoked by CRF and urocortin 1 were present up to 4-6 h after injection, whereas the effects of urocortin 2 and urocortin 3 returned to baseline within 2.5 h after injection. Pre-treatment with the selective antagonist antisauvagine-30 (5.0 microg, i.c.v.) confirmed that the effects of urocortin 3 were CRF(2) receptor-mediated. The differential time course of the monoaminergic, neuroendocrine and behavioural effects of CRF and urocortin 1, as compared to urocortin 2 and urocortin 3, and the specific behavioural pattern induced by the CRF(2) receptor ligands, suggest a distinct role for CRF(2) receptors in the stress response.  相似文献   

6.
Kageyama K  Kimura R  Suga S  Ogawa Y  Suda T  Wakui M 《Peptides》2006,27(7):1814-1819
The actions of the corticotropin-releasing factor (CRF) family of peptides are mediated by the seven transmembrane-domain G-protein-coupled receptors, the CRF receptors type 1 (CRF1 receptor) and type 2 (CRF2 receptor). In a previous study, we reported that CRF, an endogenous ligand for CRF1 receptor, modulated Ca2+ influx in rat pancreatic beta-cells. In addition to CRF, other additional members of the family, urocortins, have been identified in mammals. Urocortin 1 (UCN 1), a peptide of the CRF family, binds both CRF1 receptor and CRF2 receptor with equal affinities. Urocortin 3 (UCN 3), a highly selective ligand for CRF2 receptor with little affinity for CRF1 receptor, has been shown in rat pancreatic beta-cells. The present study focused on the effects of the CRF family peptides on intracellular Ca2+ ([Ca2+]i) concentration via CRF receptors in rat pancreatic beta-cells. Microfluorimetric experiments showed that CRF (0.2 nM) and UCN 1 (0.2 nM) elevated [Ca2+]i levels. Both CRF and UCN 1 effects were attenuated by astressin, a non-selective CRF receptor antagonist. Antisauvagine-30, a selective CRF2 receptor antagonist, appeared to enhance the UCN 1 effect on the elevation of [Ca2+]i. The CRF effect on the elevation of [Ca2+]i was inhibited by the addition of UCN 3. Taken together, the activation of CRF2 receptor antagonizes the CRF1 receptor-stimulated Ca2+ influx.  相似文献   

7.
Corticotropin-releasing hormone (CRH) and urocortins (Ucn) bind with various affinities to two G-protein-coupled receptors, CRHR1 and CRHR2, which are expressed in brain and in peripheral tissues, including immune cells. CRHR2-deficient mice display anxiety-like behavior, hypersensitivity to stress, altered feeding behavior and metabolism, and cardiovascular abnormalities. However, the phenotype of these mice in inflammatory responses has not been determined. In the present study we found that compared with wild-type CRHR2-null mice developed substantially reduced intestinal inflammation and had lower intestinal mRNA expression of the potent chemoattractants keratinocyte chemokine and monocyte chemoattractant protein 1 following intraluminal exposure to Clostridium difficile toxin A, a potent enterotoxin that mediates antibiotic-associated diarrhea and colitis in humans. This effect was recapitulated by administration of astressin 2B, a selective CRHR2 antagonist, before toxin A exposure. Moreover, Ab array analysis revealed reduced expression of several inflammatory chemokines, including keratinocyte chemokine and monocyte chemoattractant protein 1 in toxin A-exposed mice pretreated with astressin 2B. Real-time RT-PCR of wild-type mouse intestine showed that only UcnII, but not other Ucn, was significantly up-regulated by ileal administration of toxin A at 4 h compared with buffer exposure. We also found that human colonic epithelial HT-29 cells express CRHR2alpha mRNA, whereas expression of beta and gamma spliced variants was minimal. Moreover, treatment of HT-29 cells with UcnII, which binds exclusively to CRHR2, stimulated expression of IL-8 and monocyte chemoattractant protein 1. Taken together, these results provide direct evidence that CRHR2 mediates intestinal inflammatory responses via release of proinflammatory mediators at the colonocyte level.  相似文献   

8.
Suda T  Kageyama K  Sakihara S  Nigawara T 《Peptides》2004,25(10):1689-1701
Urocortin 1, a human homologue of fish urotensin I, together with its related-compounds (urocortins 2 and 3), comprises a distinct family of stress peptides. Urocortin 1 has a high affinity for both corticotropin-releasing factor (CRF) type 1 receptor (CRF1) and CRF type 2 receptor (CRF2), and urocortins 2 and 3 have a high affinity for CRF2, while CRF has a low affinity for CRF2 and a high affinity for CRF1. These differences of the binding affinity with receptors make the biological actions of these peptides. Besides the binding affinity with receptors, the limited overlap of the distribution of CRF and urocortins may also contribute to the differences of physiological roles of each peptide. Urocortins show 'stress-coping' responses such as anxiolysis and dearousal in the brain. In the periphery, recent studies show the potent effects of urocortins on the cardiovascular and immune systems. In this review article, we take a look over the series of peptides included in this family, especially in terms of the versatility of biological actions, along with the various characters of the receptors.  相似文献   

9.
Transport of urocortin, a potent satiety peptide, occurs at the blood-brain barrier of the mouse. Endocytosis of urocortin by the cerebral microvessel endothelial cells composing the blood-brain barrier is a rate-limiting step of this transport, but the cellular mechanisms involved have not been fully elucidated. The presence of both CRH receptors R1 and R2 in isolated cerebral microvessels shown in this study suggested that both subtypes might mediate urocortin transport. The roles of these two receptors in the endocytosis and signal transduction of urocortin were tested by overexpression studies in human embryonic kidney 293 cells. Both receptors led to a significant increase of binding and endocytosis of radiolabeled urocortin. CRHR1-mediated urocortin endocytosis was blocked by astressin (antagonist for both CRHRs), whereas CRHR2-mediated urocortin endocytosis was also blocked by antisauvagine 30 (selective CRHR2beta antagonist). Chlorpromazine, filipin, and nystatin had no effect on urocortin endocytosis, indicating the lack of significant involvement of clathrin or caveolae membrane microdomains. Both CRHR1 and CRHR2 were able to mediate the ligand-induced increase of cAMP production, suggesting that the overexpressed receptors were biologically active. Elevation of intracellular cAMP by forskolin or dibutyryl-cAMP, however, did not show acute modulation of the binding and endocytosis of urocortin. Despite the substantial intracellular degradation of endocytosed urocortin in cells overexpressing either CRHR1 or CRHR2, intact urocortin could be exocytosed during the 1-h study interval. We conclude that both CRHR1 and CRHR2 play a facilitatory role in the non-clathrin-, non-caveolae-mediated endocytosis and intracellular signal transduction of this potent peptide.  相似文献   

10.
Urocortin is a newly identified member of the CRF neuropeptide family. Urocortin has been found to bind with high affinity to CRF receptors. The present study investigated urocortin and CRF receptor expression in human colonic mucosa. Non-pathologic sections of adult colorectal tissues were obtained from patients with colorectal cancer at surgery. Urocortin expression was examined using immunohistochemistry and messenger (m) RNA in situ hybridization. Isolated lamina propria mononuclear cells (LPMC) and epithelial cells were also analyzed by flow cytometry for the characterization of urocortin-positive cells, and by RT-PCR for detection of urocortin, CRF, and CRF receptor mRNA. Urocortin peptide distribution at various stages of human development (n = 35, from 11 weeks of gestation to 6 years of age) was examined by immunohistochemistry using surgical and autopsy specimens. Immunoreactive urocortin and urocortin mRNA were predominantly detected in lamina propria macrophages. Urocortin peptide expression was detected from as early as three months of age, but not before birth or in neonates. Urocortin, CRF receptor type 1 and type 2 mRNA were detected in LPMC. CRF receptor type 2β mRNA, a minor isoform in human tissues, was also detected in LPMC, but at lower levels. Urocortin is locally synthesized in lamina propria macrophages and may act on lamina propria inflammatory cells as an autocrine/paracrine regulator of the mucosal immune system. The appearance of urocortin after birth indicates that the exposure to dietary intake and/or luminal bacteria after birth may contribute to the initiation of urocortin expression in human gastrointestinal tract mucosa.  相似文献   

11.
《Reproductive biology》2014,14(2):140-147
Urocortin (UCN; 40 aa) is a corticotrophin-releasing hormone (CRH)-related peptide. The biological actions of CRH family peptides are mediated by two types of G-protein-coupled receptors, CRH type 1 receptor (CRHR1) and CRH type 2 receptor (CRHR2). The biological effects of the peptides are mediated and modulated not only by CRH receptors but also by a highly conserved CRH-binding protein (CRHBP). The aim of the present study was to investigate the expression of UCN, CRHR1, CRHR2 and CRHBP by immunohistochemistry, Western blot, RT-PCR and real-time RT-PCR in the rat epididymis. Urocortin, CRHR1 and CRHR2, but not CRHBP, were expressed in all segments of the rat epididymis. Specifically, UCN- and CRHR2-immunoreactivities (IRs) were distributed in epididymal epithelial cells of the caput, corpus and cauda. CRHR1-IR was found in the fibromuscular cells surrounding the epididymal duct and in the smooth musculature of the blood vessels throughout the organ. UCN and CRHR2 mRNA expression levels were higher in the caput and corpus than in the cauda, while CRHR1 mRNA level was higher in the cauda than those in the caput and corpus. In summary, UCN, CRHR1 and CRHR2 are expressed in the rat epididymis. It is suggested that CRH-related peptides might play multiple roles in the maturation and storage of spermatozoa.  相似文献   

12.
The members of the CRF peptide family, corticotropin-releasing factor (CRF), urocortin I (Ucn I), urocortin II (Ucn II) and urocortin III (Ucn III) coordinate endocrine and behavioral responses to stress. CRF has also been demonstrated to stimulate dopamine (DA) synthesis.In our study, a superfusion system was used to investigate the effects of this peptide family on striatal DA release following electrical stimulation. The involvement of the CRF receptors was studied by pretreatment of rat striatal slices with selective CRF antagonists. CRF and Ucn I increased the release of [3H]DA while Ucn II and Ucn III were ineffective. The CRFR1 antagonist antalarmin inhibited the [3H]DA release induced by electrical stimulation and enhanced by CRF and Ucn I. The CRFR2 antagonist astressin-2B was ineffective.These results suggest that CRF and Ucn I mediate DA release through the activation of CRFR1. Ucn II and Ucn III are not involved in this process.Special Issue Dedicated to Miklós Palkovits.  相似文献   

13.
14.
In the present study we investigated the form of expression, action, second messenger, and the cellular location of urocortin, a member of the corticotropin-releasing factor (CRF) family, in the heart. Urocortin mRNA, as shown by quantitative RT-PCR analysis, is expressed in the cultured rat cardiac nonmyocytes (NMC) as well as myocytes (MC) in the heart, whereas CRF receptor type 2beta (CRF-R2beta), presumed urocortin receptor mRNA, is predominantly expressed in MC compared with NMC. Urocortin mRNA expression is higher in left ventricular (LV) hypertrophy than in normal LV, whereas CRF-R2beta mRNA expression is markedly depressed in LV hypertrophy compared with normal LV. Urocortin more potently increased the cAMP levels in both MC and NMC than did CRF, and its effect was more potent in MC than in NMC. Urocortin significantly increased protein synthesis by [(14)C]Phe incorporations and atrial natriuretic peptide secretion in MC and collagen and increased DNA synthesis by [(3)H]prolin and [(3)H]Thy incorporations in NMC. An immunohistochemical study revealed that urocortin immunoreactivity was observed in MC in the normal human heart and that it was more intense in the MC of the human failing heart than in MC of the normal heart. These results, together with the recent evidence of urocortin for positive inotropic action, suggest that increased urocortin in the diseased heart may modulate the pathophysiology of cardiac hypertrophy or failing heart, at least in part, via cAMP signaling pathway.  相似文献   

15.
16.
J. Neurochem. (2012) 122, 1129-1136. ABSTRACT: Urocortin 3 (also known as stresscopin) is an endogenous ligand for the corticotropin-releasing factor receptor 2 (CRF(2) ). Despite predominant G(s) coupling of CRF(2) , promiscuous coupling with other G proteins has been also associated with the activation of this receptor. As urocortin 3 has been involved in central cardiovascular regulation at hypothalamic and medullary sites, we examined its cellular effects on cardiac vagal neurons of nucleus ambiguus, a key area for the autonomic control of heart rate. Urocortin 3 (1?nM-1000?nM) induced a concentration-dependent increase in cytosolic Ca(2+) concentration that was blocked by the CRF(2) antagonist K41498. In the case of two consecutive treatments with urocortin 3, the second urocortin 3-induced Ca(2+) response was reduced, indicating receptor desensitization. The effect of urocortin 3 was abolished by pre-treatment with pertussis toxin and by inhibition of phospolipase C with U-73122. Urocortin 3 activated Ca(2+) influx via voltage-gated P/Q-type channels as well as Ca(2+) release from endoplasmic reticulum. Urocortin 3 promoted Ca(2+) release via inositol 1,4,5 trisphosphate receptors, but not ryanodine receptors. Our results indicate a novel Ca(2+) -mobilizing effect of urocortin 3 in vagal pre-ganglionic neurons of nucleus ambiguus, providing a cellular mechanism for a previously reported role for this peptide in parasympathetic cardiac regulation.  相似文献   

17.
In addition to urocortin (Ucn I), Ucn II and Ucn III were identified as endogenous ligands for corticotropin-releasing factor type 2 receptor (CRF2 receptor). CRF2 receptor is abundantly located in central hypothalamic ventromedial nucleus (VMH) and in peripheral cardiovascular system. In this mini-review, we focused on the roles of these urocortins and CRF2 receptor in the hypothalamus and the cardiovascular system. Ucn II mRNA was increased in the parvocellular part or the magnocellular part of the hypothalamic paraventricular nucleus (PVN) following immobilization stress or 3 days of water deprivation, respectively. Therefore, it is thought that Ucn II may modulate CRF and vasopressin synthesis in the PVN in a paracrine or autocrine fashion through PVN CRF2 receptor. The early and later phases of Ucn I-mediated feeding suppression may be CRF1 and CRF2 receptor-mediated events, respectively. Ucn II decreases food intake at a later phase, beyond 4 h post injection. A large dose of corticosterone increased plasma leptin and insulin levels as well as the levels of CRF2 receptor mRNA. Adrenalectomy, starvation, and immobilization each lowered plasma leptin and insulin levels and were associated with decrements in CRF2 receptor mRNA levels in the VMH. Peripheral injection of leptin increased VMH CRF2 receptor mRNA, as can induce reductions of food intake and body weight, indicating that circulating leptin is involved in the regulation of VMH CRF2 receptor mRNA expression. Therefore, it is also plausible that VMH CRF2 receptor transduces the anorexogenic effects of leptin as well as those of urocortins. The systemic administration of Ucn II decreases mean arterial pressure (arterial vascular tone) and causes tachycardia via vascular CRF2 receptor in rats, similar to the effects of Ucn I. Thus, CRF2 receptor seems to mediate cardioprotective effects of urocortins.  相似文献   

18.
The relaxant effect of urocortin in rat pulmonary arteries   总被引:1,自引:0,他引:1  
Urocortin is a potent vasodilator, which plays physiological or pathophysiological roles in systemic circulation. However, little is known about its action on pulmonary circulation. The present study was aimed to characterize some cellular mechanisms underlying the relaxant effect of urocortin in isolated rat pulmonary arteries. Changes in isometric tension were measured on small vessel myographs. Urocortin inhibited U46619-induced contraction with reduction of the maximal response. Urocortin-induced relaxation was independent of the presence of endothelium. Inhibitors of nitric oxide (NO)-dependent dilator, NG-nitro-L-arginine methyl ester or 1H-[1,2,4]oxadizolo[4,3-a]quinoxalin-1-one, did not affect the relaxation. Astressin (100-500 nM), a corticotropin-releasing factor (CRF) receptor antagonist and KT5720, a protein kinase A (PKA) inhibitor reduced urocortin-induced relaxation. Urocortin produced less relaxant effect in 30 mM K+- than U46619-contracted arterial rings. Urocortin did not reduce CaCl2-induced contraction in 60 mM K+-containing solution. Ba2+ (100-500 microM) but not other K+ channel blockers reduced the relaxant responses to urocortin. Urocortin also relaxed the rings preconstricted by phorbol 12,13-diacetae in normal Krebs solution while this relaxation was less in a Ca2+-free solution. Our results show that urocortin relaxed rat pulmonary arteries via CRF receptor-mediated and PKA-dependent but endothelium/NO or voltage-gated Ca2+ channel-independent mechanisms. Stimulation of Ba2+-sensitive K+ channel may contribute to urocortin-induced relaxation. Finally, urocortin relaxed pulmonary arteries partly via inhibition of a PKC-dependent contractile mechanism.  相似文献   

19.
LPS injected intraperitoneally decreases fasted plasma levels of ghrelin at 3 h postinjection in rats. We characterized the inhibitory action of LPS on plasma ghrelin and whether exogenous ghrelin restores LPS-induced suppression of food intake and gastric emptying in fasted rats. Plasma ghrelin and insulin and blood glucose were measured after intraperitoneal injection of LPS, intravenous injection of IL-1beta and urocortin 1, and in response to LPS under conditions of blockade of IL-1 or CRF receptors by subcutaneous injection of IL-1 receptor antagonist (IL-1Ra) or astressin B, respectively, and prostaglandin (PG) synthesis by intraperitoneal indomethacin. Food intake and gastric emptying were measured after intravenous injection of ghrelin at 5 h postintraperitoneal LPS injection. LPS inhibited the elevated fasted plasma ghrelin levels by 47.6 +/- 4.9%, 58.9 +/- 3.3%, 74.4 +/- 2.7%, and 48.9 +/- 8.7% at 2, 3, 5, and 7 h postinjection, respectively, and values returned to preinjection levels at 24 h. Insulin levels were negatively correlated to those of ghrelin, whereas there was no significant correlation between glucose and ghrelin. IL-1Ra and indomethacin prevented the first 3-h decline in ghrelin levels induced by LPS, whereas astressin B did not. IL-1beta inhibited plasma ghrelin levels, whereas urocortin 1 had no influence. Ghrelin injected intravenously prevented an LPS-induced 87% reduction of gastric emptying and 61% reduction of food intake. These data showed that IL-1 and PG pathways are part of the early mechanisms by which LPS suppresses fasted plasma ghrelin and that exogenous ghrelin can normalize LPS-induced-altered digestive functions.  相似文献   

20.
Caloric deprivation inhibits reproduction, including copulatory behaviors, in female mammals. Decreases in metabolic fuel availability are detected in the hindbrain, and this information is relayed to the forebrain circuits controlling estrous behavior by neuropeptide Y (NPY) projections. In the forebrain, the nutritional inhibition of estrous behavior appears to be mediated by corticotropin-releasing factor (CRF) or urocortin-signaling systems. Intracerebroventricular (ICV) infusion of the CRF antagonist, astressin, prevents the suppression of lordosis by food deprivation and by NPY treatment in Syrian hamsters. These experiments sought to determine which CRF receptor type(s) is involved. ICV infusion of the CRF receptor subtype CRFR2-selective agonists urocortin 2 and 3 (UCN2, UCN3) inhibited sexual receptivity in hormone-primed, ovariectomized hamsters. Furthermore, the CRFR2-selective antagonist, astressin 2B, prevented the inhibition of estrous behavior by UCN2 and by NPY, consistent with a role for CRFR2. On the other hand, astressin 2B did not prevent the inhibition of behavior induced by 48-h food deprivation or ICV administration of CRF, a mixed CRFR1 and CRFR2 agonist, suggesting that activation of CRFR1 signaling is sufficient to inhibit sexual receptivity in hamsters. Although administration of CRFR1-selective antagonists (NBI-27914 and CP-154,526) failed to reverse the inhibition of receptivity by CRF treatment, we could not confirm their biological effectiveness in hamsters. The most parsimonious interpretation of these findings is that, although NPY inhibits estrous behavior via downstream CRFR2 signaling, food deprivation may exert its inhibition via both CRFR1 and CRFR2 and that redundant neuropeptide systems may be involved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号