首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
RGL2 [RalGDS (Ral guanine nucleotide dissociation stimulator)-like 2] is a member of the RalGDS family that we have previously isolated and characterized as a potential effector for Ras and the Ras analogue Rap1b. The protein shares 89% sequence identity with its mouse orthologue Rlf (RalGDS-like factor). In the present study we further characterized the G-protein-binding features of RGL2 and also demonstrated that RGL2 has guanine-nucleotide-exchange activity toward the small GTPase RalA. We found that RGL2/Rlf properties are well conserved between human and mouse species. Both RGL2 and Rlf have a putative PKA (protein kinase A) phosphorylation site at the C-terminal of the domain that regulates the interaction with small GTPases. We demonstrated that RGL2 is phosphorylated by PKA and phosphorylation reduces the ability of RGL2 to bind H-Ras. As RGL2 and Rlf are unique in the RalGDS family in having a PKA site in the Ras-binding domain, the results of the present study indicate that Ras may distinguish between the different RalGDS family members by their phosphorylation by PKA.  相似文献   

2.
The structure of the complex of Ras with the Ras-binding domain of its effector RalGDS (RGS-RBD), the first genuine Ras-effector complex, has been solved by X-ray crystallography. As with the Rap-RafRBD complex (Nasser et al., 1995), the interaction is via an inter-protein beta-sheet between the switch I region of Ras and the second strand of the RGS-RBD sheet, but the details of the interactions in the interface are remarkably different. Mutational studies were performed to investigate the contribution of selected interface residues to the binding affinity. Gel filtration experiments show that the Ras x RGS-RBD complex is a monomer. The results are compared to a recently determined structure of a similar complex using a Ras mutant (Huang et al., 1998) and are discussed in relation to partial loss-of-function mutations and the specificity of Ras versus Rap binding.  相似文献   

3.
The past year has witnessed a tremendous increase in our understanding of the structures and interactions of the GTPases. The highlights include crystal structures of Gα subunits, as well as the first complex between a GTPase (Rap1A) and an effector molecule (c-Raf1 Ras-binding domain). In the field of elongation factors (EFs), three very important structures have been determined: EF-G, the ternary complex of EF-Tu·GTP with aminoacyl-tRNA, and the EF-Tu·EF-Ts complex.  相似文献   

4.
Rap1A is a Ras-related GTP binding protein which has an amino acid sequence identical to that of Ras in the putative "effector" domain (amino acids 32-40). The binding of Rap1A to Ras-GTPase activating protein (GAP) through this domain is a potential mechanism for explaining the observation that Rap1A can antagonize the ability of oncogenic Ras to transform cells. It was recently shown (Yatani, A., Okabe, K., Polakis, P., Halenbeck, R., McCormick, F., and Brown, A. M. (1990) Cell 61, 769-776) that the activation of M2-muscarinic receptor-coupled K+ channels in heart is inhibited by the addition of exogenous Ras and Ras-GAP. We have made use of this system in the present paper to show that Rap1A is able to effectively block this inhibitory action of Ras-GAP. We observed that both Rap1A-GDP and Rap1A-guanosine 5'-3-O-(thio)triphosphate (GTP gamma S) were able to block the inhibitory effect of Ras-GAP upon channel activation. This effect occurred at picomolar concentrations of Rap1A, and the GTP gamma S-bound form of the protein was consistently found to be more potent than the GDP form. A Rap1A Thr35----Ala mutation which bound GTP gamma S did not prevent K+ channel inhibition by Ras-GAP, suggesting that the antagonism by wild type Rap1A involves an interaction with GAP in the effector domain. The effectiveness of Rap1A to inhibit Ras-GAP is dependent upon the amount of Ras-GAP present in the assay and can also be overcome by the addition of GTP-bound N-Ras (GC-43), suggesting a competitive mechanism is operative. Finally, a truncated form of Ras-GAP (GAP32) which is no longer dependent upon Ras for inhibition of the M2-activated K+ channel is also no longer sensitive to blockade by added Rap1A. These data support the concept of GAP as an effector of Ras action and indicate that Rap1A can serve as an inhibitor of Ras action in a system distinct from cell transformation by a competitive mechanism involving the GAP binding domain of Rap1A.  相似文献   

5.
Genetic and biochemical evidence suggests that the Ras protooncogene product regulates the activation of the Raf kinase pathway, leading to the proposal that Raf is a direct mitogenic effector of activated Ras. Here we report the use of a novel competition assay to measure in vitro the relative affinity of the c-Raf-1 regulatory region for Ras-GTP, Ras-GDP, and 10 oncogenic and effector mutant Ras proteins. c-Raf-1 associates with normal Ras and the oncogenic V12 and L61 forms of Ras with equal affinity. The moderately transforming mutant Ras[E30K31] also bound to the c-Raf-1 regulatory region with normal affinity. Transformation-defective Ras effector mutants Ras[N33], Ras[S35], and Ras[N38] bound poorly. In contrast, the transformation defective Ras[G26I27] and Ras[E45] mutants bound to the c-Raf-1 regulatory region with nearly wild-type affinity. A stable, high-affinity Ras-binding region of c-Raf-1 was mapped to a 99-amino-acid subfragment of the first 257 residues. The smallest Ras-binding region identified consisted of N-terminal residues 51 to 131, although stable expression of the domain and high-affinity binding were improved by the presence of residues 132 to 149. Deletion of the Raf zinc finger region did not reduce Ras-binding affinity, while removal of the first 50 amino acids greatly increased affinity. Phosphorylation of Raf[1-149] by protein kinase A on serine 43 resulted in significant inhibiton of Ras binding. demonstrating that the mechanism of cyclic AMP downregulation results through structural changes occurring exclusively in this small Ras-binding domain.  相似文献   

6.
Ras and Rap1 proteins are related GTP-dependent signal transducers which require Gly-12, the effector domain (residues 32-40), and Ala-59 for stimulation of their GTPase activities by GAP1 and GAP3, respectively. The replacement of Gly-12 by Val or Ala-59 by Thr potentiates the Ras oncogenicity and Rap1A antioncogenicity. However, the mutations in the effector domain, in particular the replacement of Thr-35 by Ala, abolish both Ras oncogenicity and Rap1A antioncogenicity, indicating that the effector domain is involved in interactions of these signal transducers with their targets as well as the GAPs. In this paper, we demonstrate that (i) replacement of Tyr-64 of the Ha-Ras protein or Phe-64 of the Rap1A protein by Glu or other non-hydrophobic amino acids reduces their intrinsic GTPase activities and abolishes their stimulation by GAP1 or GAP3, respectively, (ii) replacement of Tyr-64 by Gly and other non-hydrophobic amino acids results in complete loss of the oncogenicity of the v-Ha-Ras protein, indicating that the hydrophobic residue 64, in addition to the known effector domain, is essential for the Ras protein to interact with its target as well as GAP1. In addition we have found that Asn-26, Glu-31, and Val-45 of the v-Ha-Ras protein are required for its oncogenicity. Replacement of the Ras residues at either positions 26, 31, or 45 by the corresponding Rap1A residues abolishes the Ras oncogenicity.  相似文献   

7.
8.
The Ras-like family of small GTPases includes, among others, Ras, Rap1, R-ras, and Ral. The family is characterized by similarities in the effector domain. While the function of Ras is, at least in part, elucidated, little is known about other members of the family. Currently, much attention is focused on the small GTPase Rap1. Initially, this member was identified as a transformation suppressor protein able to revert the morphological phenotype of Ras-transformed fibroblasts. This has led to the hypothesis that Rap1 antagonizes Ras by interfering in Ras effector function. Recent analysis revealed that Rap1 is activated rapidly in response to activation of a variety of receptors. Rap1 activation is mediated by several second messengers, including calcium, diacylglycerol, and cAMP. Guanine nucleotide exchange factors (GEFs) have been identified that mediate these effects. The most interesting GEF is Epac, an exchange protein directly activated by cAMP, thus representing a novel cAMP-induced, protein kinase A-independent pathway. Furthermore, Rap1 is inactivated by specific GTPase-activating proteins (GAPs), one of which is regulated through an interaction with Galphai. While Ras and Rap1 may share some effector pathways, evidence is accumulating that Ras and Rap1 each regulate unique cellular processes in response to various extracellular ligands. For Rap1 these functions may include the control of cell morphology.  相似文献   

9.
It has previously been shown that the transient kinetics of the interaction between the Ras-binding domain of c-Raf-1 and the proto-oncoprotein Ras can be followed by stopped-flow measurements using the 2',3'-(N-methylanthraniloyl) fluorescence of 2',3'-(N-methylanthraniloyl) guanyl-5'-yl-imidodiphosphate-labelled Ras. In continuation of this work, we demonstrate that the His-tagged Ras-binding domain of c-Raf-1 can also be synthesized in a cell-free expression system. After purification by Ni2+ affinity chromatography, His-tagged Ras-binding domain of c-Raf-1 could be isolated in sufficient amounts for biochemical and biophysical investigations. The results obtained describe the first example of a cell-free synthesized protein which has been used for stopped-flow measurements to determine the transient kinetics of protein-protein interactions with an effector.  相似文献   

10.
Little is known about the specific signaling roles of Rap2, a Ras family small GTP-binding protein. In a search for novel Rap2-interacting proteins by the yeast two-hybrid system, we isolated isoform 3 of the human mitogen-activated protein kinase kinase kinase kinase 4 (MAP4K4), a previously described but uncharacterized isoform. Other isoforms of MAP4K4 in humans and mice are known as hematopoietic progenitor kinase (HPK)/germinal center kinase (GCK)-like kinase and Nck-interacting kinase, respectively. MAP4K4 belongs to the STE20 group of protein kinases and regulates c-Jun N-terminal kinase (JNK). MAP4K4 interacted with Rap2 through its C-terminal citron homology domain but did not interact with Rap1 or Ras. Interaction with Rap2 required the intact effector region of Rap2. MAP4K4 interacted preferentially with GTP-bound Rap2 over GDP-bound Rap2 in vitro. In cultured cells, MAP4K4 colocalized with Rap2, while a mutant MAP4K4 lacking the citron homology domain failed to do so. Furthermore, Rap2 enhanced MAP4K4-induced activation of JNK. These results suggest that MAP4K4 is a putative effector of Rap2 mediating the activation of JNK by Rap2.  相似文献   

11.
Mammalian candidate effectors of the small GTPase Ras, such as RalGDS, afadin/AF-6, Rin1, and phospholipase Cepsilon, have been shown to share structurally conserved modules termed Ras-associating (RA) domains at their Ras-binding sites. The Ras-binding domains of Raf-1 and phosphoinositide 3-kinase gamma (other Ras effectors) also share a similar tertiary structure with the RA domains. On the other hand, the primary Ras-binding site of Saccharomyces cerevisiae adenylyl cyclase, the best characterized Ras effector, has been mapped by mutational studies to the leucine-rich repeats (LRR) domain (amino acids 674-1300), whose structure apparently bears no resemblance to the RA domains. By a computer algorithm-based search we have unexpectedly found an RA domain in the N-terminal 81 amino acid residues (676) of the LRR domain. The purified RA-domain polypeptide exhibits an ability to bind directly to Ras in a GTP-dependent manner and to competitively inhibit Ras-dependent activation of adenylyl cyclase in vitro, with an affinity comparable with that of the whole LRR domain. The specificity of binding of the RA domain to various Ras effector region mutants is indistinguishable from that of the full-length adenylyl cyclase. The activated RAS2 (RAS2(Val-19))-dependent heat shock sensitivity of yeast cells is suppressed by overexpression of the RA domain polypeptide. Further, mutations of the RA domain abolish its Ras binding activity, and adenylyl cyclase molecules carrying these mutations are rendered unactivatable by Ras in vitro. This RA domain bears highest similarity to the Ras-binding domain of Raf-1 based on comparison of its primary and predicted secondary structures with those of other Ras effectors. These results indicate that the RA domain is a primary Ras-binding site for activation of adenylyl cyclase, implicating RA domains as universal modules for interaction of effectors with Ras, conserved from yeast to mammals.  相似文献   

12.
We previously identified a novel murine protein, AND-34, with a carboxyl-terminal domain homologous to Ras family guanine nucleotide exchange factors (GEFs), which bound to the focal adhesion docking protein p130(Cas). Work by others has implicated both the human homologue of AND-34, BCAR3, and human p130(Cas), BCAR1, in the resistance of breast cancer cells to the anti-estrogen tamoxifen. Here we report that AND-34 displays GEF activity on RalA, Rap1A, and R-Ras but not Ha-Ras GTPases in cells. In contrast to several other Ral-GEFs, the Ral GEF activity of AND-34 is not augmented by constitutively active Ha-Ras(Val-12), consistent with the absence of a detectable Ras-binding domain. Efficient binding to AND-34 required both the Src-binding domain and a flanking carboxyl-terminal region of p130(Cas). The p130(Cas)-binding site mapped to a carboxyl-terminal sequence within the AND-34 GEF domain. Overexpression of p130(Cas), but not an AND-34-binding mutant of p130(Cas), inhibited the Ral GEF activity of co-transfected AND-34. This work identifies a new potential function for p130(Cas) and a new regulatory pathway involved in the control of Ral, Rap, and R-Ras GTPases that may participate in the progression of breast cancer cells to tamoxifen resistance.  相似文献   

13.
Rap2 belongs to the Ras family of small GTP-binding proteins, but its specific roles in cell signaling remain unknown. In the present study, we have affinity-purified from rat brain a Rap2-interacting protein of approximately 155 kDa, p155. By liquid chromatography tandem mass spectrometry, we have identified p155 as Traf2- and Nck-interacting kinase (TNIK). TNIK possesses an N-terminal kinase domain homologous to STE20, the Saccharomyces cerevisiae mitogen-activated protein kinase kinase kinase kinase, and a C-terminal regulatory domain termed the citron homology (CNH) domain. TNIK induces disruption of F-actin structure, thereby inhibiting cell spreading. In addition, TNIK specifically activates the c-Jun N-terminal kinase (JNK) pathway. Among our observations, TNIK interacted with Rap2 through its CNH domain but did not interact with Rap1 or Ras. TNIK interaction with Rap2 was dependent on the intact effector region and GTP-bound configuration of Rap2. When co-expressed in cultured cells, TNIK colocalized with Rap2, while a mutant TNIK lacking the CNH domain did not. Rap2 potently enhanced the inhibitory function of TNIK against cell spreading, but this was not observed for the mutant TNIK lacking the CNH domain. Rap2 did not significantly enhance TNIK-induced JNK activation, but promoted autophosphorylation and translocation of TNIK to the detergent-insoluble cytoskeletal fraction. These results suggest that TNIK is a specific effector of Rap2 to regulate actin cytoskeleton.  相似文献   

14.
GAP1(IP4BP) is a member of the GAP1 family of Ras GTPase-activating proteins (Ras GAPs) that includes GAP1(m), CAPRI, and RASAL. Composed of a central Ras GAP domain, surrounded by amino-terminal C(2) domains and a carboxyl-terminal pleckstrin homology/Bruton's tyrosine kinase domain, GAP1(IP4BP) has previously been shown to possess an unexpected GAP activity on the Ras-related protein Rap, besides the predicted Ras GAP activity (Cullen, P. J., Hsuan, J. J., Truong, O., Letcher, A. J., Jackson, T. R., Dawson, A. P., and Irvine, R. F. (1995) Nature 376, 527-530). Here we have shown that GAP1(IP4BP) is indeed an efficient Ras/Rap GAP, having K(m)s of 213 and 42 microm and estimated k(cat)s of 48 and 16 s(-1) for Ras and Rap, respectively. For this dual activity, regions outside the Ras GAP domain are required, as the isolated domain (residues 291-569) retains a pronounced Ras GAP activity yet has very low activity toward Rap. Interestingly, mutagenesis of the Ras GAP arginine finger, and surrounding residues important in Ras binding, inhibit both Ras and Rap GAP activity of GAP1(IP4BP). Although the precise details by which GAP1(IP4BP) can function as a Rap GAP remain to be determined, these data are consistent with Rap associating with GAP1(IP4BP) through the Ras-binding site within the Ras GAP domain. Finally, we have established that such dual Ras/Rap GAP activity is not restricted to GAP1(IP4BP). Although GAP1(m) appears to constitute a specific Ras GAP, CAPRI and RASAL display dual activity. For CAPRI, its Rap GAP activity is modulated upon its Ca(2+)-induced association with the plasma membrane.  相似文献   

15.
A yeast two-hybrid screening for Ras-binding proteins in nematode Caenorhabditis elegans has identified a guanine nucleotide exchange factor (GEF) containing a Ras/Rap1A-associating (RA) domain, termed Ce-RA-GEF. Both Ce-RA-GEF and its human counterpart Hs-RA-GEF possessed a PSD-95/DlgA/ZO-1 (PDZ) domain and a Ras exchanger motif (REM) domain in addition to the RA and GEF domains. They also contained a region homologous to a cyclic nucleotide monophosphate-binding domain, which turned out to be incapable of binding cAMP or cGMP. Although the REM and GEF domains are conserved with other GEFs acting on Ras family small GTP-binding proteins, the RA and PDZ domains are unseen in any of them. Hs-RA-GEF exhibited not only a GTP-dependent binding activity to Rap1A at its RA domain but also an activity to stimulate GDP/GTP exchange of Rap1A both in vitro and in vivo at the segment containing its REM and GEF domains. However, it did not exhibit any binding or GEF activity toward Ras. On the other hand, Ce-RA-GEF associated with and stimulated GDP/GTP exchange of both Ras and Rap1A. These results indicate that Ce-RA-GEF and Hs-RA-GEF define a novel class of Rap1A GEF molecules, which are conserved through evolution.  相似文献   

16.
Zeng J  Treutlein HR  Simonson T 《Proteins》1999,35(1):89-100
The protein Raf is an immediate downstream target of Ras in the MAP kinase signalling pathway. The complex of Ras with the Ras-binding domain (RBD) of Raf has been modelled by homology to the (E30D,K31E)-Rap1A:RBD complex, and both have been subjected to multiple molecular dynamics simulations in solution. While both complexes are stable, several rearrangements occur in the Ras:RBD simulations: the RBD loop 100-109 moves closer to Ras, Arg73 in the RBD moves towards Ras to form a salt bridge with Ras-Asp33, and Loop 4 of the Ras switch II region shifts upwards toward the RBD. The Ras:RBD interactions (including the RBD-Arg73 interaction) are consistent with available NMR and mutagenesis data on the Ras: RBD complex in solution. The Ras switch II region does not interact directly with the RBD, although indirect interactions exist through the effector domain and bridging water molecules. No large-scale RBD motion is seen in the Ras:RBD complex, compared to the Rap:RBD complex, to suggest an allosteric activation of Raf by Ras. This may be because the Raf kinase domain (whose structure is unknown) is not included in the model.  相似文献   

17.
Rap2-interacting protein x (RPIPx) is a homolog of RPIP8, a specific effector of Rap2 GTPase. The N-terminal region of RPIP8, which contains the RUN domain, interacts with Rap2. Using cell-free synthesis and NMR, we determined that the region encompassing residues 83-255 of mouse RPIPx, which is 40-residues larger than the predicted RUN domain (residues 113-245), is the minimum fragment that forms a correctly folded protein. This fragment, the RPIPx RUN domain, interacted specifically with Rap2B in vitro in a nucleotide-dependent manner. The crystal structure of the RPIPx RUN domain was determined at 2.0 A of resolution by the multiwavelength anomalous dispersion (MAD) method. The RPIPx RUN domain comprises eight anti-parallel alpha-helices, which form an extensive hydrophobic core, followed by an extended segment. The residues in the core region are highly conserved, suggesting the conservation of the RUN domain-fold among the RUN domain-containing proteins. The residues forming a positively charged surface are conserved between RPIP8 and its homologs, suggesting that this surface is important for Rap2 binding. In the crystal the putative Rap2 binding site of the RPIPx RUN domain interacts with the extended segment in a segment-swapping manner.  相似文献   

18.
Neurotensin (NT), a gut peptide, plays important roles in gastrointestinal secretion, inflammation, and growth of normal and neoplastic tissues. cAMP regulates the secretion of hormones via its effector proteins protein kinase A (PKA) or Epac (exchange protein directly activated by cAMP). The small GTPase Rap1 can be activated by both PKA and Epac; however, the role of Rap1 in hormone secretion is unknown. Here, using the BON human endocrine cell line, we found that forskolin (FSK)-stimulated NT secretion was reduced by inhibition of Rap1 expression and activity. FSK-stimulated NT secretion was enhanced by overexpression of either wild-type or constitutively active Rap1. Epac activators and wild-type Epac enhanced NT release and Rap1 activity. In contrast, overexpression of a cAMP binding mutant, EpacR279E, decreased NT release and Rap1 activity. PKA activation increased NT release and Rap1 activity. FSK-stimulated NT release was reduced by PKA inhibition and the dominant negative Rap1N17. NT secretion, stimulated by Epac activation, was reduced by PKA inhibition; NT release, stimulated by PKA activation, was enhanced by wild-type Epac but reduced by the mutant EpacR279E. Finally, prostaglandin E2 (PGE2), a physiological agent that increases cAMP, stimulated NT secretion via cAMP/PKA/Rap1. Importantly, we demonstrate that PKA and Epac mediate the cAMP-induced NT secretion synergistically by converging at the common downstream target protein Rap1. Moreover, PGE2, a potent mediator of inflammation and associated with colorectal carcinogenesis, stimulates NT release suggesting a possible link between PGE2 and NT on intestinal inflammatory disorders and colorectal cancers.  相似文献   

19.
It was shown previously that increased expression of theras-relatedrap1gene inDictyostelium discoideumaltered cell morphology (Rebsteinet al., Dev. Genet.,1993, 14, 347–355). Vegetative Rap1 transformants were more flattened and spread than parental Ax2 cells and had increased F-actin near the cell periphery. In addition, starving Rap1 cells were inhibited in the rapid cell contraction that occurs upon refeeding with nutrient media. In this communication, we show that expression of Rap also markedly reduces the contraction response that occurs upon addition of azide to vegetative cells. The changes in cell morphology, the refeeding contraction response, and the azide contraction response have been used to analyze mutants of Rap1 generated by site-directed mutagenesis. The substitution G12V, predicted to increase the proportion of protein binding GTP, did not alter the effect of Rap on cell morphology or on its ability to inhibit the contraction response to azide, but modestly enhanced the ability of Rap1 to inhibit cell rounding in response to nutrient media. The substitution S17N, predicted to restrict the protein to the GDP-bound state, did not produce the flattened cell morphology and abolished the inhibitory effects of Rap in the two cell contraction assays. These results are consistent with a requirement of GTP binding for the Rap-induced effects. Transformants carrying the Rap-S17N protein had a more polar morphology than the parental Ax2 cells, suggesting the possibility that Rap-S17N interferes with the ability of endogenous Rap to regulate the cytoskeleton. Substitutions at amino acid 38, within the presumptive effector domain, reduced but did not abolish the effects of Rap1 on cell contraction, while the substitution T61Q had no effect on Rap1 activity. Taken together, the results suggest that Rap may have multiple regulatory effects on cytoskeletal function.  相似文献   

20.
The Ral effector protein RLIP76 (also called RIP/RalBP1) binds to Ral.GTP via a region that shares no sequence homology with the Ras-binding domains of the Ser/Thr kinase c-Raf-1 and the Ral-specific guanine nucleotide exchange factors. Whereas the Ras-binding domains have a similar ubiquitin-like structure, the Ral-binding domain of RLIP was predicted to comprise a coiled-coil region. In order to obtain more information about the specificity and the structural mode of the interaction between Ral and RLIP, we have performed a sequence space and a mutational analysis. The sequence space analysis of a comprehensive nonredundant assembly of Ras-like proteins strongly indicated that positions 36 and 37 in the core of the effector region are tree-determinant positions for all subfamilies of Ras-like proteins and dictate the specificity of the interaction of these GTPases with their effector proteins. Indeed, we could convert the specific interaction with Ras effectors and RLIP by mutating these residues in Ras and Ral. We therefore conclude that positions 36 and 37 are critical for the discrimination between Ras and Ral effectors and that, despite the absence of sequence homology between the Ral-binding and the Ras-binding domains, their mode of interaction is most probably similar.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号