首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Durum wheat has the tendency of accumulating more cadmium (Cd), a biotoxic heavy metal, in seeds than other commonly grown cereals, thus posing a serious food safety/public health concern. This could have serious negative impact on the national pasta industry and the international export market of durum wheat. The phenotyping for selecting low Cd lines is expensive and time consuming. The use of markers could be a more sustainable approach for selecting lines with low Cd levels. Here, a RIL population developed from a cross between Grenora (high Cd) × Haurani (low Cd) and two association mapping panels consisting of advanced breeding lines from the North Dakota durum wheat breeding program were used to identify QTL and associated markers for Cd. A major QTL, with Haurani contributing low Cd uptake allele and explaining 54.3 % phenotypic variation, was detected on chromosome 5BL. Association mapping using 2010 collection validated the results of linkage mapping and identified major QTL on 5BL. The 2009 collection, showed the presence of a major QTL on chromosome 2B. The SNP marker associated with major QTL on 5BL was converted to user friendly KASPar assay. The major QTL and associated KASPar marker were further validated using another RIL population developed from a cross of Strongfield (low Cd) and Alkabo (high Cd). The development of suitable marker assay, associated with major Cd uptake QTL, would help the selection for low Cd accumulating lines, minimizing the costly phenotypic evaluation for this important trait.  相似文献   

2.
Durum wheat is capable of accumulating cadmium, a toxic heavy metal, in the grain at levels that have been deemed unsafe for human consumption. Previous studies have identified genetic variation as well as markers associated with Cd accumulation in durum wheat, which can be exploited to develop low Cd cultivars. Because the phenotyping for Cd content is very expensive, KASP markers were developed from molecular markers associated with grain Cd and tested for their usefulness for marker-assisted breeding. A total of 1278 unique genotypes from preliminary and advanced yield trials grown at multiple locations for 2 years were evaluated for grain Cd as well as screened for markers associated with Cd uptake. One marker on chromosome 5B was polymorphic in all crosses between high and low Cd parents and had r2 values ranging from 0.38 to 0.85. Two other markers on the same chromosome predicted similar levels of variation in many trials; however, they were not polymorphic in all populations. The KASP markers accurately predicted up to 97% of the lines for Cd phenotype in different trials. This study identified two markers, Cad-5B and Ex_c1343_2570756, with an average prediction accuracy of 84–88%. These markers could be useful for marker-assisted selection for low grain Cd in durum wheat.  相似文献   

3.
Here, we examined the effectiveness of two approaches for reducing cadmium (Cd) accumulation in durum wheat (Triticum turgidum L. var durum) grain: the application of supplemental zinc (Zn), and the use of cultivars exhibiting reduced grain Cd concentrations. Two durum wheat near-isogenic lines (NIL) that differ in grain Cd accumulation were grown to maturity in solution culture containing a chelating agent to buffer the free activities of Zn and Cd at levels approximating those of field conditions. The low Cd accumulating (L-Cd) isoline had Cd concentrations, in grains and shoot parts, which were 60-70% lower than those of the high Cd accumulating (H-Cd) isoline. Increasing the Zn activities in the nutrient solution from deficient to sufficient levels reduced the concentration of Cd in grains and vegetative shoot parts of both isolines. The results suggest that supplemental Zn reduces Cd tissue concentrations by inhibiting Cd uptake into roots. Cd partitioning patterns between roots and shoots and between spike components suggest that the physiological basis for the low Cd trait is related to the compartmentation or symplasmic translocation of Cd.  相似文献   

4.
A previously reported Agrobacterium tumefaciens transformation system that transformed wheat cultivar Fielder at high efficiency was shown to also transform eight out of nine Triticum aestivum (hexaploid wheat) cultivars tested and two Triticum turgidum (durum wheat) cultivars. Transformation efficiencies of these wheat lines ranged from 1.5 to 51 %. Included amongst this germplasm were elite Australian hexaploid wheat cultivars that are currently in commercial cultivation and two of these cultivars, Gladius and Westonia, were transformed at 32 and 45 % efficiency, respectively. Similar high transformation efficiencies were observed for durum wheat cultivars Kronos (51 %) and Stewart (26 %). This highly efficient transformation system was used to generate transgenic plants in the absence of selection and high heritability of unselected transgenes was observed. Selectable marker free transgenic wheat plants were produced at 3 % efficiency. These data demonstrate highly efficient Agrobacterium transformation of diverse wheat germplasm, including elite cultivars, which enables routine production of selectable marker free transgenics.  相似文献   

5.
Cadmium (Cd) accumulation has been found to vary between cultivars of durum wheat (Triticum turgidum var. durum), and it is hypothesized that low-molecular-weight organic acids (LMWOAs) produced at the soil-root interface (rhizosphere) may play an important role in the availability and uptake of Cd by these plants. The objective of this study, therefore, was to (1) investigate the nature and quantity of LMWOAs present in the rhizosphere of durum wheat cultivars Arcola (low Cd accumulator) and Kyle (high Cd accumulator) grown in three different soils: Yorkton, Sutherland and Waitville, and (2) determine the relationship between Cd accumulation in these plants and LMWOAs present in the rhizosphere. Plants were grown for two weeks in pot-cultures under growth chamber conditions. Oxalic, fumaric, succinic, L-malic, tartaric, citric, acetic, propionic and butyric acids were found and quantified in the water extracts of rhizosphere soil, with acetic and succinic acids being predominant. No water extractable LMWOAs were identified in the bulk soil. Total amount of LMWOAs in the rhizosphere soil of the high Cd accumulator (Kyle) was significantly higher than that for the low Cd accumulator (Arcola) in all three soils. Furthermore, large differences in amounts of LMWOAs were found in the rhizosphere soil for the same cultivars grown in different soils and followed the pattern: Sutherland > Waitville > Yorkton. Extractable soil Cd (M NH4Cl) and Cd accumulation in the plants also followed the same soil sequence as LMWOA production. Cadmium accumulation by the high and low Cd accumulating cultivars was proportional to the levels of LMWOAs found in the rhizosphere soil of each cultivar. These results suggest that the differing levels of LMWOAs present in the rhizosphere soil played an important role in the solubilization of particulate-bound Cd into soil solution and its subsequent phytoaccumulation by the high and low Cd accumulating cultivars.  相似文献   

6.
Identification of marker?Ctrait associations in germplasm relevant to a breeding program can be an effective way to identify quantitative trait loci (QTL) useful for selection and is critical to the success of genome-wide selection strategies. This approach is most cost-effective if phenotypic data routinely collected by breeding programs is used, necessitating only addition of genotypic data. The objective of this work was to evaluate such an approach using unbalanced phenotypic data from durum wheat (Triticum turgidum L. var. durum) registration trials genotyped with diversity arrays technology (DArT) markers. Plant height, grain cadmium concentration and yellow colour loss during pasta manufacture were chosen as example traits because all are influenced by major genes associated with known QTL. A further evaluation was performed on semolina yellow pigment concentration, a more complexly-inherited trait, but with numerous QTL identified. In total, 870 informative DArT markers were used to detect marker?Ctrait associations. The genome coverage of markers was uneven, with low coverage of chromosomes 4B and 5A. The DArT coverage of chromosome 4B was too sparse to identify markers strongly associated with the semidwarf height locus Rht-B1 and the lipoxygenase locus Lpx-B1, both known to reside on 4B. The 20 DArT markers associated with pigment concentration localized to chromosomes 1B, 2A, 5B, 6A, 7A and 7B, linked to the trait in other studies. One DArT clone showed sequence identity to a single wheat expressed sequence tag that maps to the same deletion bin as Psy1-A1, a gene previously associated with yellow pigment concentration in durum wheat. Three markers were associated with grain cadmium and explained similar proportions of the phenotypic variance as the Xusw14 marker known to be physically linked to Cdu-B1, a major locus on 5B regulating cadmium accumulation. The sequences of these three DArT markers were 98?% identical, and were used to identify a single gene in rice that is physically linked to other rice genes that co-localize with Cdu-B1 in durum wheat. The results suggest that this historical phenotypic dataset is useful for QTL discovery and would potentially be a ??training population?? for genomic selection when a high-density, low-cost marker platform becomes available.  相似文献   

7.
Erenoglu  B.  Cakmak  I.  Römheld  V.  Derici  R.  Rengel  Z. 《Plant and Soil》1999,209(2):245-252
Effect of zinc (Zn) nutritional status on uptake of inorganic 65Zn was studied in rye (Secale cereale, cv. Aslim), three bread wheat (Triticum aestivum, cvs. Dagdas, Bezostaja, BDME-10) and durum wheat (Triticum durum, cv. Kunduru-1149) cultivars grown for 13 days in nutrient solution under controlled environmental conditions. The cultivars were selected based on their response to Zn deficiency and to Zn fertilization in calcareous soils under field conditions. When grown in Zn-deficient calcareous soil in the field, the rye cultivar had the highest, and the durum wheat the lowest Zn efficiency. Among the bread wheats, BDME-10 showed higher susceptibility to Zn deficiency and Bezostaja and Dagdas were less affected by Zn deficiency. Similarly to field conditions, in nutrient solution visual Zn deficiency symptoms (i.e. necrotic lesions on leaf blade) appeared to be more severe in Kunduru-1149 and BDME-10 and less severe in rye cultivar Aslim. Under Zn deficiency, shoot concentrations of Zn were similar between all cultivars. Cultivars with adequate Zn supply did not differ in uptake and root-to-shoot translocation rate of 65Zn, but under Zn deficiency there were distinct differences; rye showed the highest rate of Zn uptake and the durum wheat the lowest. In the case of bread wheat cultivars, 65Zn uptake rate was about the same and not related to their differential Zn efficiency. Under Zn deficiency, rye had the highest rate of root-to-shoot translocation of 65Zn, while all bread and durum wheat cultivars were similar in their capacity to translocate 65Zn from roots to shoots. When Zn2+ activity in uptake solution ranged between 117 p M and 34550 pM, Zn-efficient and Zn-inefficient bread wheat genotypes were again similar in uptake and root-to-shoot translocation rate of 65Zn. The results indicate that high Zn efficiency of rye can be attributed to its greater Zn uptake capacity from soils. The inability of the durum wheat cultivar Kunduru-1149 to have a high Zn uptake capacity seems to be an important reason for its Zn inefficiency. Differential Zn efficiency between the bread wheat cultivars used in this study is not related to their capacity to take up inorganic Zn. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

8.
Here we examined several physiological properties of two near-isogenic lines of durum wheat (Triticum turgidum var. durum) that differ in grain cadmium accumulation, to identify the function of a gene locus that confers differential grain Cd concentrations. Time- and concentration-dependent uptake and translocation studies using 109Cd were conducted on nutrient solution-grown seedlings. Root extracts were analysed by inductively coupled plasma emission spectrometry, gel filtration and capillary electrophoresis to determine the interaction between Cd and phytochelatins (PCs) in storage of Cd in roots. The two isolines did not differ in time- or concentration-dependent root Cd uptake, but the low grain-Cd-accumulating isoline showed decreased movement of Cd from roots to shoots. All buffer-soluble Cd extracted from roots of both isolines was in the form of a low-molecular-weight PC-containing complex. The data suggest that PC synthesis is not a limiting factor in the differential storage of Cd in roots, and that movement of Cd through the root and into the transpiration stream may be the cause of differential Cd partitioning in the two isolines.  相似文献   

9.
In Mediterranean regions drought is the major factor limiting spring barley and durum wheat grain yields. This study aimed to compare spring barley and durum wheat root and shoot responses to drought and quantify relationships between root traits and water uptake under terminal drought.One spring barley(Hordeum vulgare L. cv. Rum) and two durum wheat Mediterranean cultivars(Triticum turgidum L. var durum cvs Hourani and Karim) were examined in soil‐column experiments under well watered and drought conditions. Root system architecture traits, water uptake, and plant growth were measured. Barley aerial biomass and grain yields were higher than for durum wheat cultivars in well watered conditions. Drought decreased grain yield more for barley(47%) than durum wheat(30%, Hourani). Root‐to‐shoot dry matter ratio increased for durum wheat under drought but not for barley, and root weight increased for wheat in response todrought but decreased for barley. The critical root length density(RLD) and root volume density(RVD) for 90% available water capture for wheat were similar to(cv. Hourani) or lower than(cv. Karim) for barley depending on wheat cultivar. For both species, RVD accounted for a slightly higher proportion of phenotypic variation in water uptake under drought than RLD.  相似文献   

10.
High Cd content in durum wheat (Triticum turgidum L. var durum) grain grown in the United States and Canada presents potential health and economic problems for consumers and growers. In an effort to understand the biological processes that result in excess Cd accumulation, root Cd uptake and xylem translocation to shoots in seedlings of bread wheat (Triticum aestivum L.) and durum wheat cultivars were studied. Whole-plant Cd accumulation was somewhat greater in the bread wheat cultivar, but this was probably because of increased apoplastic Cd binding. Concentration-dependent 109Cd2+-influx kinetics in both cultivars were characterized by smooth, nonsaturating curves that could be dissected into linear and saturable components. The saturable component likely represented carrier-mediated Cd influx across root-cell plasma membranes (Michaelis constant, 20–40 nm; maximum initial velocity, 26–29 nmol g−1 fresh weight h−1), whereas linear Cd uptake represented cell wall binding of 109Cd. Cd translocation to shoots was greater in the bread wheat cultivar than in the durum cultivar because a larger proportion of root-absorbed Cd moved to shoots. Our results indicate that excess Cd accumulation in durum wheat grain is not correlated with seedling-root influx rates or root-to-shoot translocation, but may be related to phloem-mediated Cd transport to the grain.  相似文献   

11.
The yellow colour of durum wheat (Triticum turgidum L. var durum) semolina is due in part to the presence of carotenoid pigments found in the endosperm and is an important end-use quality trait. We hypothesized that variation in the genes coding for phytoene synthase (Psy), a critical enzyme in carotenoid biosynthesis, may partially explain the phenotypic variation in endosperm colour observed among durum cultivars. Using rice sequence information, primers were designed to PCR clone and sequence the Psy genes from Kofa (high colour) and W9262-260D3 (medium colour) durum cultivars. Sequencing confirmed the presence of four Psy genes in each parent, corresponding to a two member gene family designated as Psy1-1, Psy1-2 and Psy2-1 and Psy2-2. A genetic map was constructed using 155 F1-derived doubled haploid lines from the cross W9262-260D3/Kofa with 194 simple sequence repeat and DArT markers. Using Psy1-1 and Psy2-1 allele-specific markers and chromosome mapping, the Psy1 and Psy2 genes were located to the group 7 and 5 chromosomes, respectively. Four quantitative trait loci (QTL) underlying phenotypic variation in endosperm colour were identified on chromosomes 2A, 4B, 6B, and 7B. The Psy1-1 locus co-segregated with the 7B QTL, demonstrating an association of this gene with phenotypic variation for endosperm colour. This work is the first report of mapping Psy genes and supports the role of Psy1-1 in elevated levels of endosperm colour in durum wheat. This gene is a target for the further development of a molecular marker to enhance selection for endosperm colour in durum wheat breeding programs.  相似文献   

12.
Gliadins are seed storage proteins which are characterized by high intervarietal polymorphism and can be used as genetic markers. As a result of our work, a considerably extended catalogue of allelic variants of gliadin component blocks was compiled for durum wheat; 74 allelic variants for four gliadin-coding loci were identified for the first time. The extended catalogue includes a total of 131 allelic variants: 16 for locus Gli-A1(d), 19 for locus Gli-B1(d), 41 for locus Gli-A2(d), and 55 for locus Gli-B2(d). The electrophoretic pattern of the standard cultivar and a diagram are provided for every block identified. The number of alleles per family is quite small for loci Gli-A1(d) and Gli-B1(d) of durum wheat, as contrasted to loci Gli-A2(d) and Gli-B2(d) that are characterized by large families including many alleles. The presence of large block families determines a higher diversity of durum wheat for loci Gli-A2(d) and Gli-B2(d) as compared to Gli-A1(d) and Gli-B1(d). The catalogue of allelic variants of gliadin component blocks can be used by seed farmers to identify durum wheat cultivars and evaluate their purity; by breeders, to obtain homogenous cultivars and control the initial stages of selection; by gene bank experts, to preserve native varieties and the original biotypic composition of cultivars.  相似文献   

13.
Durum wheat (Triticum turgidum L. var durum) cultivars exhibit lower Zn efficiency than comparable bread wheat (Triticum aestivum L.) cultivars. To understand the physiological mechanism(s) that confers Zn efficiency, this study used 65Zn to investigate ionic Zn2+ root uptake, binding, and translocation to shoots in seedlings of bread and durum wheat cultivars. Time-dependent Zn2+ accumulation during 90 min was greater in roots of the bread wheat cultivar. Zn2+ cell wall binding was not different in the two cultivars. In each cultivar, concentration-dependent Zn2+ influx was characterized by a smooth, saturating curve, suggesting a carrier-mediated uptake system. At very low solution Zn2+ activities, Zn2+ uptake rates were higher in the bread wheat cultivar. As a result, the Michaelis constant for Zn2+ uptake was lower in the bread wheat cultivar (2.3 μm) than in the durum wheat cultivar (3.9 μm). Low temperature decreased the rate of Zn2+ influx, suggesting that metabolism plays a role in Zn2+ uptake. Ca inhibited Zn2+ uptake equally in both cultivars. Translocation of Zn to shoots was greater in the bread wheat cultivar, reflecting the higher root uptake rates. The study suggests that lower root Zn2+ uptake rates may contribute to reduced Zn efficiency in durum wheat varieties under Zn-limiting conditions.Soils that contain insufficient levels of the essential plant micronutrient Zn are common throughout the world. As a result, Zn deficiency is a widespread problem in crop plants, especially cereals (Graham et al., 1992). The importance of plant foods as sources of Zn, particularly in the marginal diets of developing countries, is well established (Welch, 1993). The development of crop plants that are efficient Zn accumulators is therefore a potentially important endeavor. In addition to its effects on nutrition, Zn deficiency in crops is relevant to other areas of human health. Another consequence of Zn-deficient soils is the tendency for plants grown in such soils to accumulate heavy metals. For example, in the Great Plains region of North America, where soil Zn levels are low and naturally occurring Cd is present, durum wheat (Triticum turgidum L. var durum) grains accumulate Cd to relatively high concentrations (Wolnik et al., 1983). The presence of Cd in food represents a potential human health hazard and, in response, international trade standards have been proposed to limit the levels of Cd in exported grain (Codex Alimentarius Commission, 1993). Thus, there is a need to understand the physiological processes that control acquisition of Zn from soil solution by roots and mobilization of Zn within plants.It has been demonstrated in recent years that crop plants vary in their ability to take up Zn, particularly when its availability to roots is limited. Zn efficiency, defined as the ability of a plant to grow and yield well in Zn-deficient soils, varies among wheat cultivars (Graham and Rengel, 1993). In field trials, durum wheat cultivars have been shown to be consistently less Zn efficient than bread wheat (Triticum aestivum L.) cultivars (Graham et al., 1992). Similarly, durum wheat varieties were reported to be less Zn efficient than bread wheat varieties when grown in chelate-buffered hydroponic nutrient culture (Rengel and Graham, 1995a).The physiological mechanism(s) that confers Zn efficiency has not been identified. Processes that could influence the ability of a plant to tolerate limited amounts of available Zn include higher root uptake, more efficient utilization of Zn, and enhanced Zn translocation within the plant. Cakmak et al. (1994) showed that a Zn-inefficient durum wheat cultivar exhibited Zn-deficiency symptoms earlier and more intensely than a Zn-efficient bread wheat cultivar even though the Zn tissue concentrations were similar in both lines, suggesting differential utilization of Zn in the two cultivars. Rates of Zn translocation to shoots were shown to vary among sorghum cultivars, although correlations with Zn efficiency were not established (Ramani and Kannan, 1985). Root uptake kinetics have been reported to vary between rice cultivars having different Zn requirements, with high-Zn-requiring cultivars exhibiting consistently higher root uptake rates (Bowen, 1986). In contrast, a correlation between Zn efficiency and rates of root Zn uptake in bread and durum wheat cultivars could not be demonstrated (Rengel and Graham, 1995b).In grasses Zn influx into the root symplasm has been hypothesized to occur as the free Zn2+ ion (Halvorson and Lindsay, 1977), as well as in the form of Zn complexes with nonprotein amino acids known as phytosiderophores (Tagaki et al., 1984) or phytometallophores (Welch, 1993). Concentration-dependent uptake of free Zn2+ ions has been shown to be saturable in several species, including maize (Mullins and Sommers, 1986), barley (Veltrup, 1978), and wheat (Chaudhry and Loneragan, 1972), suggesting that ionic uptake in grasses occurs via a carrier-mediated system. However, several of these studies have been criticized on the basis that excessively high (and physiologically unrealistic) Zn2+ concentrations were used (Kochian, 1993).This study was undertaken to examine unidirectional Zn2+ influx and translocation to shoots in Zn-efficient bread wheat lines and Zn-inefficient durum wheat lines. Experiments were performed in the absence of added phytometallophores and results are presumed to represent influx of ionic Zn2+. Zn activities in the nanomolar range were used to more closely mimic free Zn2+ levels occurring naturally in soil solution. The results presented here indicate that a Zn-efficient bread wheat cultivar maintained higher rates of Zn uptake than a Zn-inefficient durum wheat cultivar, particularly at low (and physiologically relevant) solution Zn2+ activities.  相似文献   

14.
Accumulation of cadmium (Cd) in crop plants is of great concern due to the potential for food chain contamination through the soil-root interface. Although Cd uptake varies considerably with plant species, the processes which determine the accumulation of Cd in plant tissues are affected by soil factors. The influence of soil type on Cd uptake by durum wheat (Triticum turgidum var. durum L.) and flax (Linum usitatissimum L.) was studied in a pot experiment under environmentally controlled growth chamber conditions. Four cultivars/lines of durum wheat (Kyle, Sceptre, DT 627, and DT 637) and three cultivars/lines of flax (Flanders, AC Emerson, and YSED 2) were grown in two Saskatchewan soils: an Orthic Gray Luvisol (low background Cd concentration; total/ABDTPA extractable Cd: 0.12/0.03 mg kg-1, respectively) and a Dark Brown Chernozem (relatively high background Cd concentration; total/ABDTPA Cd: 0.34/0.17 mg kg-1 respectively). Plant roots, stems, newly developed heads, and grain/seeds were analyzed for Cd concentration at three stages of plant growth: two and seven weeks after germination, and at plant maturity. The results showed that Cd bioaccumulation and distribution within the plants were strongly affected by both soil type and plant cultivar/line. The Cd concentration in roots leaves and stems varied at different stages of plant growth. However, all cultivars of both plant species grown in the Chernozemic soil accumulated more Cd in grain/seeds than plants grown in the Orthic Gray Luvisol soil. The different Cd accumulation pattern also corresponded to the levels of ABDTPA extractable and metal-organic complex bound soil Cd found in both soils. Large differences were found in grain Cd among the durum wheat cultivars grown in the same soil type, suggesting the importance of rhizosphere processes in Cd bioaccumulation and/or Cd transport processes within the plant. Distribution of Cd in parts of mature plants showed that durum grain contained up to 21 and 36% of the total amount of Cd taken up by the plants for the Orthic Gray Luvisol and Chernozemic soils, respectively. These results indicate the importance of studying Cd speciation, bioaccumulation and cycling in the environment for the management of agricultural soils and crops.  相似文献   

15.
A substantial amount of between and within cultivar genetic variation was detected in all the 13 registered modern Canadian durum wheat (Triticum turgidum L. ssp. durum (Desf.) Husn.) cultivars based upon amplified restriction fragment polymorphism (AFLP). Of the approximately 950 detected AFLP markers, only 89 were polymorphic, with 41 between cultivars whereas the remaining 48 showed polymorphism within at least one cultivar. The ancestry of Canadian durum wheat cultivars was traced back to 125 cultivars, selections, and breeding lines including 17 landraces. Mean pair-wise genetic distance based on the kinship coefficient was 0.76. On the other hand, AFLP-based mean pair-wise genetic distance was 0.40. Even though there was a large difference between the means of the two diversity measures, a moderate positive correlation (r=0.457, p<0.002) was detected between the two distance matrices. Cluster analysis with the entire AFLP data divided all cultivars into three major groups reflecting their breeding origins. One group contained ’Pelissier’ alone, which was a selection from a landrace introduced into the US from Algeria. On the other hand such groupings among cultivars were not evident when KIN was used for genetic diversity measures instead. The level of genetic variation among individuals within a cultivar at the breeders’ seed level was estimated based on an inter-haplotypic distance matrix derived from the AFLP data. We found that the level of genetic variation within the most-developed cultivars is fairly substantial despite rigorous selection pressure aimed at cultivar purity in breeding programs. Comparison of AFLP and pedigree-based genetic diversity estimates in crop species such as durum wheat can provide important information for plant improvement. Received: 26 January 2001 / Accepted: 31 May 2001  相似文献   

16.
17.
Marker development for marker‐assisted selection in plant breeding is increasingly based on next‐generation sequencing (NGS). However, marker development in crops with highly repetitive, complex genomes is still challenging. Here we applied sequence‐based genotyping (SBG), which couples AFLP®‐based complexity reduction to NGS, for de novo single nucleotide polymorphisms (SNP) marker discovery in and genotyping of a biparental durum wheat population. We identified 9983 putative SNPs in 6372 contigs between the two parents and used these SNPs for genotyping 91 recombinant inbred lines (RILs). Excluding redundant information from multiple SNPs per contig, 2606 (41%) markers were used for integration in a pre‐existing framework map, resulting in the integration of 2365 markers over 2607 cM. Of the 2606 markers available for mapping, 91% were integrated in the pre‐existing map, containing 708 SSRs, DArT markers, and SNPs from CRoPS technology, with a map‐size increase of 492 cM (23%). These results demonstrate the high quality of the discovered SNP markers. With this methodology, it was possible to saturate the map at a final marker density of 0.8 cM/marker. Looking at the binned marker distribution (Figure 2), 63 of the 268 10‐cM bins contained only SBG markers, showing that these markers are filling in gaps in the framework map. As to the markers that could not be used for mapping, the main reason was the low sequencing coverage used for genotyping. We conclude that SBG is a valuable tool for efficient, high‐throughput and high‐quality marker discovery and genotyping for complex genomes such as that of durum wheat.  相似文献   

18.
The yellow pigment (YP) of durum wheat (Triticum turgidum L. var durum) semolina is due in part to the presence of carotenoid pigments found in the endosperm and is an important end-use quality trait. Phytoene synthase (Psy) is considered a rate-limiting enzyme in the carotenoid biosynthetic pathway and in this study, three alleles of Psy1-A1 were sequenced from four durum wheat cultivars and a co-dominant marker was developed for genetic mapping. Psy1-A1 mapped to chromosome 7AL near Xwmc809 in three durum mapping populations and was significantly associated with a pigment quantitative trait loci (QTL) identified on that chromosome. A second QTL localized 25 cM proximal to Psy1-A1 in two populations, and the interaction between the two QTL was not significant. Consistent with QTL mapping data, the Psy1-A1o allele was associated with elevated pigment in a validation population comprising 93 diverse cultivars and breeding lines. These results confirm an earlier hypothesis that Psy1, and at least one additional gene in the distal region of 7AL, are associated with grain YP differences in durum wheat. The functional co-dominant marker developed in this study differentiates the Psy1-A1 alleles reported here and could be used as a target to enhance YP selection in durum wheat breeding programs. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

19.
Awn absence was shown to be inherited as a dominant character in the tetraploid wheat species Triticum dicoccum (Schrank) Schuebl. and T. durum Desf. but as a recessive one in T. aethiopicum Jakubz. The monogenic control of the character was demonstrated for all studied species. In accessions of emmer and durum wheat, the character is controlled by the dominant gene B1, located on chromosome 5A, and in Ethiopian wheat, by a recessive gene, which we designated as awn. The recessive awn gene was localized on chromosome 3B of T. aethiopicum with the use of D-genome disomic substitution lines of cultivar Langdon.  相似文献   

20.
Fusarium head blight (FHB) is a devastating disease of cultivated wheat worldwide. Partial resistance to FHB has been identified in common wheat (Triticum aestivum L.). However, sources of effective FHB resistance have not been found in durum wheat (T. turgidum L. var. durum). A major FHB resistance quantitative trait loci (QTL), Qfhs.ndsu-3AS, was identified on chromosome 3A of T. dicoccoides, a wild relative of durum wheat. Here, we saturated the genomic region containing the QTL using EST-derived target region amplified polymorphism (TRAP), sequence tagged site (STS), and simple sequence repeat (SSR) markers. A total of 45 new molecular marker loci were detected on chromosome 3A and the resulting linkage map consisted of 55 markers spanning a genetic distance of 277.2 cM. Qfhs.ndsu-3AS was positioned within a chromosomal interval of 11.5 cM and is flanked by the TRAP marker loci, Xfcp401 and Xfcp397.2. The average map distance between the marker loci within this QTL region was reduced from 4.9 cM in the previous study to 3.5 cM in the present study. Comparative mapping indicated that Qfhs.ndsu-3AS is not homoeologous to Qfhs.ndsu-3BS, a major FHB QTL derived from the common wheat cultivar Sumai 3. These results facilitate our efforts toward map-based cloning of Qfhs.ndsu-3AS and utilization of this QTL in durum wheat breeding via marker-assisted selection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号