首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fibronectin has been shown previously to promote complete cell adhesion in the absence of other serum components or de novo protein synthesis. Recently a sequence of four amino acids from the cell-binding domain of fibronectin has been termed the 'cell recognition site' of this multidomain molecule since it mediates cell attachment and inhibits cell adhesion to intact fibronectin. We show here, however, that substrata coated with an isolated cell-binding domain of fibronectin are not sufficient for complete cell adhesion; cells attach and spread but, unlike those adhering to intact fibronectin, they do not form stress fibres terminating in focal adhesions. An additional external stimulus is needed for this cytoskeletal reorganisation and may be provided by one of two heparin-binding fragments of fibronectin. The two 'signals' required for complete adhesion need not be provided simultaneously since focal adhesion formation can be promoted by stimulating cells pre-spread on a cell-binding fragment of fibronectin with a soluble heparin-binding fragment. This second stimulation may involve cell membrane heparan sulphate proteoglycans.  相似文献   

2.
Fibronectin fragments and domain-specific antibodies have been used to study the mechanism by which cells reorganize exogenous fibronectin substrata into fibrils. Fibroblasts prevented from protein synthesis, and hence not secreting endogenous fibronectin or other matrix components, reorganized exogenous fibronectin substrata into arrays resembling the matrix of normally cultured cells. Cells also formed fibrils from substrata containing mixtures of cell- and either of two different heparin-binding fibronectin fragments but not from either fragment alone. The gelatin-binding fragment alone or in conjunction with the cell-binding fragment did not promote fibril formation. Antibodies recognizing cell- and either heparin- or the gelatin-binding domains labeled fibrils formed by cells under normal culture conditions or when a substratum of intact fibronectin was used as the sole exogenous source. However, only antibodies recognizing the cell- or either heparin-binding fragment reduced fibrillogenesis from intact fibronectin substrates when added during cell spreading. These data suggest that formation of fibronectin fibrils can occur at the cell surface and that membrane components recognizing the cell- and the heparin-binding domains in fibronectin may cooperate in the assembly process  相似文献   

3.
Cell adhesion is a process which is initiated by the attachment of cells to specific sites in adhesive matrix proteins via cell surface receptors of the integrin family. This is followed by a reorganization of cytoskeletal elements which results in cell spreading and the formation of focal adhesion plaques. We have examined the effects of a class of small galactosaminoglycan-containing proteoglycans on the various stages of cell adhesion to fibronectin-coated substrates. Our results indicate that dermatan sulfate proteoglycans (DSPGs) derived from cartilage, as well as other related small proteoglycans, inhibit the initial attachment of CHO cells and rat embryo fibroblasts to substrates composed of the 105-kD cell-binding fibronectin fragment, but do not affect cell attachment to intact fibronectin. Although this effect involves binding of DSPGs to the substrate via the protein core, the intact proteoglycan is necessary for the observed activity. Isolated core proteins are inactive. The structural composition of the galactosaminoglycan chain does not appear to be functionally significant since both chondroitin sulfate and various dermatan sulfate proteoglycans of this family inhibit cell attachment to the fibronectin fragment. Neither the percentage of cells spread nor the mean area of spread cells adhering to substrates of intact fibronectin was significantly affected by the DSPGs. However, significantly fewer cells formed focal adhesions in the presence of DSPGs as compared with untreated control cells. These results suggest that the binding of small galactosaminoglycan-containing proteoglycans to a fibronectin substrate may affect several stages in the cell adhesion process.  相似文献   

4.
Two domains of fibronectin deliver two different but cooperative signals required for focal adhesion formation. The signal from the cell-binding domain is mediated by integrins, whereas the signal from the heparin-binding domain is recognized by heparan sulfate proteoglycans, of which syndecan-4 has been hypothesized to be involved in focal adhesion formation. We generated mice deficient in syndecan-4 to study its role directly. Even in fibroblasts from syndecan-4-deficient mice, focal adhesions were formed, and actin fibers terminated normally at focal adhesions when they were cultured on coverslips coated with fibronectin or with a mixture of its cell-binding and heparin-binding fragments. However, when the cells were cultured on the cell-binding fragment and the heparin-binding fragment was added to the medium, focal adhesion formation was impaired in the syndecan-4 null fibroblasts as compared with that in wild-type cells. Therefore, syndecan-4 is essential for promoting focal adhesion formation only when the signal of the heparin-binding domain of fibronectin is delivered as a soluble form, most probably from the apical surface. When the signal is delivered as a substratum-bound form, other molecule(s) also participate(s) in the signal reception.  相似文献   

5.
Previous studies have shown that the adhesion protein, vitronectin, directs the localization of urokinase-type plasminogen activator (uPA) to areas of cell-substrate adhesion, where uPA is thought to regulate cell migration as well as pericellular proteolysis. In the present study, HT-1080 cell lines expressing either wild-type vitronectin or vitronectin containing a single amino-acid substitution in the integrin binding domain were used to assess whether ligation of the alphavbeta5 integrin was required for uPA localization to focal adhesions. The synthesis of wild-type vitronectin by HT-1080 cells adherent to either collagen or fibronectin resulted in the redistribution of both the alphavbeta5 integrin as well as uPA to focal adhesion structures. In contrast, cells synthesizing mutant vitronectin, containing the amino-acid substitution in the integrin binding domain, were unable to direct the redistribution of either alphavbeta5 or uPA to focal adhesions. Recombinant forms of wild-type and mutant vitronectin were prepared in a baculovirus system and compared for their ability to direct the redistribution of vitronectin integrin receptors as well as uPA on human skin fibroblasts. In the absence of vitronectin, fibroblast cells adherent to fibronectin assemble focal adhesions which contain the beta1 integrin but do not contain uPA. Addition of recombinant wild-type, but not mutant, vitronectin to fibroblasts adherent to fibronectin resulted in the redistribution of alphavbeta3, alphavbeta5, and uPA into focal adhesions. However, when cells were plated directly onto antibodies directed against either the alphavbeta3 or alphavbeta5 integrins, uPA was not localized on the cell surface. These data indicate that ligation of vitronectin integrin receptors is necessary but not sufficient for the localization of uPA to areas of cell matrix adhesion, and suggest that vitronectin may promote cell migration by recruiting vitronectin integrin receptors and components of the plasminogen activator system to areas of cell matrix contact.  相似文献   

6.
Background information. Our previous studies have shown that calreticulin, a Ca2+‐binding chaperone located in the endoplasmic reticulum, affects cell—substratum adhesions via the induction of vinculin and N‐cadherin. Cells overexpressing calreticulin contain more vinculin than low expressers and make abundant contacts with the substratum. However, cells that express low levels of calreticulin exhibit a weak adhesive phenotype and make few, if any, focal adhesions. To date, the identity of the types of focal adhesions made by calreticulin overexpressing and low expressing cells has not been dissected. Results. The results of the present study show that calreticulin affects fibronectin matrix assembly in L fibroblast cell lines that differentially express the protein, and that these cells also differ profoundly in focal adhesion formation. Although the calreticulin overexpressing cells generate numerous interference‐reflection‐microscopy‐dark, vinculin‐ and paxillin‐containing classical focal contacts, as well as some fibrillar adhesions, the cells expressing low levels of calreticulin generate only a few weak focal adhesions. The fibronectin receptor was found to be clustered in calreticulin overexpressing cells, but diffusely distributed over the cell surface in low expressing cells. Plating L fibroblasts on fibronectin‐coated substrata induced extensive spreading in all cell lines tested. However, although calreticulin overexpressing cells were induced to form classical vinculin‐rich focal contacts, the low calreticulin expressing cells overcame their weak adhesive phenotype by induction of many tensin‐rich fibrillar adhesions, thus compensating for the low level of vinculin in these cells. Conclusions. We propose that calreticulin affects fibronectin production and, thereby, assembly, and it indirectly influences the formation and/or stability of focal contacts and fibrillar adhesions, both of which are instrumental in matrix assembly and remodelling.  相似文献   

7.
The protein cross-linking enzyme tissue transglutaminase binds in vitro with high affinity to fibronectin via its 42-kD gelatin-binding domain. Here we report that cell surface transglutaminase mediates adhesion and spreading of cells on the 42-kD fibronectin fragment, which lacks integrin-binding motifs. Overexpression of tissue transglutaminase increases its amount on the cell surface, enhances adhesion and spreading on fibronectin and its 42-kD fragment, enlarges focal adhesions, and amplifies adhesion-dependent phosphorylation of focal adhesion kinase. These effects are specific for tissue transglutaminase and are not shared by its functional homologue, a catalytic subunit of factor XIII. Adhesive function of tissue transglutaminase does not require its cross-linking activity but depends on its stable noncovalent association with integrins. Transglutaminase interacts directly with multiple integrins of beta1 and beta3 subfamilies, but not with beta2 integrins. Complexes of transglutaminase with integrins are formed inside the cell during biosynthesis and accumulate on the surface and in focal adhesions. Together our results demonstrate that tissue transglutaminase mediates the interaction of integrins with fibronectin, thereby acting as an integrin-associated coreceptor to promote cell adhesion and spreading.  相似文献   

8.
Cyclic AMP (cAMP) elevation causes diverse types of cultured cells to round partially and develop arborized cell processes. Renal glomerular mesangial cells are smooth, muscle-like cells and in culture contain abundant actin microfilament cables that insert into substratum focal contacts. cAMP elevation causes adhesion loss, microfilament cable fragmentation, and shape change in cultured mesangial cells. We investigated the roles of the classical vitronectin (αVβ3 integrin) and fibronectin (α5β1 integrin) receptors in these changes. Mesangial cells on vitronectin-rich substrata contained microfilament cables that terminated in focal contacts that stained with antibodies to vitronectin receptor. cAMP elevation caused loss of focal contact and associated vitronectin receptor. Both fibronectin and its receptor stained in a fibrillary pattern at the cell surface under control conditions but appeared aggregated along the cell processes after cAMP elevation. This suggested that cAMP elevation caused loss of adhesion mediated by vitronectin receptor but not by fibronectin receptor. We plated cells onto fibronectin-coated slides to test the effect of ligand immobilization on the cellular response to cAMP. On fibronectin-coated slides fibronectin receptor was observed in peripheral focal contacts where actin filaments terminated, as seen with vitronectin receptor on vitronectin-coated substrata, and in abundant linear arrays distributed along microfilaments as well. Substratum contacts mediated by fibronectin receptor along the length of actin filaments have been termed fibronexus contacts. After cAMP elevation, microfilaments fragmented and fibronectin receptor disappeared from peripheral focal contacts, but the more central contacts along residual microfilament fragments appeared intact. Also, substratum adhesion was maintained after cAMP elevation on fibronectin—but not on vitronectincoated surfaces. Although other types of extracellular matrix receptors may also be involved, our observations suggest that cAMP regulates adhesion at focal contacts but not at fibronexus-type extracellular matrix contacts. © 1993 Wiley-Liss, Inc.  相似文献   

9.
The process of cell-substratum adhesion of BALB/c 3T3 fibroblasts on fibronectin (FN)-coated substrata was compared with that of cells adhering to substrata coated with the heparan sulfate (HS)-binding protein, platelet factor four (PF4). FN has binding domains for HS and an unidentified cell surface receptor, whereas PF4 binds to only HS on the surface of the cell. The attachment and early spreading sequences of cells on either substratum were similar as shown by scanning electron microscopy (SEM). Within 2 h of spreading, cells on FN developed typical fibroblastic morphologies, whereas those on PF4 lacked polygonal orientations and formed numerous broadly spread lamellae. Interference reflection microscopic analysis indicated that PF4-adherent cells formed only close adhesive contacts, whereas FN-adherent cells formed both close contacts and tight focal contacts. Cells on either substratum responded to Ca2+ chelation with EGTA by rounding up, but remained adherent to the substratum by relatively EGTA-resistant regions of the cell's undersurface, demonstrating that cell surface HS by binding to an appropriate substratum is capable of initiating a Ca2+-dependent spreading response. The EGTA-resistant substratum-attached material on PF4 was morphologically similar to that on FN, the latter of which was derived from both tight focal contacts and discrete specializations within certain close contacts. These studies show that heparan sulfate proteoglycans on the surface of these cells can participate in the formation of close contact adhesions by binding to an appropriate substratum and suggest that sub-specializations within close contact adhesions may evolve into tight focal contacts by the participation of an unidentified cell surface receptor which binds specifically to fibronectin but not to PF4. In addition, the functional role of FN in tight focal contact formation is demonstrated.  相似文献   

10.
1. Cultured neurons from embryonic chick sympathetic ganglia or dorsal root ganglia grow nerve fibers extensively on simple substrata containing fibronectin, collagens (types I, III, IV), and especially laminin. 2. The same neurons cultured on substrata containing glycosaminoglycans grow poorly. Glycosaminoglycans (heparin) inhibit nerve fiber growth on fibronectin substrata. 3. Proteolytic fragments of fibronectin support nerve fiber growth only when the cell attachment region is intact. For example, a 105 kD fragment, encompassing the cell attachment region, supports growth when immobilized in a substratum, but a 93 kD subfragment, lacking the cell attachment region, is unable to support fiber growth. When it is added to the culture medium, the 105 kD fragment inhibits fiber growth on substrata containing native fibronectin. 4. In culture medium lacking NGF, DRG neurons extend nerve fibers only on laminin and not on fibronectin, collagen or polylysine. Studies with radioiodinated laminin indicate that laminin binds with a relatively high affinity (kd approximately equal to 10(-9) M) to DRG neurons, and to a variety of other neural cells (NG108 cells, PC12 cells, rat astrocytes, chick optic lobe cells). We have isolated a membrane protein (67 kD) by affinity chromatography on laminin columns and are characterizing this putative laminin receptor. 5. Dissociated DRG neurons or ganglionic explants cultured on complex substrata consisting of tissue sections of CNS or PNS tissues extend nerve fibers onto the PNS (adult rat sciatic nerve) but not CNS (adult rat optic nerve) substrata. Other tissue substrata which support fiber growth in vivo (embryonic rat spinal cord, goldfish optic nerve) support growth in culture. While substrata from adult CNS, which support meager regeneration in vivo (adult rat spinal cord) support little fiber growth in culture. 6. Ganglionic explants cultured in a narrow space between a section of rat sciatic nerve and optic nerve grow preferentially onto the sciatic nerve suggesting that diffusible growth factors are not responsible for the differential growth on the two types of tissues. 7. Dissociated neurons adhere better to sections of sciatic nerve than optic nerve. Laminin, rather than fibronectin or heparan sulfate proteoglycan, is most consistently identifiable by immunocytochemistry in tissues (sciatic nerve, embryonic spinal cord, goldfish optic nerve) which support nerve fiber growth. Taken together, these data suggest that ECM adhesive proteins are important determinants of nerve regeneration.  相似文献   

11.
We have used gene disruption to isolate two talin (−/−) ES cell mutants that contain no intact talin. The undifferentiated cells (a) were unable to spread on gelatin or laminin and grew as rounded colonies, although they were able to spread on fibronectin (b) showed reduced adhesion to laminin, but not fibronectin (c) expressed much reduced levels of β1 integrin, although levels of α5 and αV were wild-type (d) were less polarized with increased membrane protrusions compared with a vinculin (−/−) ES cell mutant (e) were unable to assemble vinculin or paxillin-containing focal adhesions or actin stress fibers on fibronectin, whereas vinculin (−/−) ES cells were able to assemble talin-containing focal adhesions. Both talin (−/−) ES cell mutants formed embryoid bodies, but differentiation was restricted to two morphologically distinct cell types. Interestingly, these differentiated talin (−/−) ES cells were able to spread and form focal adhesion-like structures containing vinculin and paxillin on fibronectin. Moreover, the levels of the β1 integrin subunit were comparable to those in wild-type ES cells. We conclude that talin is essential for β1 integrin expression and focal adhesion assembly in undifferentiated ES cells, but that a subset of differentiated cells are talin independent for both characteristics.  相似文献   

12.
Interaction of integrins with extracellular matrices is essential for cell adhesion to substrata. Ventral surfaces of fibroblasts adhering to flat substrata are not flat but have uneven 3D topology. However, spatial relationship between the topology of the ventral cell surface and arrangement of extracellular matrix fibrils remains unclear. Here, we report a novel and simple method based on total internal reflection fluorescence microscopy to quantify the distance between the ventral plasma membrane and the glass substratum. We observe that the distance varies from < 25 nm at focal adhesions to 40-50 nm at close contacts and > 80 nm in other regions. Furthermore, by applying this novel method, we show that fibronectin fibrils are also separated from the substratum in regions where the ventral cell surface-substratum distance is > 80 nm. Our results reveal that fibronectin fibrils are not simply adsorbed to the glass substratum but follow the ventral cell surface topology.  相似文献   

13.
We report that cranin (dystroglycan) can become recruited to focal adhesions of cultured rat REF 52 fibroblasts and human aortic smooth muscle cells. Within mature focal adhesions, cranin was present within the plaque region defined by β1 integrin, vinculin and phosphotyrosine staining, but occupied a larger domain corresponding to, the terminal segments of stress fibers that was more precisely co-extensive with the cytoskeletal proteins alpha-actinin, utrophin and aciculin. When REF 52 fibroblasts were plated on different substrata in the absence of protein synthesis and secretion in serum-free medium, focal clusters of cranin readily formed within 2 hours on matrix proteins that bind cranin directly (laminin or agrin) which were maintained as the focal adhesions became mature. In contrast, cranin failed to become targeted to cell-substratum attachment sites, either at early or later times. when cells were plated on a variety of other substrata that elicit formation of focal adhesions but do not bind cranin directly (fibronectin, vitronectin, collagen type IV, or anti-β integrin antibody TS2/16). These data strongly suggest that targeting of cranin to focal adhesions was dependent upon the presence of an extracellular ligand capable of binding cranin directly. How-ever, some cultured nonmuscle cell lines (e.g., human umbilical vein endothelial cells, NIH 3T3 and CHO cells) failed to localize cranin to focal adhesions, even when plated on laminin. Cranin was also enriched at cell-cell adherens-type junctions of human normal breast MCF-10 epithelial cells, and at growth cones of E17 rat hippocampal axons. That cranin can become targeted to sites of cell-cell and cell-substratum contact in diverse cell types supports the hypothesis that cranin may be involved in mediating or regulating cell adhesion. The absence of muscle-specific and synapse-specific proteins within fibroblasts and epithelial cells provides a different context for thinking about cranin (dystroglycan) that may aid in discerning general principles of its structure and function.  相似文献   

14.
We report that cranin (dystroglycan) can become recruited to focal adhesions of cultured rat REF 52 fibroblasts and human aortic smooth muscle cells. Within mature focal adhesions, cranin was present within the plaque region defined by β1 integrin, vinculin and phosphotyrosine staining, but occupied a larger domain corresponding to, the terminal segments of stress fibers that was more precisely co-extensive with the cytoskeletal proteins alpha-actinin, utrophin and aciculin. When REF 52 fibroblasts were plated on different substrata in the absence of protein synthesis and secretion in serum-free medium, focal clusters of cranin readily formed within 2 hours on matrix proteins that bind cranin directly (laminin or agrin) which were maintained as the focal adhesions became mature. In contrast, cranin failed to become targeted to cell-substratum attachment sites, either at early or later times. when cells were plated on a variety of other substrata that elicit formation of focal adhesions but do not bind cranin directly (fibronectin, vitronectin, collagen type IV, or anti-β integrin antibody TS2/16). These data strongly suggest that targeting of cranin to focal adhesions was dependent upon the presence of an extracellular ligand capable of binding cranin directly. How-ever, some cultured nonmuscle cell lines (e.g., human umbilical vein endothelial cells, NIH 3T3 and CHO cells) failed to localize cranin to focal adhesions, even when plated on laminin. Cranin was also enriched at cell-cell adherens-type junctions of human normal breast MCF-10 epithelial cells, and at growth cones of E17 rat hippocampal axons. That cranin can become targeted to sites of cell-cell and cell-substratum contact in diverse cell types supports the hypothesis that cranin may be involved in mediating or regulating cell adhesion. The absence of muscle-specific and synapse-specific proteins within fibroblasts and epithelial cells provides a different context for thinking about cranin (dystroglycan) that may aid in discerning general principles of its structure and function.  相似文献   

15.
Previous studies have shown that the adhesion protein, vitronectin, directs the localization of urokinase-type plasminogen activator (uPA) to areas of cell-substrate adhesion, where uPA is thought to regulate cell migration as well as pericellular proteolysis. In the present study, HT-1080 cell lines expressing either wild-type vitronectin or vitronectin containing a single amino-acid substitution in the integrin binding domain were used to assess whether ligation of the αvβT5 integrin was required for uPA localization to focal adhesions. The synthesis of wild-type vitronectin by HT-1080 cells adherent to either collagen or fibronectin resulted in the redistribution of both the αvβT5 integrin as well as uPA to focal adhesion structures. In contrast, cells synthesizing mutant vitronectin, containing the amino-acid substitution in the integrin binding domain, were unable to direct the redistribution of either αvβT5 or uPA to focal adhesions. Recombinant forms of wild-type and mutant vitronectin were prepared in a baculovirus system and compared for their ability to direct the redistribution of vitronectin integrin receptors as well as uPA on human skin fibroblasts. In the absence of vitronectin, fibroblast cells adherent to fibronectin assemble focal adhesions which contain the βT1 integrin but do not contain uPA. Addition of recombinant wild-type, but not mutant, vitronectin to fibroblasts adherent to fibronectin resulted in the redistribution of αvβT3, αvβT5, and uPA into focal adhesions. However, when cells were plated directly onto antibodies directed against either the αvβT3 or αvβT5 integrins, uPA was not localized on the cell surface. These data indicate that ligation of vitronectin integrin receptors is necessary but not sufficient for the localization of uPA to areas of cell-matrix adhesion, and suggest that vitronectin may promote cell migration by recruiting vitronectin integrin receptors and components of the plasminogen activator system to areas of cell matrix contact.  相似文献   

16.
The alpha(v)beta(3) integrin is essential for fibroblast growth factor (FGF)-induced angiogenesis in vivo. However, the role of this integrin in FGF-2-mediated cellular responses by cultured endothelial cells is largely unknown. Cyclic RGDfV (cRGDfV) peptide is widely used to inhibit the binding of alpha(v)beta(3) integrin to vitronectin. To investigate the role of this integrin in FGF-2-mediated cellular responses, we used immortalized murine brain capillary endothelial cells, denoted IBE cells. Because IBE cells proliferate and migrate in response to FGF-2-treatment, when cultured on fibronectin-coated surface, we first examined the inhibitory activity of this peptide on the binding of alpha(v)beta(3) integrin to fibronectin as well as vitronectin. Solid phase binding assay revealed that cRGDfV peptide strongly inhibited the binding of purified alpha(v)beta(3) integrin to vitonectin- and fibronectin-coated plastic surfaces at a concentration of 50 microM. cRGDfV peptide at 50 microM inhibited spreading as well as adhesion of IBE cells on vitronectin-coated plastic surface but not on fibronectin. On fibronectin-coated substrata, cRGDfV at 50 microM attenuated FGF-2-mediated chemotaxis, but not FGF-2-induced proliferation, of IBE cells. We have previously demonstrated that mitogen-activated protein kinase (MAPK) activation within focal adhesions through c-Src activity was involved in FGF-2-induced chemotaxis of IBE cells. Treatment of cells with cRGDfV peptide was associated with reduced c-Src activity without tyrosine dephosphorylation. Immunofluorescent staining showed that cRGDfV inhibited redistribution of c-Src into focal adhesions. MAPK activation by FGF-2 within focal adhesions was also attenuated in the presence of cRGDfV peptide. Our results indicated that cRGDfV peptide inhibited redistribution of c-Src into focal adhesions, leading to impaired MAPK activation within focal adhesions and motility in FGF-2-treated endothelial cells.  相似文献   

17.
Abstract

Interaction of integrins with extracellular matrices is essential for cell adhesion to substrata. Ventral surfaces of fibroblasts adhering to flat substrata are not flat but have uneven 3D topology. However, spatial relationship between the topology of the ventral cell surface and arrangement of extracellular matrix fibrils remains unclear. Here, we report a novel and simple method based on total internal reflection fluorescence microscopy to quantify the distance between the ventral plasma membrane and the glass substratum. We observe that the distance varies from <?25 nm at focal adhesions to 40–50 nm at close contacts and >?80 nm in other regions. Furthermore, by applying this novel method, we show that fibronectin fibrils are also separated from the substratum in regions where the ventral cell surface-substratum distance is >?80 nm. Our results reveal that fibronectin fibrils are not simply adsorbed to the glass substratum but follow the ventral cell surface topology.  相似文献   

18.
Cells are capable of adhering to and migrating on protein components of the extracellular matrix. These cell-matrix interactions are thought to be mediated largely through a family of cell surface receptors termed integrins. However, the manner in which individual integrins are involved in cell adhesion and motility has not been fully determined. To explore this issue, we previously selected a series of CHO variants that are deficient in expression of the integrin alpha 5 beta 1, the "classical" fibronectin receptor. Two sets of subclones of these variants were defined which respectively express approximately 20% or 2% of fibronectin receptor on the cell surface when compared to wild-type cells (Schreiner, C. L., J. S. Bauer, Y. N. Danilov, S. Hussein, M. M. Sczekan, and R. L. Juliano. 1989. J. Cell Biol. 109:3157-3167). In the current study, the variant clones were tested for haptotactic motility on substrata coated with fibronectin or vitronectin. Data from assays using fibronectin show that cellular motility of the 20% variants was substantially decreased (30-75% of wild type), while the motility of the 2% variants was nearly abolished (2-20% of wild type). Surprisingly, a similar pattern was seen for haptotactic motility of both 2% and 20% variants when vitronectin was used (approximately 20-30% of wild type). The reduced haptotactic motility of the fibronectin receptor-deficient variant clones on vitronectin was shown not to be due to reduced vitronectin receptor (alpha v beta 3) expression nor to a failure of these variants to adhere to vitronectin substrata. Transfection of the deficient variants with a cDNA for the human alpha 5 subunit resulted in normal levels of fibronectin receptor expression (as a human alpha 5/hamster beta 1 chimera) and restored the motility of the CHO variants on fibronectin and vitronectin. This indicates that expression of the alpha 5 subunit is required for normal haptotactic motility on vitronectin substrata and suggests that the fibronectin receptor (alpha 5 beta 1) plays a cooperative role with vitronectin receptors in cell motility.  相似文献   

19.
Recent studies have shown that fibronectin and its 140K membrane receptor complex are spatially associated with microfilaments to form cell surface linkage complexes which are thought to mediate adhesive interactions between fibroblasts and their substrata. We examined the regulation of the organization of these cell surface structures in transformed and fibronectin-reconstituted cells as well as in cells treated with a competitive synthetic peptide inhibitor of fibronectin binding to its receptor. Correlative localization experiments with interference reflection microscopy and double-label or triple-label immunofluorescence revealed a concomitant loss of fibronectin, 140K receptor, and alpha-actinin colocalization at cell substratum extracellular matrix contact sites after transformation of chick fibroblasts by wild-type or temperature-sensitive Rous sarcoma viruses (RSV). Western and dot immunoblot analyses established that although similar total quantities of intact 140K molecules were present in the transformed cell cultures, significantly more was released into the culture medium of transformed cells. The 140K molecules on transformed cells were available for interaction with exogenously added fibronectin, which could reconstitute fibronectin-140K linkage complexes. In such fibronectin reconstitution experiments, many cells expressed both fibronectin-140K-actin linkage complexes and RSV pp60src, indicating that the morphological reversion could occur even in the continued presence of RSV transformation. The synthetic peptide Gly-Arg-Gly-Asp-Ser derived from the sequence of the cell-binding region of fibronectin could also prevent the organization of fibronectin-140K linkage complexes. Our results suggest that fibronectin interaction with cells regulates the organization of fibronectin receptor complexes and cytoskeletal components at the cell surface.  相似文献   

20.
Myocilin, a novel matricellular protein found in the human eye, can modify signaling events mediated by the Heparin II domain of fibronectin. Using myocilin produced in sf9 insect cells, myocilin inhibited spreading of cycloheximide-treated human skin fibroblasts plated on substrates co-coated with myocilin and either fibronectin or its Heparin II domain. Cell spreading could be rescued by adding back either substrate adsorbed or soluble Heparin II domains. Myocilin did not inhibit cell attachment to fibronectin even in the presence of a 2400 M excess of myocilin. Myocilin impaired focal adhesion formation and specifically blocked the incorporation of paxillin, but not vinculin, into focal adhesions. The Heparin II domain mediated the incorporation of paxillin into focal adhesions, since paxillin was not assembled into focal adhesions unless the Heparin II domain was present. The effect of myocilin on focal adhesions could be overcome by treating cells with either phorbol 12-myristate (PMA) or oleoyl-L-alpha-lysophosphatidic acid (LPA). Myocilin bound to the fibroblast cell surface, but its binding could not be competed with excess fibronectin, suggesting that myocilin does not compete for cell surface binding sites of fibronectin. Myocilin therefore appears to specifically block functions mediated by the Heparin II domain possibly through direct interactions with it.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号