首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A. Sieboldianus (5-leaf aralia) is recalcitrant for micropropagation, but has very good landscaping potential. This research was conducted with the following objectives: (1) to study effects of BA, TDZ, CPPU, 2iP, kinetin and zeatin in woody plant medium on the performance of softwood shoot nodal explants produced by field grown 5-leaf aralia plants; (2) to investigate influences of BA or TDZ in the forcing solution on subsequentin vitro shoot initiation of nodal explants taken from forced softwood growth. Shoot initiation of softwood nodal explants from field-grown plants was promoted by adding BA, TDZ or CPPU to the culture medium. Kinetin, zeatin and 2iP were ineffective for micropropagation ofA. Sieboldianus. The forced softwood growth for use as explants was “primed” by forcing dormant stems in solution containing 200 mg 8-HQC per liter plus 2% sucrose, 44.4, 222, or 444 μM BA, or 45.4, 227, or 454 μM TDZ. BA and TDZ in the forcing solution enhanced subsequentin vitro axillary shoot initiation of nodal explants taken from forced stems by doubling the number of shoots produced per explant to 3.3 from 1.65 shoots per explant taken from field grown plants. This forcing solution technique also reduced the time needed from culture initiation to potted plants to half of the time needed for the conventional micropropagation method (12 to 14 vs. 25 to 27 weeks), thus expediting the micropropagation ofA. Sieboldianus.  相似文献   

2.
With the objective to develop a practical method of screening potato for drought tolerance, shoot and root growth in plantlets raised in vitro (from nodal cuttings drawn from in vivo as well as in vitro grown plantlets) were studied in three genotypes with known root mass production under field conditions. Different levels of water stress were induced using five concentrations of agar in MS (Murashige and Skoog in Physiol Plant 15:473–497, 1962) medium. Water potential of various media ranged from −0.70 MPa to −0.98 MPa. Water stress in culture adversely affected plantlet growth, and the responses varied with genotype and explant source. Genotype IWA-1 was less affected than Konafubuki and Norin-1. In the experiment with explants from in vivo grown plants, the time to rooting was considerably delayed in Konafubuki and Norin-1 by an increase in agar concentration, but no such effect was observed in IWA-1. In all media, the mean number of roots and root length was greater in IWA-1 than Konafubuki and Norin-1, and the latter two genotypes were at par. At 10 gl−1 agar, IWA-1 had taller plantlets, heavier foliage dry weight, root volume, as well as root dry weight than Konafubuki and Norin-1, whereas the latter two genotypes were at par for all these characteristics. This pattern was similar to the reported pattern of these genotypes for root dry weight under field conditions. However, such similarity in the in vitro and field behavior of the tested genotypes was not observed when nodal cuttings drawn from in vitro plantlets were used as explants. It is concluded that in vitro screening of potato under specific and limited water stress conditions by raising plantlets from nodal cuttings drawn from in vivo grown plants may provide a system for effectively differentiating the genotypes for their expected root mass production under field conditions.  相似文献   

3.
Most commercially grown cacti can be easily propagated by seed and/or cuttings. A group of rare and endangered species does not fit into this category and is therefore a good candidate for in vitro propagation productions as a tool to overcome habitat and plant-destruction. The number of rare and endangered species of Cacti goes into about 100. Many show a low production and germination of seeds and plantlets are prone to damping-off, making the in vitro propagation a feasible alternative for the multiplication and conservation of their germplasm. The aim of the present investigation is to establish a protocol for the in vitro culture and plant regeneration of Notocactus magnificus, the blue cactus, a highly ornamental species, native to Brazil. The surface sterilization of the explants was achieved with immersion for 10 min in sodium hypochlorite solution for either seeds (0.25% v/v) or ribs segments (1% v/v). Callus formation was observed when explants were cultured on MS medium supplemented with sucrose at 2% (w/v), 2,4-dichlorophenoxyacetic acid 0.5 μM, benzylaminopurine 4.4 μM, thiamine HCl 0.4 mg l−1 and i-inositol 100 mg l−1. The regeneration of shoots was carried out on MS medium supplemented with either different concentrations of benzylaminopurine and 1-naphthaleneacetic acid, or kinetin and indole-3-acetic acid. The highest number of shoots occurred when MS medium was supplemented with benzylaminopurine 22.2 μM, sucrose 3% (w/v) and agar 0,6% (w/v). In vitro spontaneous rooting of shoots was observed after eight months under culture on MS medium. Only in vitro rooted shoots developed into normal plants under glasshouse culture conditions. This in vitro protocol should be useful for the conservation as well as mass propagation of Notocactus magnificus.  相似文献   

4.
The effects of carbohydrate supply and light on rhizosecretion during micropropagation of potato plantlets (Solanum tuberosum L., cv. ‘Iwa’) in liquid medium were investigated. Soluble protein content was higher in the spent medium for plantlets grown under light conditions than in the dark. For those plantlets grown under light conditions and on different sugar-supplemented media, they rhizosecreted the highest amount of soluble protein when grown in the presence of maltose, while they rhizosecreted the lowest amount of soluble protein when grown on medium containing glucose. Moreover, plantlets grown under light and on a medium containing sucrose were the most vigorous, and exhibited the highest levels of rhizosecreted acid phosphatase activity. However, there was no direct relationship between plantlet growth and rhizosecretion. When plantlets were grown in the dark and on medium containing maltose, a higher α-glucosidase activity was detected than those grown on medium containing sucrose. These results suggested that rhizosecretion of certain proteins from plantlets grown in vitro might not require exposure to light conditions.  相似文献   

5.
Experiments on recycling small microtubers back into tissue culture revealed that they have a great advantage over nodal segments when used as explants in vitro. They produced plantlets ready for micropropagation in one-half the time it took nodal segments to do so. They did not require a fixed daylength (either long or short days) for this, nor were they dependent on the presence of sucrose in the culture medium. Small microtubers were more suitable than large because the latter produced very many branches which senesced more rapidly. When maintained in culture, these plantlets from microtubers themselves produced microtubers of a similar array of sizes and fresh weights to nodal explants, but at a much faster rate. For this, the presence of a high level of sucrose (8%) was beneficial, and slightly larger microtubers produced a higher yield. The microtubers produced from these plantlets were identical to those from nodal segments, and had a similar period af dormancy.  相似文献   

6.
An efficient micropropagation protocol was developed for the medicinal plant Phyllanthus caroliniensis (Euphorbiaceae) using nodal segments for axillary shoot proliferation. Maximum multiplication (21–23 shoots per explant) was achieved on MS or AR media supplemented with either 5.0 μM BA, 1.25–5.0 μM kinetin or 2.5–5.0 μM 2iP. Rooting was achieved with 80–100% of the microshoots on MS medium without growth regulators, although 1.25 μM NAA and 1.25–5.0 μM IAA promoted significant increases in the number of roots per explant. Regenerated plants were successfully acclimatized and about 88% of plantlets survived under ex vitro conditions. Flowering was observed on in vitro grown plantlets and after 3–4 weeks of acclimatization. High frequency callus initiation and growth was achieved when nodal segment explants were inoculated in the vertical position on MS medium supplemented with 5.0 μM 2,4-D. Root cultures were successfully established on MS medium containing 1.1 μM NAA. The optimized micropropagation, callus and root culture protocols offer the possibility to use cell/root culture techniques for vegetative propagation and secondary metabolism studies. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

7.
Summary An efficient protocol was established for in vitro shoot multiplication from nodal explants of Clitoria ternatea on semisolid Murashige and Skoog (MS) basal medium supplemented with 8.9μM 6-benzylaminopurine (BA). Inclusion of 1-naphthaleneacetic acid (NAA) in the culture medium along with BA promoted higher rates of shoot multiplication than BA alone. The rate of shoot multiplication was maximum (5.21) after 4 wk of culture on MS basal medium supplemented with 8.9μM BA and 1.34μM NAA. The elongated shoots rooted within 7–8d in half-strength MS basal salts supplemented with 1.34μM NAA and 2% (w/v) sucrose. About 85% of the rooted plantlets were acclimatized and transferred to the greenhouse.  相似文献   

8.
The effect of gamma irradiation on potato microtuber production in vitro   总被引:3,自引:0,他引:3  
The effects of low doses of gamma irradiation and potato (Solanum tuberosum L.) cultivar on the production of microtubers in vitro were investigated. Nodal segments from virus free explants of three potato cultivars (cv.) were placed on tuberization inducing medium and irradiated with 4 doses of gamma radiation (2.5, 5, 10, 15 Gy). Cv. Diamant produced the highest number of microtubers followed by Draga and Spunta. Irradiation of the explants with 2.5 Gy of gamma radiation led to a significant increase in the number of microtubers (38% increase over the control). Average weight of microtubers was not significantly influenced by low doses of gamma irradiation. Draga microtubers were the largest followed by Diamant and Spunta. Microtubers resembled mature tubers in shape (Spunta was oval and Draga and Diamant were spherical). Size of microtubers was crucial for sprouting in vivo. It is suggested that only microtubers larger than 5 mm in diameter (250 mg) be used to produce minitubers in vivo. Since 2.5 Gy is a low irradiation dose, it can be used to enhance tuberization in vitro without fear of genetic changes in the used cultivars. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

9.
A highly reproducible system for efficient plant regeneration from protoplast via somatic embryogenesis was developed in cotton (Gossypium hirsutum L.) cultivar ZDM-3. Embryogenic callus, somatic embryos and suspension culture cells were used as explants. Callus-forming frequency (82.86 %) was obtained in protoplast cultures from suspension culture cells in KM8P medium with 0.45 μM 2,4-dichlorophenoxyacetic acid (2,4-D), 0.93 μM kinetin (KIN), 1.5 % glucose and 1.5 % maltose. Protocolonies formed in two months with plating efficiency of 14 %. However, the callus-forming efficiencies from other two explants were low. The calli from protoplast culture were transferred to somatic embryo induction medium and 12.7 % of normal plantlets were obtained on medium contained 3 % maltose or 1 % of each sucrose + maltose + glucose, 2.46 μM indole-3-butyric acid (IBA) and 0.93 μM KIN. Over 100 plantlets were obtained from protoplasts derived from three explants. The regenerated plants were transferred to the soil and the highest survival rate (95 %) was observed in transplanting via a new method.  相似文献   

10.
Clonal propagation of Acacia catechu Willd. by shoot tip culture   总被引:1,自引:0,他引:1  
A method is described for in vitromicropropagation through shoot apices of Acaciacatechu Willd., a semi-arid tree valued for Katha (atanin-like substance obtained from red heart wood of10–20 year old trees) and timber. Explants wereexcised from 15-days-old in vitro grownseedlings raised from superior seed stocks. Shoot budinduction from shoot apex explants was observed onMurashige and Skoog's (MS) [12] medium containingvarious growth regulators. A maximum of 12 shoots wasobtained on MS medium supplemented with 1.5 mg/l 6-benzylaminopurine (BAP) and 1.5 mg/l kinetin.Well-developed shoots (3–4 cm long) were rooted on strength MS medium with 3.0 mg/l indole-3-acetic acid (IAA) and sucrose 1.5%. In vitro regenerated plantlets of A. catechu were transferred to field conditions.  相似文献   

11.
In vitro shoot proliferation and bulblet production of garlic (Allium sativum L.) was studied in liquid cultures. Shoots grown in vitro were used as explants and were cultured in MS medium supplemented with 2% (w/v) sucrose and 0.5 mg l–1 2-iP. Three culture methods (semi-solid, liquid-immersion and raft) were compared for shoot proliferation. Explants in liquid (immersion) culture exhibited an increased multiplication rate and fresh weight of shoots after 3 weeks of culture as compared with the other treatments. Bulblet formation and growth were studied in liquid medium with different concentrations of sucrose (2–13%). MS medium containing 11% (w/v) sucrose was optimal for bulblet development and bulblets developed in this medium within 9 weeks in culture. The highest multiplication rate was (135 bulblets/explant) found when explants were cultured in bulbing medium (MS medium containing 0.1 mg l–1 NAA+11% (w/v) sucrose) supplemented with 10 M JA. Growth retardants CCC, B-9, ABA also promoted induction and growth of bulblets. Darkness promoted the bulblet induction and growth compared to light conditions (16-h photoperiod of 50 mol m–2 s–1). The dormancy of bulblets was broken by cold treatment at 4 °C for 8 weeks.  相似文献   

12.
Seedling raised elites of Dendrocalamus hamiltoniiNees et Arn. Ex Munro were chosen as the source of nodal explants from precocious branches. While axillary bud break was accomplished in hormone free 1/2MS medium containing sucrose (3%, w/v), BA supplementation was required for shoot proliferation. A variety of hormonal combinations induced rooting in clumps of shoots. Somatic embryogenesis was also obtained in callus cultures raised in 2,4-D supplemented MS medium and plantlets derived from somatic embryos were hardened for field transfer. Comparative growth performances of plants raised from nodal cuttings of field-grown plants, those from single node cuttings of precocious branches and from somatic embryos indicated that growth performance of the tissue culture raised plants was relatively better than those from nodal cuttings. Improved protocols for efficient micropropagation are visualized to provide an impetus to raising of bamboo nurseries of elite genotypes in bamboo growing areas of western Himalayas.  相似文献   

13.
Current research on somatic embryogenesis of bamboo uses reproductive tissue as explants. However, it was hard to obtain the explant. Shoots of a local accession (3–4 m high) were used for multiple shoot production. In order to obtain embryogenic callus, nodal and internodal tissues from in vitro plantlets were placed on Murashige and Skoog (MS) medium supplemented with 9.2 M kinetin (KN), 13.6 M 2,4-dichlorophenoxyacetic acid (2,4-D), 0.1% (v/v) coconut milk, and 6% (w/v) sucrose. We studied the effects of sucrose and thidiazuron (TDZ) on callus proliferation. Optimal additives to the MS medium for embryogenic callus proliferation were 0.046 M TDZ, 13.6 M 2,4-D and 3% (w/v) sucrose. TDZ also promoted the germination of bamboo somatic embryos. The germination rate of the somatic embryos exceeded 80% on MS-based medium supplemented with 0.455M TDZ. Naphthaleneacetic acid (NAA) reduced germination. Well-developed plantlets were successfully transferred to soil. There was no albino mutant in subsequent culture. In vitro regenerants and potted plants flowered, but no seeds were produced.  相似文献   

14.
An improved micropropagation protocol has been developed for teak (Tectona grandis). Nodal explants placed on MS medium supplemented with 22.2 M benzylaminopurine and then serially transferred to fresh medium after 12, 24, 48 and 72 h gave maximum culture establishment (76.8%). Establishment was reduced when explants were retained in the initial culture medium longer than 12 h. Explants collected in May showed maximum (76.8%) response. Placement of the explants on MS medium supplemented with 22.2 M benzylaminopurine and 0.57 M indole-3-acetic acid resulted in the maximum average number of shoots. In vitro raised micro shoots were rooted ex vitro by dipping in indole-3-butyric acid (9.8 mM) for 2 min followed by planting in polyethylene pots containing a soil:vermiculite (1:1 v/v) mixture. This treatment resulted in 77.9% survival of the plantlets. They were weaned in a glasshouse and finally moved to an agro-net shade house.  相似文献   

15.
Summary Biotechnology has offered a nonconventional method of plant propagation and has been intensively applied as a conservation strategy for sustaining biodiversity for rare plants. In vitro conservation through micropropagation of Ochreinauclea missionis, a rare, endemic and medicinal tree species of Western Ghats in Karnataka region of India is reported. Multiple shoots were initiated from nodal explants on Murashige and Skoog (MS) medium supplemented with 8.8 μM 6-benzylaminopurine (BA) and 0.3% (w/v) activated charcoal. Shoots were elongated in MS medium with a combination of 2.2 μM BA and 5.3 μM α-naphthaleneacetic acid (NAA) or growth regulator-free medium. Individual shoots with a minimum of one node were excised and rooted in vitro on MS medium with 0.3% activated charcoal or ex vitro rooted by treatment with 49 μM indole-3-butyric acid (IBA) for 30 min. Regenerants acclimated in Soil-rite exhibited 65% survival in the greenhouse.  相似文献   

16.
Photoautotrophic micropropagation of Russet Burbank Potato   总被引:2,自引:0,他引:2  
The photoautotrophic micropropagation of potato cv. Russet Burbank was investigated. Single node microcuttings were grown for four weeks on Murashige and Skoog (MS) medium with or without sucrose (30 g l–1) in the growth room at 21/19 °C day/night temperature, with 16-h photoperiod at 150 mol m–2 s–1, with or without supplemental CO2 at 1500 l l–1. A 20% increase in the number of nodes per stem (from 7.5 to 9.4) and a 50% increase in stem dry weight were observed in cultures grown on media with sucrose and in CO2 enriched atmosphere comparing to the conventionally micropropagated cultures or the cultures grown photoautotrophically on media without sucrose but in air supplemented with 1500 l l–1CO2. Stems of these cultures (from media with sucrose in CO2 enriched air) almost doubled in length the stems of cultures from the other two treatments. No significant differences were observed between Control (MS medium supplemented with sucrose, 30 g l–1) and photoautotrophic cultures coming from MS medium with no sucrose grown under 1500 l l–1 of CO2. Photoautotrophic cultures produced stems averaging 43.3 mm, with 7 nodes and weighing 9.2 mg (dry weight), similar to conventionally grown in vitro cultures (47.9 mm with 7.5 nodes, 9.7 mg dry weight). Growers may consider photoautotrophic culturing of potato in areas where the high sterility levels are difficult to maintain. Supplementing air in the growth room with 1500 l l–1 of CO2 could be beneficial for potato plantlet production even on media containing sucrose since it significantly improved quality, size and biomass of produced plantlets, speeding up the multiplication.  相似文献   

17.
There is increasing evidence that the sucrose normally added to the culture medium affects negatively the photosynthetic capacity of plantlets. At the same time, however, sucrose cannot be eliminated from the medium, as it is required for normal in vitro growth. We argue that this is true only under the conventional light conditions of growth-rooms. In the present paper irradiance of growth-rooms was increased 10 times and although the sucrose-inhibitory effect was found at high sucrose concentrations, it was possible to grow coconut (Cocos nucifera L.) plantlets without sucrose. Those plantlets showed both high photosynthetic capacity and comparable in vitro growth to those grown with sucrose in the medium under conventional growth-room irradiance. Nevertheless, the best growth was achieved under mixotrophic conditions where at high irradiance and moderate sucrose concentrations plantlets accumulated 27 % more biomass than plantlets grown without sucrose under high irradiance and 43 and 73 % more biomass than their counterparts at low irradiance with or without sucrose, respectively.  相似文献   

18.
Summary Jasmonic acid (JA) effects on in vitro tuberization of potato nodal explants cvs. Sangre and Russet Burbank were tested under liquid and solid media conditions and 0,8, and 16h photoperiod. Explants taken from stock plants grown on 2.5μM JA-supplemented medium tuberized first, particularly in darkness. The most pronounced benefits of the JA pretreatment were recorded under 16h photoperiod, which is known to inhibit tuberization. Cultivar Sangre benefited from the JA preconditioning of stock plants more than Russet Burbank. Russet Burbank required the JA supplement in tuberization media to reach the same degree of stimulation. Overall, microtubers produced either from JA preconditioned stock plants or on the JA-containing tuberization media were more uniform and larger than from other treatments. Eight hours photoperiod was by far the best treatment for the production of high-quality uniform microtubers. JA conditioning of stock plants prior to taking explants for tuberization is being proposed as a treatment enhancing the quality of microtubers.  相似文献   

19.
In the present study, in vitro regeneration system for a recalcitrant woody tree legume, Leucaena leucocephala (cvs. K-8, K-29, K-68 and K-850) from mature tree derived nodal explants as well as seedling derived cotyledonary node explants was developed. Best shoot initiation and elongation was found on full-strength Murashige and Skoog (MS) medium supplemented with 3 % (m/v) sucrose, 100 mg dm−3 myoinositol, 100 mg dm−3 glutamine, 20.9 μM N 6-benzylamino-purine (BAP) and 5.37 μM 1-naphthalene acetic acid (NAA). Rooting was induced in half-strength MS medium containing 2 % (m/v) sucrose, 100 mg dm−3 myoinositol, 14.76 μM indole-3-butyric acid (IBA) and 0.23 μM kinetin. The cultivar K-29 gave the best response under in vitro conditions. Rooted plantlets were subjected to hardening and successfully transferred to greenhouse. Further, somatic embryogenesis from nodal explants of cv. K-29 via an intermittent callus phase was also established. Pronounced callusing was observed on full-strength MS medium containing 3 % (m/v) sucrose, 100 mg dm−3 myoinositol, 40.28 μM NAA and 12.24 μM BAP. These calli were transferred to induction medium and maximum number of globular shaped somatic embryos was achieved in full-strength MS medium fortified with 3 % (m/v) sucrose, 100 mg dm−3 myoinositol, 15.0 μM 2,4-dichlorophenoxyacetic acid (2,4-D), 5.0 μM BAP and 1.0 mM proline. Moreover, an increase in endogenous proline content up to 28th day of culture in induction medium was observed. These globular shaped somatic embryos matured in full-strength MS medium with 3 % (m/v) sucrose, 100 mg dm−3 myoinositol, 10.0 μM BAP, 2.5 to 5.0 μM IBA and 0.5 mM spermidine.  相似文献   

20.
An efficient micropropagation protocol for annatto (Bixa orellana L.) was achieved using nodal shoot tip explants. Shoot buds were obtained on the Murashige and Skoog (MS) medium supplemented with various concentrations and combinations of indole-3-acetic acid (IAA), N6-benzyladenine (BA) and triacontanol (TRIA). Maximum of 213 shoot buds along with 18 primary shoots were produced on MS medium containing 0.05 μM IAA, 8.87 μM BA, and 11.2 μM TRIA. The primary shoots elongated best on MS medium containing 6.66 μM BA and 2.45 μM indole-3-butyric acid (IBA). The regenerated shoots rooted best on MS medium supplemented with 4.9 μM IBA. The in vitro rooted plantlets were hardened and establishment rate under field conditions was 70 to 80 %.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号