首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Corynebacterium glutamicum ATCC 13 032 produces 13 g/l l-isoleucine from 200 mM -ketobutyrate as a synthetic precursor. In fed batch cultures up to 19 g/l l-isoleucine is formed. For optimal conversion the addition of 0.3 mM l-valine plus 0.3 mM l-leucine to the fermentation medium is required. The affinity constants for the acetohydroxy acid synthase (AHAS) were determined. (This enzyme directs the flow of -ketobutyrate plus pyruvate towards l-isoleucine and that of two moles of pyruvate to l-valine and l-leucine, respectively.) For -ketobutyrate the K m is 4.8×10-3 M, and V max 0.58 U/mg, for pyruvate the K m is 8.4×10-3 M, and V max 0.37 U/mg. Due to these characteristics the presence of high -ketobutyrate concentrations apparently results in a l-valine, l-leucine deficiency. This in turn leads to a derepression of the AHAS synthesis from 0.03 U/mg to 0.29 U/mg and high l-isoleucine production is favoured. The derepression of the AHAS synthesis induced by the l-valine, l-leucine shortage was directly proven with a l-valine, l-leucine, l-isoleucine auxotrophic mutant where the starvation of each amino acid resulted in an increased AHAS level. This is in accordance with the fact that only one AHAS enzyme could be verified by chromatographic and electrophoretic separations as being responsible for the synthesis of all three branched-chain amino-acids.  相似文献   

2.
3.
Fan DD  Luo Y  Mi Y  Ma XX  Shang L 《Biotechnology letters》2005,27(12):865-870
Fed-batch cultures of recombinant Escherichia coli BL21 for producing human-like collagen were performed at different specific growth rates (0.1~0.25 h−1) before induction and at a constant value of 0.05 h−1 after induction by the method of pseudo-exponential feeding. Although the final biomass (around 69 g l−1) was almost the same in all fed-batch cultures, the highest product concentration (13.6 g l−1) was achieved at the specific growth rate of 0.15 h−1 and the lowest (9.6 g l−1) at 0.25 h−1. The mean productivity of human-like collagen was the highest at 0.15 h−1 (0.57 g l−1 h−1) and the lowest at 0.1 h−1 (0.35 g l−1 h−1). In the phase before induction, the cell yield coefficient (YX/S) decreased when the specific growth rate increased, while the formation of acetic acid increased upto 2.5 g l−1 at 0.25 h−1. The mean product yield coefficient (YP/S) also decreased with specific growth rate increasing. The respiration quotient (RQ) increased slightly with specific growth rate increasing before induction, and the mean value of RQ was around 72%. The optimum growth rate for human-like collagen production was 0.15~0.2 h−1.  相似文献   

4.
Leucine dehydrogenase (l-leucine: NAD+ oxidoreductase, deaminating, EC 1.4.1.9) has been purified to homogeneity from a moderate thermophilic bacterium, Bacillus stearothermophilus. Am improved method of preparative slab gel electrophoresis was used effectively to purify it. The enzyme has a molecular mass of about 300,000 and consists of six subunits with identical molecular mass (Mr, 49,000). The enzyme does not lose its activity by heat treatment at 70° C for 20 min, and incubation in the pH range of 5.5–10.0 at 55° C for 5 min. It is stable in 10 mM phosphate buffer (pH 7.2) containing 0.01% 2-mercaptoethanol at over 1 month, and is resistant to detergent and ethanol treatment. The enzyme catalyzes the oxidative deamination of branched-chain l-amino acids and the reductive amination of their keto analogs in the presence of NAD+ and NADH, respectively, as the coenzymes. The pH optima are 11 for the deamination of l-leucine, and 9.7 and 8.8 for the amination of -ketoisocaproate and -ketoisovalerate, respectively. The Michaelis constants were determined: 4.4 mM for l-leucine, 3.3 mM for l-valine, 1.4 mM for l-isoleucine and 0.49 mM for NAD+ in the oxidative deamination. The B. stearothermophilus enzyme shows similar catalytic properties, but higher activities than that from Bacillus sphaericus.Dedicated to Prof. Dr. G. Drews on the occasion of his 60th birthday  相似文献   

5.
Medium-chain-length polyhydroxyalkanoates (MCL-PHAs) were produced in carbon-limited, single-stage, fed-batch fermentations of Pseudomonas putida KT2440 by co-feeding nonanoic acid (NA) and glucose (G) to enhance the yield of PHA from NA. An exponential (μ = 0.25 h−1) followed by a linear feeding strategy at a NA:G ratio of 1:1 (w/w) achieved 71 g l−1 biomass containing 56% PHA. Although the same overall PHA productivity (1.44 g l−1 h−1) was obtained when NA alone was fed at the same specific growth rate, the overall yield of PHA from NA increased by 25% (0.66 g PHA g NA−1 versus 0.53 g g−1) with glucose co-feeding. Further increasing glucose in the feed (NA:G = 1:1.5) resulted in a slightly higher yield (0.69 g PHA g NA−1) but lower PHA content (48%) and productivity (1.16 g l−1 h−1). There was very little change in the PHA composition.  相似文献   

6.
Mortierella alpina was grown in a fed-batch culture using a 12-l jar fermenter with an initial 8-l working volume containing 20 g glucose l−1 and 10 g corn-steep powder l−1. Glucose was intermittently fed to give 32 g l−1 at each time. The pH of culture was maintained using 14% (v/v) NH4OH, which also acted as a nitrogen source. A final cell density of 72.5 g l−1 was reached after 12.5 days with a content of arachidonic acid (ARA) at 18.8 g l−1. These values were 4 and 1.8 times higher than the respective values in batch culture. Our results suggest that the combined feeding of glucose and NH4+ to the growth of M. alpina could be applied for the industrial scale production of ARA.  相似文献   

7.
The effect of different amounts of supplemented l-isoleucine and pantothenate has been analysed with the auxotrophic strain Corynebacterium glutamicum ΔilvA ΔpanB, showing that the final biomass concentration of this preliminary l-valine production strain can be controlled by the amount of added l-isoleucine. One gramme cell dry weight is formed from 48 μmol l-isoleucine. Different amounts of available pantothenate affect the intracellular pyruvate concentration. By limiting pantothenate supplementation from 0.8 to 0.1 μM, a 35-fold increase of cytoplasmic pyruvate up to 14.2 mM can be observed, resulting in the increased formation of l-valine, l-alanine and organic acids in the presence of low pantothenate concentrations. These findings can be used to redirect the carbon flux from glycolysis via pyruvate to the TCA cycle towards the desired product l-valine.  相似文献   

8.
Effects of carbon concentration and carbon to nitrogen (C:N) ratio on six biocontrol fungal strains are reported in this paper. All fungal strains had extensive growth on the media supplemented with 6–12 g l−1 carbon and C:N ratios from 10:1 to 80:1, and differed in nutrient requirements for sporulation. Except for the two strains of Paecilomyces lilacinus, all selected fungi attained the highest spore yields at a C:N ratio of 160:1 when the carbon concentration was 12 g l−1 for Metarhizium anisopliae SQZ-1-21, 6 g l−1 for M. anisopliae RS-4-1 and Trichoderma viride TV-1, and 8 g l−1 for Lecanicillium lecanii CA-1-G. The optimal conditions for P. lilacinus sporulation were 8 g l−1 carbon with a C:N ratio of 10:1 for M-14 and 12 g l−1 carbon with a C:N ratio of 20:1 for IPC-P, respectively. The results indicated that the influence of carbon concentration and C:N ratio on fungal growth and sporulation is strain dependent; therefore, consideration for the complexity of nutrient requirements is essential for improving yields of fungal biocontrol agents.  相似文献   

9.
Extracellular pigment production by immobilised Monascus purpureus C322 has been studied in repeated-batch processes using different immobilising carriers such as Ca-alginate, polyurethane sponge, active carbon and pearlite. With Ca-alginate, pigment production was maximum (30.5 UA470 as process mean production, three batches) while the cell leakage was negligible (0.4 g l−1 free biomass) and the bead mechanical stability good; with this carrier, an extended repeated-batch fermentation (nine batches, 55 days) was carried out: the process pigment productivity was 3.87 UA470 day−1.  相似文献   

10.
A novel microorganism was isolated which is able to produce mannitol when grown in the presence of fructose and glucose as carbon sources. In flask culture in a medium containing 150 g fructose l–1, it yielded 67 g mannitol l–1 after 168 h. In fed-batch culture with 3–12% (w/v) fructose, production reached a maximum of 209 g mannitol l–1 after 200 h, corresponding to an 83% yield and a 1.03 g l–1 h–1 productivity. The isolated strain was identified as Candida magnoliae based on identical sequences in the D1/D2 domain of its 26S rDNA and a similar carbon source utilization pattern with C. magnoliae reference strains.  相似文献   

11.
Summary Wild-type cultures of Aspergillus niger produced a basal level of β-fructofuranosidase on glucose of 1 IU l−1 h−1. In contrast, a catabolite-derepressed mutant strain of the same organism produced a markedly higher level (25 IU l−1 h−1) of this enzyme when grown on the same carbon source. Wheat bran induced both the wild type (252 IU l−1 h−1) and the mutant strain (516 IU l−1 h−1) to produce 252- to 516-fold higher levels of this enzyme than was observed with the wild-type grown on glucose and was the best carbon source. When corn steep liquor served as a nitrogen source, the wild-type organism showed a higher activity of enzyme on monosaccharides and disaccharides comparable to that produced by corncobs in the basal medium and that mutant was a potentially improved (> 2-fold) organism for the production of β-fructofuranosidase on all carbon sources. Enhanced substrate consumption and product formation kinetic parameters suggest that the mutant organism may be exploited for bulk production of this useful enzyme.  相似文献   

12.
Summary Continuous production ofl-leucine was carried out withCorynebacterium glutamicum, strain ATCC 13032 starting from-ketoisocaproic acid as the precursor, glucose as the carbon source and ammonium sulphate as the nitrogen source, with biotin in a mineral medium. By means of cross-flow microfiltration or centrifugal separation for cell retention in continuous fermentation an increase in cell density was achieved and the product solution was obtained cell-free. The cells were concentrated to over 70 g cell dry mass/1. In experiments of up to 42 days, conversion rates of 85%–99% andl-leucine yields of 85%–93% were achieved. With a substrate residence time of 3.6 h, 114 mmol/1l-leucine was produced with a space-time yield of 97 g/1 per day. A scale-up of the fermentation volume from 4 to 1001 provided comparable results.  相似文献   

13.
Human α1-antitrypsin (AAT) was produced in the recombinant yeast Saccharomyces cerevisiae ATCC 20699 grown in batch and fed-batch culture. The final biomass concentration and antitrypsin concentration attained were 55 g·L−1 and 1.23 g·L−1, respectively, in the fed-batch. The maximum productivities of biomass and antitrypsin were 1.6 and > 0.04 g L−1h−1, respectively, or substantially greater than the highest productivity values reported in the past. For recovering the antitrypsin, the cell slurry was concentrated 4-fold (231 g·L−1 biomass, 122 min of processing) by cross-flow microfiltration and the cells were disrupted by bead milling (3 passes of 3 min total retention time). The cell homogenate was treated with aluminum chloride or PBS (pH 7) to aid separation of the cell debris by flocculation and sedimentation. The clarified cell homogenate was subjected to ammonium sulfate fractionation to precipitate the recombinant antitrypsin. The AAT precipitated at 45–75% saturation of ammonium sulfate, depending on the age of the homogenate. The crude AAT in the homogenate degraded at room temperature (25°C), with a zero order deactivation rate of 1.815 × 10−3 ± 3.43 × 10−4 g AAT L−1h−1.  相似文献   

14.
Cell growth limitation is known to be an important condition that enhances l-valine synthesis in Corynebacterium glutamicum recombinant strains with l-isoleucine auxotrophy. To identify whether it is the limited availability of l-isoleucine itself or the l-isoleucine limitation-induced rel-dependent ppGpp-mediated stringent response that is essential for the enhancement of l-valine synthesis in growth-limited C. glutamicum cells, we deleted the rel gene, thereby constructing a relaxed (rel ) C. glutamicum ΔilvA ΔpanB Δrel ilvNM13 (pECKAilvBNC) strain. Variations in enzyme activity and l-valine synthesis in rel + and rel strains under conditions of l-isoleucine excess and limitation were investigated. A sharp increase in acetohydroxy acid synthase (AHAS) activity, a slight increase in acetohydroxyacid isomeroreductase (AHAIR) activity, and a dramatic increase in l-valine synthesis were observed in both rel + and rel cells exposed to l-isoleucine limitation. Although the positive effect of induction of the stringent response on AHAS and AHAIR upregulation in cells was not confirmed, we found the stringent response to be beneficial for maintaining increased AHAS, dihydroxyacid dehydratase, and transaminase B activity and l-valine synthesis in cells during the stationary growth phase.  相似文献   

15.
Summary A new process (Living Cell Reaction Process) forl-isoleucine production using viable, non-growing cells ofBrevibacterium flavum AB-07 was optimised using ethanol as the energy source and -ketobutyric acid (-KB) as precursor.l-valine also could be produced from glucose at high yield by this process. This process differs from the usual fermentation method in that non-growing cells are used, and the production ofl-isoleucine andl-valine were carried out under conditions of repressed cell division and growth. Minimal medium missing the essential growth factor, biotin was employed as the reaction mixture for the production ofl-isoleucine andl-valine. The productivity ofl-isoleucine andl-valine were 200 mmol·l–1 · day–1 (molecular yield to -KB: 95%) and 300 mmol · l–1 · day–1 (molecular yield to glucose: 80%) respectively. The content ofl-isoleucine andl-valine in total amino acids produced in the each mixture were 97% and 96% respectively.  相似文献   

16.
Hairy root cultures of Gynostemma pentaphyllum were established by infecting leaf discs with Agrobacterium rhizogenes. The dry biomass of hairy roots grown in MS medium for 49 days was 7.3 g l−1 with a gypenoside content of 38 mg g−1 dry wt.  相似文献   

17.
Two inexpensive substrates, starch and whey were used to produce poly(3-hydroxybutyrate) (PHB) in fed-batch cultures of Azotobacter chroococcum and recombinant Escherichia coli, respectively. Oxygen limitation increased PHB contents in both fermentations. In fed-batch culture of A. chroococcum, cell concentration of 54 g l−1 with 46% PHB was obtained with oxygen limitation, whereas 71 g l−1 of cell with 20% PHB was obtained without oxygen limitation. The timing of PHB biosynthesis in recombinant E. coli was controlled using the agitation speed of a stirred tank fermentor. A PHB content of 80% could be obtained with oxygen limitation by increasing the agitation speed up to only 500 rpm.  相似文献   

18.
A recombinant oxidation/reduction cycle for the conversion of D-fructose to D-mannitol was established in resting cells of Corynebacterium glutamicum. Whole cells were used as biocatalysts, supplied with 250 mM sodium formate and 500 mM D-fructose at pH 6.5. The mannitol dehydrogenase gene (mdh) from Leuconostoc pseudomesenteroides was overexpressed in strain C. glutamicum ATCC 13032. To ensure sufficient cofactor [nicotinamide adenine dinucleotide (reduced form, NADH)] supply, the fdh gene encoding formate dehydrogenase from Mycobacterium vaccae N10 was coexpressed. The recombinant C. glutamicum cells produced D-mannitol at a constant production rate of 0.22 g (g cdw)−1 h−1. Expression of the glucose/fructose facilitator gene glf from Zymomonas mobilis in C. glutamicum led to a 5.5-fold increased productivity of 1.25 g (g cdw)−1 h−1, yielding 87 g l−1 D-mannitol from 93.7 g l−1 D-fructose. Determination of intracellular NAD(H) concentration during biotransformation showed a constant NAD(H) pool size and a NADH/NAD+ ratio of approximately 1. In repetitive fed-batch biotransformation, 285 g l−1 D-mannitol over a time period of 96 h with an average productivity of 1.0 g (g cdw)−1 h−1 was formed. These results show that C. glutamicum is a favorable biocatalyst for long-term biotransformation with resting cells. Dedicated to Prof. Hermann Sahm on the occasion of his 65th birthday.  相似文献   

19.
A novel Candida glycerinogenes mutant, which possesses high glycerol productivity in a high phosphate concentration medium, was obtained by mutagenesis of an industrial glycerol producer. The mutant accumulated a total biomass of 11.5 g l−1, which is less than the 15 g l−1of the wild-type strain, but it consumed glucose faster than the wild-type strain did. The mutant reached its maximal glycerol concentration of 129 g l−1 in 84 h compared to 96 h for the wild-type strain. High cytoplasmic glycerol-3-phosphate dehydrogenase activity of the mutant in the early glycerol formation phase, leading to a rapid glycerol synthesis and accumulation, may be the main reason for the short fermentation process.  相似文献   

20.
The dimorphic fungus Mucor indicus was grown in different forms classified as purely filamentous, mostly filamentous, mostly yeast-like and purely yeast-like, and the relationship between morphology and metabolite production, inhibitor tolerance and the cell wall composition was investigated. Low concentrations of spores in the inoculum with subsequent aeration promoted filamentous growth, whereas higher spore concentrations and anaerobic conditions promoted yeast-like growth. Ethanol was the main metabolite with glycerol next under all conditions tested. The yields of ethanol from glucose were between 0.39 and 0.42 g g−1 with productivities of 3.2–5.0 g l−1 h−1. The ethanol productivity of mostly filamentous cells was increased from 3.9 to 5.0 g l−1 h−1 by the presence of oxygen, whereas aeration of purely yeast-like cells showed no such effect. All growth forms were able to tolerate 4.6 g l−1 furfural and 10 g l−1 acetic acid and assimilate the sugars, although with different consumption rates. The cell wall content of the fungus measured as alkali insoluble materials (AIM) of the purely yeast-like cells was 26% of the biomass, compared to 8% of the pure filaments. However, the chitosan concentration of the filaments was 29% of the AIM, compared to 6% of the yeast-like cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号