首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The interaction of the 36 amino acid neuropeptide Y (NPY) with liposomes was studied using the intrinsic tyrosine fluorescence of NPY and an NPY fragment comprising amino acids 18–36. The vesicular membranes were composed of phosphatidylcholine and phosphatidylserine at varying mixing ratios. From the experimentally measured binding curves, the standard Gibbs free energy for the peptide transfer from aqueous solution to the lipid membrane was calculated to be around ?30 kJ/mol for membrane mixtures containing physiological amounts of acidic lipids at pH 5. The effective charge of the peptide depends on the pH of the buffer and is about half of its theoretical net charge. The results were confirmed using the fluorescence of the NPY analogue [Trp32]-NPY. Further, the position of NPY’s α-helix in the membrane was estimated from the intrinsic tyrosine fluorescence of NPY, from quenching experiments with spin-labelled phospholipids using [Trp32]-NPY, and from 1H magic-angle spinning NMR relaxation measurements using spin-labelled [Ala31, TOAC32]-NPY. The results suggest that the immersion depth of NPY into the membrane is triggered by the membrane composition. The α-helix of NPY is located in the upper chain region of zwitterionic membranes but its position is shifted to the glycerol region in negatively charged membranes. For membranes composed of phosphatidylcholine and phosphatidylserine, an intermediate position of the α-helix is observed.  相似文献   

2.
Sendai virus particles fuse with negatively charged liposomes but not with vesicles made of zwitterionic phospholipids. The liposome-virus fusion process was studied by dilution of the concentration-dependent excimer-forming fluorophore 2-pyrenyldodecanoylphosphatidylcholine contained in the liposomes by the viral lipids. The data were analyzed in the framework of a mass action kinetic model. This provided analytical solutions for the final levels of probe dilution and numerical solutions for the kinetics of the overall fusion process, in terms of rate constants for the liposome-virus adhesion, deadhesion and fusion. This analysis led to the following conclusions: At neutral pH and 37 degrees C, only 15% of the virus particles can fuse with the phospholipid vesicles, although all the virions may aggregate with the liposomes. The rate constants for aggregation, fusion and deadhesion are of the orders of magnitude of 10(7) M-1 X s-1, 10(-3) s-1 and 10(-2), s-1, respectively. The fraction of active virus increases with temperature. At acidic pH, both the fraction of 'fusable' virus and the rate of fusion increase markedly. The optimal pH for fusion is 3-4, where most of the virus particles are active. At higher pH values, an increasing fraction of the virus particles become inactive, probably due to ionization of viral glycoproteins, whereas at pH values below 3.0 the fusion is markedly reduced, most likely due to protonation of the negatively charged vesicles. While only 15% of the virions fuse with the liposomes at pH 7.4 and 37 degrees C, all the liposomes lose their content (Amselem, S., Loyter, A. Lichtenberg, D. and Barenholz, Y. (1985) Biochim. Biophys. Acta 820, 1-10). We therefore propose that release of entrapped solutes is due to liposome-virus aggregation, and not to fusion. Both trypsinization and heat inactivation of the virus particles inhibit not only the fusion process but also the release of carboxyfluorescein. This demonstrates the obligatory role of viral membrane proteins in liposome-virus aggregation. Reconstituted vesicles made of the viral lipid and the hemagglutinin/neuraminidase (HN) glycoprotein fuse with negatively charged liposomes similar to the intact virions. This suggests that the fusion of virions with negatively charged vesicles, unlike the fusion of the virus with biological membranes, requires only the HN and not the fusion glycoprotein.  相似文献   

3.
In an attempt to understand the multifunctional involvement of beta(2)-glycoprotein I (beta(2)GPI) in autoimmune diseases, thrombosis, atherosclerosis, and inflammatory processes, substantial interest is focused on the interaction of beta(2)GPI with negatively charged ligands, in particular, with acidic phospholipids. In this study, unilamellar vesicles composed of cardiolipin were used as in vitro membrane system to test and further refine a model of interaction based on the crystal structure of beta(2)GPI. The data suggest that beta(2)GPI anchors to the membrane surface with its hydrophobic loop adjacent to the positively charged lysine rich region in domain V. Subsequently, beta(2)GPI penetrates the membrane interfacial headgroup region as indicated by a restriction of the lipid side chain mobility, but without formation of a nonbilayer lipid phase. A structural rearrangement of beta(2)GPI upon lipid binding was detected by microcalorimetry and may result in the exposure of cryptic epitopes located in the complement control protein domains. This lipid-dependent conformational change may induce oligomerization of beta(2)GPI and promote intermolecular associations. Thus, the aggregation tendency of beta(2)GPI may serve as the basis for the formation of a molecular link between cells but may also be an essential feature for binding of autoantibodies and hence determine the role of beta(2)GPI in autoimmune diseases.  相似文献   

4.
The interaction of lipid vesicles with uncoated vesicles from bovine brain has been studied by fluorescence energy transfer between fluorescent lipid analogs (NBD-PE, Rh-DOPE), by loss of fluorescence self-quenching (NBD-PE, carboxyfluorescein) and by freeze-fracture electron microscopy. The fluorescence techniques monitor the mixing of membranous lipids and the induced release of encapsulated material. The results demonstrate a mixing of the negatively charged lipid (PA, PS) vesicles with the uncoated vesicles. In parallel with the lipid mixing a release of intravesicularly encapsulated material takes place. Lipid vesicles composed of zwitterionic lipids (PC, DOPC, PC:PE) do not specifically interact with uncoated vesicles. The electron micrographs reveal single fusion events. Studies on the kinetics are consistent with a fusional mechanism of the negatively charged lipid vesicles with uncoated vesicles.  相似文献   

5.
We have investigated the binding of a new dansylcadaverine derivative of substance P (DNC-SP) with negatively charged small unilamellar vesicles composed of a mixture of phosphatidylcholine (PC) and either phosphatidylglycerol (PG) or phosphatidylserine (PS) using fluorescence spectroscopic techniques. The changes in fluorescence properties were used to obtain association isotherms at variable membrane negative charges and at different ionic strengths. The experimental association isotherms were analyzed using two binding approaches: (i) the Langmuir adsorption isotherm and the partition equilibrium model, that neglect the activity coefficients; and (ii) the partition equilibrium model combined with the Gouy-Chapman formalism that considers electrostatic effects. A consistent quantitative analysis of each DNC-SP binding curve at different lipid composition was achieved by means of the Gouy-Chapman approach using a peptide effective interfacial charge (v) value of (0.95 +/- 0.02), which is lower than the physical charge of the peptide. For PC/PG membranes, the partition equilibrium constant were 7.8 x 10(3) M(-1) (9/1, mol/mol) and 6.9 x 10(3) M(-1) (7/3, mol/mol), whereas for PC/PS membranes an average value of 6.8 x 10(3) M(-1) was estimated. These partition equilibrium constants were similar to those obtained for the interaction of DNC-SP with neutral PC membranes (4.9 x 10(3) M(-1)), as theoretically expected. We demonstrate that the v parameter is a determinant factor to obtain a unique value of the binding constant independently of the surface charge density of the vesicles. Also, the potential of fluorescent dansylated SP analogue in studies involving interactions with cell membranes is discussed.  相似文献   

6.
In the present study, we have analyzed a previously identified constitutively active pituitary adenylate cyclase activating polypeptide (PACAP) type I (PAC1) receptor with a deletion of the single amino acid residue Glu(261) (Y.-J. Cao, G. Gimpl, F. Fahrenholz, A mutation of second intracellular loop of pituitary adenylate cyclase activating polypeptide type I receptor confers constitutive receptor activation, FEBS Lett. 469 (2000)). This glutamic acid residue is highly conserved within the second intracellular loop of class II G protein-coupled receptors and may thus be of importance for many members of this receptor class. To explore the molecular characteristics of this mutant receptor, we performed photoaffinity labeling using previously defined photoreactive PACAP analogues. In COS cells, the PAC1 receptor was expressed in two differently glycosylated forms: a M(r) 75,000 and a M(r) 55,000 form. According to partial deglycosylation, at least three carbohydrate chains may exist in the rat PAC1 receptor expressed in COS cells. The constitutively active PAC1 receptor was expressed at the surface of COS-7 cells at the same density as the wild-type receptor. With respect to the different photoreactive PACAP analogues, the labeling specificity was the same for the wild-type versus mutant receptor: (125)I-[Lys(15)(pBz(2))]-PACAP-27 and (125)I-[Bpa(22)]-PACAP-27 were efficiently incorporated into each of the receptors, whereas (125)I-[Bpa(6)]-PACAP-27 labeled each of the receptors only to a negligible extent. This suggests that both receptors have the same or at least a very similar hormone binding site which is in close contact to Tyr(22) and Lys(15) located in the carboxy-terminal alpha-helical region of the PACAP-27 molecule. However, in comparison with the wild-type PAC1 receptor, the constitutively active receptor showed a markedly (approx. 6--8-fold) enhanced photoaffinity labeling efficiency in particular of the high glycosylated form. The enzymatically deglycosylated rat PAC1 receptor was efficiently labeled by photoreactive PACAP analogues. In contrast, nonglycosylated PAC1 receptors produced by tunicamycin treatment of the transfected COS-7 cells showed a 30-fold lower affinity for PACAP-27 and were capable of signal transduction with 30--50-fold lower potency as compared with the glycosylated PAC1 receptors.  相似文献   

7.
In the present work it is shown that large unilamellar lecithin/cholesterol liposomes are able to sequester small negatively charged liposomes in the presence of divalent cations. Evidence is presented suggesting that the sequestration occurs via the formation of membrane invaginations transformed further into intraliposomal vesicles.  相似文献   

8.
The release of the internal content of negatively charged phosphatidylcholine/phosphatidylserine vesicles under the influence of high density lipoprotein was studied. Under standard conditions (the same composition outside and inside the compartment) the leakage of negative liposomes increased significantly. However, a high internal concentration of calcein provoked a sealing effect, exhibited both in sucrose and in calcein release. This sealing effect is not related to the size of vesicles, the fluidity of the membrane, the distribution of phosphatidylserine molecules, or the membrane potential. Our data indicate that surface potential influences this effect, probably in addition to a lateral pressure effect such as with cholesterol. The surface potential, as measured by the water-lipid partition coefficient of fatty acids, is strongly affected by internal ionic strength when liposomes contain calcein as well as other polyanions (6-carboxyfluorescein, sodium citrate).  相似文献   

9.
Egg yolk phosphatidylcholine liposomes modified with a copolymer of N-acryloylpyrrolidine and N-isopropylacrylamide having a lower critical solution temperature at ca. 40 degrees C were prepared and an effect of temperature on their interaction with CV1 cells was investigated. The unmodified liposomes were taken up by the cells approximately to the same extent after 3 h incubation at 37 and 42 degrees C. In contrast, uptake of the polymer-modified liposomes by CV1 cells decreased slightly at 37 degrees C but increased greatly at 42 degrees C, compared to the unmodified liposomes. Proliferation of the cells was partly prohibited by the incubation with the unmodified liposomes encapsulating methotrexate at 37 and 42 degrees C. The treatment with the polymer-modified liposomes containing methotrexate at 37 degrees C hardly effected the cell growth. However, the treatment at 42 degrees C inhibited the cell growth completely. It is considered that the highly hydrated polymer chains attached to the liposome surface suppressed the liposome-cell interaction below the lower critical solution temperature of the polymer but the dehydrated polymer chains enhanced the interaction above this temperature. Because interaction of the polymer-modified liposomes with cells can be controlled by the ambient temperature, these liposomes may have potential usefulness as efficient site-specific drug delivery systems.  相似文献   

10.
Liposomes containing amphotericin B as ionophoric marker were used to investigate the fusion of bilayer phospholipid membranes with liposomes. It was found that latrotoxin isolated from black widow spider venom induced the fusion of liposomes with planar bilayer when liposomes and latrotoxin were administered at opposite sides of the membrane.  相似文献   

11.
Latrotoxin-induced fusion of liposomes with bilayer phospholipid membranes   总被引:1,自引:0,他引:1  
Liposomes containing amphotericin B as ionophoric marker were used to investigate the fusion of bilayer phospholipid membranes with liposomes. It was found that latrotoxin isolated from black widow spider venom induced the fusion of liposomes with planar bilayer when liposomes and latrotoxin were administered at opposite sides of the membrane.  相似文献   

12.
We examined changes in zeta potential (the surface charge density, zeta) of the complexes of liposome (nmol)/DNA (microg) (L/D) formed in water at three different ratios (L/D=1, 10 and 20) by changing the ionic strength or pH to find an optimum formulation for in vivo gene delivery. At high DNA concentrations, zeta of the complexes formed in water at L/D=10 was significantly lowered by adding NaCl (zeta=+8.44+/-3.1 to -27.6+/-3.5 mV) or increasing pH from 5 (zeta=+15.3+/-1.0) to 9 (zeta=-22.5+/-2.5 mV). However, the positively charged complexes formed at L/D=20 (zeta=+6.2+/-3.5 mV) became negative as NaCl was added at alkaline pH as observed in medium (zeta=-19.7+/-9.9 mV). Thus, the complexes formed in water under the optimum condition were stable and largely negatively charged at L/D=1 (zeta=-58.1+/-3.9 mV), unstable and slightly positively charged at L/D=10 (zeta=+8.44+/-3.7 mV), and unstable and largely positively charged at L/D=20 (zeta=+24.3+/-3.6 mV). The negatively charged complexes efficiently delivered DNA into both solid and ascitic tumor cells. However, the positively charged complexes were very poor in delivering DNA into solid tumors, yet were efficient in delivering DNA into ascitic tumors grown in the peritoneum regardless of complex size. This slightly lower gene transfer efficiency of the negatively charged complexes can be as efficient as the positively charged ones when an injection is repeated (at least two injections), which is the most common case for therapy regimes. The results indicate that optimum in vivo lipofection may depend on the site of tumor growth.  相似文献   

13.
alpha-Latrotoxin-induced fusion of liposomes has been described using large unilamellar vesicles composed of phosphatidylcholine/phosphatidylethanolamine/cardiolipin at a molar ratio of 2:3:5. Vesicle fusion was monitored by terbium/dipicolinic acid assay as well as by fluorescence energy transfer measurement. The enhancement of the fusogenic effect of LTX by low concentrations (0.1-3 mM) of CaCl2 has been demonstrated. The efficiency of other divalent cations on the LTX fusogenic activity was shown to decrease in the sequence Ca greater than Cd greater than Sr greater than Mg greater than Ba. LTX-induced fusion was accompanied by the increase of vesicle size measured by laser correlation spectroscopy. It is concluded that fusogenic action of LTX may be involved in its effect on synaptic apparatus.  相似文献   

14.
Lysozyme induced fusion of negatively charged phospholipid vesicles   总被引:1,自引:0,他引:1  
Lysozyme promotes fusion of negatively charged phospholipid vesicles prepared by ethanolic injection. Vesicle fusion was a leaky process as revealed by the release of encapsulated carboxyfluorescein or Tb-DPA complex. Extensive proteolysis of lysozyme inhibited the fusion process. The fusion process was critically dependent on the medium ionic strength; 100 mM of any salt was sufficient to inhibit totally the fusion activity of the protein. The high efficiency of lysozyme (80% RET) was almost constant in the pH range from 4.0 to 9.0, but it was sharply diminished when the pH of the medium was at the isoelectric point of the protein (pI 11.0). Fusion induced by chemically modified lysozyme, showed that the pH profile changed according to the isoelectric point of the protein derivative. These observations stress the importance of electrostatic interactions in the process of fusion induced by lysozyme.  相似文献   

15.
Abstract

Golgi-Associated Plant Pathogenesis-Related protein 1 (GAPR-1) is a mammalian protein that belongs to the superfamily of plant pathogenesis-related proteins group 1 (PR-1). GAPR-1 strongly associates with lipid rafts at the cytosolic leaflet of the Golgi membrane. The myristoyl moiety at the N-terminus of GAPR-1 contributes to membrane binding but is not sufficient for stable membrane anchorage. GAPR-1 is positively charged at physiological pH, which allows for additional membrane interactions with proteins or lipids. To determine the potential contribution of lipids to membrane binding of GAPR-1, we used a liposome binding assay. Here we report that non-myristoylated GAPR-1 stably binds liposomes that contain the negatively charged lipids phosphatidylserine, phosphatidylglycerol, phosphatidylinositol, or phosphatidic acid. GAPR-1 displays the highest preference for phosphatidic acid-containing liposomes. In contrast, lysozyme, which contains a similar surface charge, did not bind to these liposomes, except for a weak membrane association with PA-containing liposomes. Interestingly, GAPR-1 binds to phosphatidylinositol with unusual characteristics. Denaturation or organic extraction of GAPR-1 does not result in dissociation of phosphatidylinositol from GAPR-1. The association of phosphatidylinositol with GAPR-1 results in a diffuse gel-shift in SDS-PAGE. Mass spectrometric analysis of gel-shifted GAPR-1 showed the association of up to 3 molecules of phosphatidylinositol with GAPR-1. These results suggest that the lipid composition contributes to the GAPR-1 binding to biological membranes.  相似文献   

16.
The interaction of Sendai virus with small, unilamellar vesicles, lacking virus receptors and loaded with self-quenched 6-carboxyfluorescein, was studied. Sendai virions induced release of carboxyfluorescein from vesicles composed of negative charged phospholipids, despite the fact that they did not contain virus receptors. Preliminary experiments indicate that the carboxyfluorescein release is accompanied by mixing of the virus and liposome lipids and their entrapped contents, suggesting liposome-virus fusion. No release of carboxyfluorescein was observed with vesicles containing only phosphatidylcholine. The rate of virus-induced carboxyfluorescein release was temperature dependent; the lytic activity of the virus was greatly enhanced above 25 degrees C. This effect was not due to a thermal phase transition of the lipids in either the lipid vesicles or the virions. Virus-induced carboxyfluorescein release was inhibited by the presence of calcium ions in the medium and of cholesterol in the lipid vesicles. It increased with increasing concentrations of either the lipid vesicles or the virions. pretreatment of virions with increasing concentrations of three different proteolytic enzymes (trypsin, chymotrypsin and proteinase) inhibited the virus' ability to cause release of carboxyfluorescein from negatively charged liposomes. Inhibition of the viral lytic activity was also observed after virions were incubated above 56 degrees C.  相似文献   

17.
Several kinds of hydrophilic proteins were examined to determine their interaction with artificial liposomes. Mitochondrial aspartate aminotransferase (m-GOT) [EC 2.6.1.1], as well as cytochrome c, was found to interact strongly with negatively charged liposomes. In each case, an appreciable amount of the protein bound to liposomes remained unreleased after raising the salt concentration in the medium. The m-GOT tightly bound to the liposomes was also found to become latent in its enzymatic activity, and could be reversibly activated by solubilization of the liposomes with detergent. This is also the case for cytochrome c, which ceases to be reducible by external reductant, such as dithionite. Furthermore, the tightly bound m-GOT was not susceptible to the proteolytic action of trypsin, or that of Nagarse. From these observations it can be inferred that these basic proteins interact with acidic liposomes not only electrostatically but also hydrophobically. This kind of hydrophobic interaction was not observed in the combination of positively charged liposomes and acidic proteins, including s-GOT. Mitochondrial GOT was shown to be bound to isolated intact mitochondrial, but the bound enzyme was fully active, in contrast to the case of acidic liposomes. The hydrophobic interaction of water-soluble protein with liposomes is discussed in connection with the penetration of matrix enzyme through mitochondrial membranes.  相似文献   

18.
Fluorescence energy transfer studies reveal that negatively charged lipid vesicles interact with nuclei from mouse liver cells. This interaction was observed with charged lipid vesicles composed of PA or PS but not with the uncharged PC or PE:PC vesicles. The vesicles were prepared by bath sonication and contained either a fluorescent marker in the lipid bilayer or in the vesicular interior. The negatively charged vesicles showed an adsorption to the nuclear membrane visible by fluorescence microscopy. The results obtained by resonance energy transfer experiments are interpreted in terms of a mixing of the lipids from the vesicles with the nuclear membrane. Encapsulation studies documented a staining of the nuclei only if the dye molecules of high or low molecular weight were encapsulated inside negatively charged vesicles. As consequence of the vesicle-nuclei interaction morphological changes on the nuclear surface became visible.  相似文献   

19.
Lecithine-cholesterol liposomes containing amphotericin B ionoforic marker were used to study the interaction between liposomes and planar phospholipid membranes. The liposomes were shown to increase the permeability of the planar membrane, which may be explained in terms of membrane fusion. Bivalent cations (Mg2+ and particularly Ca2+), dicetylphosphate producing negatively charged groups on the membrane surface and the n-decane suspension in water promote the fusion, whereas the increase of the cholesterol content in the liposomes prevents it.  相似文献   

20.
Model membranes (egg-yolk PC liposomes) were exposed to the cationic form of amphiphilic drugs. Microelectrophoresis was used to measure the change of the electrokinetic potential as a function of the drug concentration. By use of the Gouy-Chapman theory the surface potential and surface charge density were calculated. A theoretical model postulating a simple partition equilibrium of the charged drug molecules between the membrane and the aqueous phase in the vicinity of the membrane failed to describe the experimental results. Modification of the partition law by introducing a mechanism of saturation at high drug concentrations, however, resulted in concordance of model and experiment. Some parameters of the model can be used as a means of evaluating the efficiency of neuroactive drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号